2007-03-31 04:06:36 +00:00
|
|
|
//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file was developed by Chris Lattner and is distributed under
|
|
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This pass munges the code in the input function to better prepare it for
|
|
|
|
// SelectionDAG-based code generation. This works around limitations in it's
|
|
|
|
// basic-block-at-a-time approach. It should eventually be removed.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#define DEBUG_TYPE "codegenprepare"
|
|
|
|
#include "llvm/Transforms/Scalar.h"
|
|
|
|
#include "llvm/Constants.h"
|
|
|
|
#include "llvm/DerivedTypes.h"
|
|
|
|
#include "llvm/Function.h"
|
|
|
|
#include "llvm/Instructions.h"
|
|
|
|
#include "llvm/Pass.h"
|
|
|
|
#include "llvm/Target/TargetAsmInfo.h"
|
|
|
|
#include "llvm/Target/TargetData.h"
|
|
|
|
#include "llvm/Target/TargetLowering.h"
|
|
|
|
#include "llvm/Target/TargetMachine.h"
|
|
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
Completely rewrite addressing-mode related sinking of code. In particular,
this fixes problems where codegenprepare would sink expressions into load/stores
that are not valid, and fixes cases where it would miss important valid ones.
This fixes several serious codesize and perf issues, particularly on targets
with complex addressing modes like arm and x86. For example, now we compile
CodeGen/X86/isel-sink.ll to:
_test:
movl 8(%esp), %eax
movl 4(%esp), %ecx
cmpl $1233, %eax
ja LBB1_2 #F
LBB1_1: #T
movl $4, (%ecx,%eax,4)
movl $141, %eax
ret
LBB1_2: #F
movl (%ecx,%eax,4), %eax
ret
instead of:
_test:
movl 8(%esp), %eax
leal (,%eax,4), %ecx
addl 4(%esp), %ecx
cmpl $1233, %eax
ja LBB1_2 #F
LBB1_1: #T
movl $4, (%ecx)
movl $141, %eax
ret
LBB1_2: #F
movl (%ecx), %eax
ret
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@35970 91177308-0d34-0410-b5e6-96231b3b80d8
2007-04-13 20:30:56 +00:00
|
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
|
|
#include "llvm/ADT/DenseMap.h"
|
2007-03-31 04:06:36 +00:00
|
|
|
#include "llvm/ADT/SmallSet.h"
|
2007-04-02 01:35:34 +00:00
|
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
#include "llvm/Support/Compiler.h"
|
Completely rewrite addressing-mode related sinking of code. In particular,
this fixes problems where codegenprepare would sink expressions into load/stores
that are not valid, and fixes cases where it would miss important valid ones.
This fixes several serious codesize and perf issues, particularly on targets
with complex addressing modes like arm and x86. For example, now we compile
CodeGen/X86/isel-sink.ll to:
_test:
movl 8(%esp), %eax
movl 4(%esp), %ecx
cmpl $1233, %eax
ja LBB1_2 #F
LBB1_1: #T
movl $4, (%ecx,%eax,4)
movl $141, %eax
ret
LBB1_2: #F
movl (%ecx,%eax,4), %eax
ret
instead of:
_test:
movl 8(%esp), %eax
leal (,%eax,4), %ecx
addl 4(%esp), %ecx
cmpl $1233, %eax
ja LBB1_2 #F
LBB1_1: #T
movl $4, (%ecx)
movl $141, %eax
ret
LBB1_2: #F
movl (%ecx), %eax
ret
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@35970 91177308-0d34-0410-b5e6-96231b3b80d8
2007-04-13 20:30:56 +00:00
|
|
|
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
2007-03-31 04:06:36 +00:00
|
|
|
using namespace llvm;
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
class VISIBILITY_HIDDEN CodeGenPrepare : public FunctionPass {
|
|
|
|
/// TLI - Keep a pointer of a TargetLowering to consult for determining
|
|
|
|
/// transformation profitability.
