llvm/lib/Target/Target.td

119 lines
4.6 KiB
TableGen
Raw Normal View History

//===- Target.td - Target Independent TableGen interface --------*- C++ -*-===//
//
// This file defines the target-independent interfaces which should be
// implemented by each target which is using a TableGen based code generator.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
//
// Value types - These values correspond to the register types defined in the
// ValueTypes.h file.
//
class ValueType<int size> { string Namespace = "MVT"; int Size = size; }
def i1 : ValueType<1>; // One bit boolean value
def i8 : ValueType<8>; // 8-bit integer value
def i16 : ValueType<16>; // 16-bit integer value
def i32 : ValueType<32>; // 32-bit integer value
def i64 : ValueType<64>; // 64-bit integer value
def i128 : ValueType<128>; // 128-bit integer value
def f32 : ValueType<32>; // 32-bit floating point value
def f64 : ValueType<64>; // 64-bit floating point value
def f80 : ValueType<80>; // 80-bit floating point value
def f128 : ValueType<128>; // 128-bit floating point value
//===----------------------------------------------------------------------===//
// Register file description - These classes are used to fill in the target
// description classes in llvm/Target/MRegisterInfo.h
// Register - You should define one instance of this class for each register in
// the target machine.
//
class Register {
string Namespace = "";
}
// RegisterAliases - You should define instances of this class to indicate which
// registers in the register file are aliased together. This allows the code
// generator to be careful not to put two values with overlapping live ranges
// into registers which alias.
//
class RegisterAliases<Register reg, list<Register> aliases> {
Register Reg = reg;
list<Register> Aliases = aliases;
}
// RegisterClass - Now that all of the registers are defined, and aliases
// between registers are defined, specify which registers belong to which
// register classes. This also defines the default allocation order of
// registers by register allocators.
//
class RegisterClass<ValueType regType, int alignment, list<Register> regList> {
// RegType - Specify the ValueType of the registers in this register class.
// Note that all registers in a register class must have the same ValueType.
//
ValueType RegType = regType;
// Alignment - Specify the alignment required of the registers when they are
// stored or loaded to memory.
//
int Size = RegType.Size;
int Alignment = alignment;
// MemberList - Specify which registers are in this class. If the
// allocation_order_* method are not specified, this also defines the order of
// allocation used by the register allocator.
//
list<Register> MemberList = regList;
// Methods - This member can be used to insert arbitrary code into a generated
// register class. The normal usage of this is to overload virtual methods.
code Methods = [{}];
}
// RegisterInfo - This class should only be instantiated once to provide
// parameters which are global to the the target machine, such as callee safed
// registers.
//
class RegisterInfo {
// ClassName - Specify the name of the class that should be generated by the
// register info emitter. This class may be further subclasses by custom
// target code to implement virtual methods as necessary. Targets must
// specify a value for this.
//
string ClassName;
// CalleeSavedRegisters - As you might guess, this is a list of the callee
// saved registers for a target.
list<Register> CalleeSavedRegisters = [];
// PointerType - Specify the value type to be used to represent pointers in
// this target. Typically this is an i32 or i64 type.
ValueType PointerType;
}
//===----------------------------------------------------------------------===//
// Instruction set description -
//
class Instruction {
string Name; // The opcode string for this instruction
string Namespace = "";
list<Register> Uses = []; // Default to using no non-operand registers
list<Register> Defs = []; // Default to modifying no non-operand registers
// These bits capture information about the high-level semantics of the
// instruction.
bit isReturn = 0; // Is this instruction a return instruction?
bit isBranch = 0; // Is this instruction a branch instruction?
bit isCall = 0; // Is this instruction a call instruction?
bit isTwoAddress = 0; // Is this a two address instruction?
bit isTerminator = 0; // Is this part of the terminator for a basic block?
}