|
|
|
|
const TargetLowering *TLI;
|
|
|
|
public:
|
2007-05-06 13:37:16 +00:00
|
|
|
static char ID; // Pass identification, replacement for typeid
|
2007-05-01 21:15:47 +00:00
|
|
|
CodeGenPrepare(const TargetLowering *tli = 0) : FunctionPass((intptr_t)&ID),
|
|
|
|
TLI(tli) {}
|
2007-03-31 04:06:36 +00:00
|
|
|
bool runOnFunction(Function &F);
|
|
|
|
|
|
|
|
private:
|
2007-04-02 01:35:34 +00:00
|
|
|
bool EliminateMostlyEmptyBlocks(Function &F);
|
|
|
|
bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
|
|
|
|
void EliminateMostlyEmptyBlock(BasicBlock *BB);
|
2007-03-31 04:06:36 +00:00
|
|
|
bool OptimizeBlock(BasicBlock &BB);
|
Completely rewrite addressing-mode related sinking of code. In particular,
this fixes problems where codegenprepare would sink expressions into load/stores
that are not valid, and fixes cases where it would miss important valid ones.
This fixes several serious codesize and perf issues, particularly on targets
with complex addressing modes like arm and x86. For example, now we compile
CodeGen/X86/isel-sink.ll to:
_test:
movl 8(%esp), %eax
movl 4(%esp), %ecx
cmpl $1233, %eax
ja LBB1_2 #F
LBB1_1: #T
movl $4, (%ecx,%eax,4)
movl $141, %eax
ret
LBB1_2: #F
movl (%ecx,%eax,4), %eax
ret
instead of:
_test:
movl 8(%esp), %eax
leal (,%eax,4), %ecx
addl 4(%esp), %ecx
cmpl $1233, %eax
ja LBB1_2 #F
LBB1_1: #T
movl $4, (%ecx)
movl $141, %eax
ret
LBB1_2: #F
movl (%ecx), %eax
ret
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@35970 91177308-0d34-0410-b5e6-96231b3b80d8
2007-04-13 20:30:56 +00:00
|
|
|
bool OptimizeLoadStoreInst(Instruction *I, Value *Addr,
|
|
|
|
const Type *AccessTy,
|
|
|
|
DenseMap<Value*,Value*> &SunkAddrs);
|
2007-03-31 04:06:36 +00:00
|
|
|
};
|
|
|
|
}
|
2007-05-01 21:15:47 +00:00
|
|
|
|
2007-05-03 01:11:54 +00:00
|
|
|
char CodeGenPrepare::ID = 0;
|
2007-03-31 04:06:36 +00:00
|
|
|
static RegisterPass<CodeGenPrepare> X("codegenprepare",
|
|
|
|
"Optimize for code generation");
|
|
|
|
|
|
|
|
FunctionPass *llvm::createCodeGenPreparePass(const TargetLowering *TLI) {
|
|
|
|
return new CodeGenPrepare(TLI);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool CodeGenPrepare::runOnFunction(Function &F) {
|
|
|
|
bool EverMadeChange = false;
|
2007-04-02 01:35:34 +00:00
|
|
|
|
|
|
|
// First pass, eliminate blocks that contain only PHI nodes and an
|
|
|
|
// unconditional branch.
|
|
|
|
EverMadeChange |= EliminateMostlyEmptyBlocks(F);
|
|
|
|
|
|
|
|
bool MadeChange = true;
|
2007-03-31 04:06:36 +00:00
|
|
|
while (MadeChange) {
|
|
|
|
MadeChange = false;
|
|
|
|
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
|
|
|
|
MadeChange |= OptimizeBlock(*BB);
|
|
|
|
EverMadeChange |= MadeChange;
|
|
|
|
}
|
|
|
|
return EverMadeChange;
|
|
|
|
}
|
|
|
|
|
2007-04-02 01:35:34 +00:00
|
|
|
/// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes
|
|
|
|
/// and an unconditional branch. Passes before isel (e.g. LSR/loopsimplify)
|
|
|
|
/// often split edges in ways that are non-optimal for isel. Start by
|
|
|
|
/// eliminating these blocks so we can split them the way we want them.
|
|
|
|
bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
|
|
|
|
bool MadeChange = false;
|
|
|
|
// Note that this intentionally skips the entry block.
|
|
|
|
for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) {
|
|
|
|
BasicBlock *BB = I++;
|
|
|
|
|
|
|
|
// If this block doesn't end with an uncond branch, ignore it.
|
|
|
|
BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
|
|
|
|
if (!BI || !BI->isUnconditional())
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// If the instruction before the branch isn't a phi node, then other stuff
|
|
|
|
// is happening here.
|
|
|
|
BasicBlock::iterator BBI = BI;
|
|
|
|
if (BBI != BB->begin()) {
|
|
|
|
--BBI;
|
|
|
|
if (!isa<PHINode>(BBI)) continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Do not break infinite loops.
|
|
|
|
BasicBlock *DestBB = BI->getSuccessor(0);
|
|
|
|
if (DestBB == BB)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (!CanMergeBlocks(BB, DestBB))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
EliminateMostlyEmptyBlock(BB);
|
|
|
|
MadeChange = true;
|
|
|
|
}
|
|
|
|
return MadeChange;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
|
|
|
|
/// single uncond branch between them, and BB contains no other non-phi
|
|
|
|
/// instructions.
|
|
|
|
bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
|
|
|
|
const BasicBlock *DestBB) const {
|
|
|
|
// We only want to eliminate blocks whose phi nodes are used by phi nodes in
|
|
|
|
// the successor. If there are more complex condition (e.g. preheaders),
|
|
|
|
// don't mess around with them.
|
|
|
|
BasicBlock::const_iterator BBI = BB->begin();
|
|
|
|
while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
|
|
|
|
for (Value::use_const_iterator UI = PN->use_begin(), E = PN->use_end();
|
|
|
|
UI != E; ++UI) {
|
|
|
|
const Instruction *User = cast<Instruction>(*UI);
|
|
|
|
if (User->getParent() != DestBB || !isa<PHINode>(User))
|
|
|
|
return false;
|
2007-04-25 00:37:04 +00:00
|
|
|
// If User is inside DestBB block and it is a PHINode then check
|
|
|
|
// incoming value. If incoming value is not from BB then this is
|
|
|
|
// a complex condition (e.g. preheaders) we want to avoid here.
|
|
|
|
if (User->getParent() == DestBB) {
|
|
|
|
if (const PHINode *UPN = dyn_cast<PHINode>(User))
|
|
|
|
for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
|
|
|
|
Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
|
|
|
|
if (Insn && Insn->getParent() == BB &&
|
|
|
|
Insn->getParent() != UPN->getIncomingBlock(I))
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
2007-04-02 01:35:34 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// If BB and DestBB contain any common predecessors, then the phi nodes in BB
|
|
|
|
// and DestBB may have conflicting incoming values for the block. If so, we
|
|
|
|
// can't merge the block.
|
|
|
|
const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
|
|
|
|
if (!DestBBPN) return true; // no conflict.
|
|
|
|
|
|
|
|
// Collect the preds of BB.
|
|
|
|
SmallPtrSet<BasicBlock*, 16> BBPreds;
|
|
|
|
if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
|
|
|
|
// It is faster to get preds from a PHI than with pred_iterator.
|
|
|
|
for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
|
|
|
|
BBPreds.insert(BBPN->getIncomingBlock(i));
|
|
|
|
} else {
|
|
|
|
BBPreds.insert(pred_begin(BB), pred_end(BB));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Walk the preds of DestBB.
|
|
|
|
for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
|
|
|
|
BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
|
|
|
|
if (BBPreds.count(Pred)) { // Common predecessor?
|
|
|
|
BBI = DestBB->begin();
|
|
|
|
while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
|
|
|
|
const Value *V1 = PN->getIncomingValueForBlock(Pred);
|
|
|
|
const Value *V2 = PN->getIncomingValueForBlock(BB);
|
|
|
|
|
|
|
|
// If V2 is a phi node in BB, look up what the mapped value will be.
|
|
|
|
if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
|
|
|
|
if (V2PN->getParent() == BB)
|
|
|
|
V2 = V2PN->getIncomingValueForBlock(Pred);
|
|
|
|
|
|
|
|
// If there is a conflict, bail out.
|
|
|
|
if (V1 != V2) return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
|
|
|
|
/// an unconditional branch in it.
|
|
|
|
void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
|
|
|
|
BranchInst *BI = cast<BranchInst>(BB->getTerminator());
|
|
|
|
BasicBlock *DestBB = BI->getSuccessor(0);
|
|
|
|
|
|
|
|
DOUT << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB;
|
|
|
|
|
|
|
|
// If the destination block has a single pred, then this is a trivial edge,
|
|
|
|
// just collapse it.
|
|
|
|
if (DestBB->getSinglePredecessor()) {
|
|
|
|
// If DestBB has single-entry PHI nodes, fold them.
|
|
|
|
while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
|
|
|
|
PN->replaceAllUsesWith(PN->getIncomingValue(0));
|
|
|
|
PN->eraseFromParent();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Splice all the PHI nodes from BB over to DestBB.
|
|
|
|
DestBB->getInstList().splice(DestBB->begin(), BB->getInstList(),
|
|
|
|
BB->begin(), BI);
|
|
|
|
|
|
|
|
// Anything that branched to BB now branches to DestBB.
|
|
|
|
BB->replaceAllUsesWith(DestBB);
|
|
|
|
|
|
|
|
// Nuke BB.
|
|
|
|
BB->eraseFromParent();
|
|
|
|
|
|
|
|
DOUT << "AFTER:\n" << *DestBB << "\n\n\n";
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB
|
|
|
|
// to handle the new incoming edges it is about to have.
|
|
|
|
PHINode *PN;
|
|
|
|
for (BasicBlock::iterator BBI = DestBB->begin();
|
|
|
|
(PN = dyn_cast<PHINode>(BBI)); ++BBI) {
|
|
|
|
// Remove the incoming value for BB, and remember it.
|
|
|
|
Value *InVal = PN->removeIncomingValue(BB, false);
|
|
|
|
|
|
|
|
// Two options: either the InVal is a phi node defined in BB or it is some
|
|
|
|
// value that dominates BB.
|
|
|
|
PHINode *InValPhi = dyn_cast<PHINode>(InVal);
|
|
|
|
if (InValPhi && InValPhi->getParent() == BB) {
|
|
|
|
// Add all of the input values of the input PHI as inputs of this phi.
|
|
|
|
for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
|
|
|
|
PN->addIncoming(InValPhi->getIncomingValue(i),
|
|
|
|
InValPhi->getIncomingBlock(i));
|
|
|
|
} else {
|
|
|
|
// Otherwise, add one instance of the dominating value for each edge that
|
|
|
|
// we will be adding.
|
|
|
|
if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
|
|
|
|
for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
|
|
|
|
PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
|
|
|
|
} else {
|
|
|
|
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
|
|
|
|
PN->addIncoming(InVal, *PI);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// The PHIs are now updated, change everything that refers to BB to use
|
|
|
|
// DestBB and remove BB.
|
|
|
|
BB->replaceAllUsesWith(DestBB);
|
|
|
|
BB->eraseFromParent();
|
|
|
|
|
|
|
|
DOUT << "AFTER:\n" << *DestBB << "\n\n\n";
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2007-03-31 04:06:36 +00:00
|
|
|
/// SplitEdgeNicely - Split the critical edge from TI to it's specified
|
|
|
|
/// successor if it will improve codegen. We only do this if the successor has
|
|
|
|
/// phi nodes (otherwise critical edges are ok). If there is already another
|
|
|
|
/// predecessor of the succ that is empty (and thus has no phi nodes), use it
|
|
|
|
/// instead of introducing a new block.
|
|
|
|
static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum, Pass *P) {
|
|
|
|
BasicBlock *TIBB = TI->getParent();
|
|
|
|
BasicBlock *Dest = TI->getSuccessor(SuccNum);
|
|
|
|
assert(isa<PHINode>(Dest->begin()) &&
|
|
|
|
"This should only be called if Dest has a PHI!");
|
|
|
|
|
|
|
|
/// TIPHIValues - This array is lazily computed to determine the values of
|
|
|
|
/// PHIs in Dest that TI would provide.
|
|
|
|
std::vector<Value*> TIPHIValues;
|
|
|
|
|
|
|
|
// Check to see if Dest has any blocks that can be used as a split edge for
|
|
|
|
// this terminator.
|
|
|
|
for (pred_iterator PI = pred_begin(Dest), E = pred_end(Dest); PI != E; ++PI) {
|
|
|
|
BasicBlock *Pred = *PI;
|
|
|
|
// To be usable, the pred has to end with an uncond branch to the dest.
|
|
|
|
BranchInst *PredBr = dyn_cast<BranchInst>(Pred->getTerminator());
|
|
|
|
if (!PredBr || !PredBr->isUnconditional() ||
|
|
|
|
// Must be empty other than the branch.
|
|
|
|
&Pred->front() != PredBr)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// Finally, since we know that Dest has phi nodes in it, we have to make
|
|
|
|
// sure that jumping to Pred will have the same affect as going to Dest in
|
|
|
|
// terms of PHI values.
|
|
|
|
PHINode *PN;
|
|
|
|
unsigned PHINo = 0;
|
|
|
|
bool FoundMatch = true;
|
|
|
|
for (BasicBlock::iterator I = Dest->begin();
|
|
|
|
(PN = dyn_cast<PHINode>(I)); ++I, ++PHINo) {
|
|
|
|
if (PHINo == TIPHIValues.size())
|
|
|
|
TIPHIValues.push_back(PN->getIncomingValueForBlock(TIBB));
|
|
|
|
|
|
|
|
// If the PHI entry doesn't work, we can't use this pred.
|
|
|
|
if (TIPHIValues[PHINo] != PN->getIncomingValueForBlock(Pred)) {
|
|
|
|
FoundMatch = false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// If we found a workable predecessor, change TI to branch to Succ.
|
|
|
|
if (FoundMatch) {
|
|
|
|
Dest->removePredecessor(TIBB);
|
|
|
|
TI->setSuccessor(SuccNum, Pred);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
SplitCriticalEdge(TI, SuccNum, P, true);
|
|
|
|
}
|
|
|
|
|
Completely rewrite addressing-mode related sinking of code. In particular,
this fixes problems where codegenprepare would sink expressions into load/stores
that are not valid, and fixes cases where it would miss important valid ones.
This fixes several serious codesize and perf issues, particularly on targets
with complex addressing modes like arm and x86. For example, now we compile
CodeGen/X86/isel-sink.ll to:
_test:
movl 8(%esp), %eax
movl 4(%esp), %ecx
cmpl $1233, %eax
ja LBB1_2 #F
LBB1_1: #T
movl $4, (%ecx,%eax,4)
movl $141, %eax
ret
LBB1_2: #F
movl (%ecx,%eax,4), %eax
ret
instead of:
_test:
movl 8(%esp), %eax
leal (,%eax,4), %ecx
addl 4(%esp), %ecx
cmpl $1233, %eax
ja LBB1_2 #F
LBB1_1: #T
movl $4, (%ecx)
movl $141, %eax
ret
LBB1_2: #F
movl (%ecx), %eax
ret
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@35970 91177308-0d34-0410-b5e6-96231b3b80d8
2007-04-13 20:30:56 +00:00
|
|
|
/// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
|
|
|
|
/// copy (e.g. it's casting from one pointer type to another, int->uint, or
|
|
|
|
/// int->sbyte on PPC), sink it into user blocks to reduce the number of virtual
|
|
|
|
/// registers that must be created and coallesced.
|
|
|
|
///
|
|
|
|
/// Return true if any changes are made.
|
|
|
|
static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
|
|
|
|
// If this is a noop copy,
|
|
|
|
MVT::ValueType SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
|
|
|
|
MVT::ValueType DstVT = TLI.getValueType(CI->getType());
|
2007-03-31 04:06:36 +00:00
|
|
|
|
Completely rewrite addressing-mode related sinking of code. In particular,
this fixes problems where codegenprepare would sink expressions into load/stores
that are not valid, and fixes cases where it would miss important valid ones.
This fixes several serious codesize and perf issues, particularly on targets
with complex addressing modes like arm and x86. For example, now we compile
CodeGen/X86/isel-sink.ll to:
_test:
movl 8(%esp), %eax
movl 4(%esp), %ecx
cmpl $1233, %eax
ja LBB1_2 #F
LBB1_1: #T
movl $4, (%ecx,%eax,4)
movl $141, %eax
ret
LBB1_2: #F
movl (%ecx,%eax,4), %eax
ret
instead of:
_test:
movl 8(%esp), %eax
leal (,%eax,4), %ecx
addl 4(%esp), %ecx
cmpl $1233, %eax
ja LBB1_2 #F
LBB1_1: #T
movl $4, (%ecx)
movl $141, %eax
ret
LBB1_2: #F
movl (%ecx), %eax
ret
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@35970 91177308-0d34-0410-b5e6-96231b3b80d8
2007-04-13 20:30:56 +00:00
|
|
|
// This is an fp<->int conversion?
|
|
|
|
if (MVT::isInteger(SrcVT) != MVT::isInteger(DstVT))
|
2007-03-31 04:06:36 +00:00
|
|
|
return false;
|
|
|
|
|
Completely rewrite addressing-mode related sinking of code. In particular,
this fixes problems where codegenprepare would sink expressions into load/stores
that are not valid, and fixes cases where it would miss important valid ones.
This fixes several serious codesize and perf issues, particularly on targets
with complex addressing modes like arm and x86. For example, now we compile
CodeGen/X86/isel-sink.ll to:
_test:
movl 8(%esp), %eax
movl 4(%esp), %ecx
cmpl $1233, %eax
ja LBB1_2 #F
LBB1_1: #T
movl $4, (%ecx,%eax,4)
movl $141, %eax
ret
LBB1_2: #F
movl (%ecx,%eax,4), %eax
ret
instead of:
_test:
movl 8(%esp), %eax
leal (,%eax,4), %ecx
addl 4(%esp), %ecx
cmpl $1233, %eax
ja LBB1_2 #F
LBB1_1: #T
movl $4, (%ecx)
movl $141, %eax
ret
LBB1_2: #F
movl (%ecx), %eax
ret
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@35970 91177308-0d34-0410-b5e6-96231b3b80d8
2007-04-13 20:30:56 +00:00
|
|
|
// If this is an extension, it will be a zero or sign extension, which
|
|
|
|
// isn't a noop.
|
|
|
|
if (SrcVT < DstVT) return false;
|
2007-03-31 04:06:36 +00:00
|
|
|
|
Completely rewrite addressing-mode related sinking of code. In particular,
this fixes problems where codegenprepare would sink expressions into load/stores
that are not valid, and fixes cases where it would miss important valid ones.
This fixes several serious codesize and perf issues, particularly on targets
with complex addressing modes like arm and x86. For example, now we compile
CodeGen/X86/isel-sink.ll to:
_test:
movl 8(%esp), %eax
movl 4(%esp), %ecx
cmpl $1233, %eax
ja LBB1_2 #F
LBB1_1: #T
movl $4, (%ecx,%eax,4)
movl $141, %eax
ret
LBB1_2: #F
movl (%ecx,%eax,4), %eax
ret
instead of:
_test:
movl 8(%esp), %eax
leal (,%eax,4), %ecx
addl 4(%esp), %ecx
cmpl $1233, %eax
ja LBB1_2 #F
LBB1_1: #T
movl $4, (%ecx)
movl $141, %eax
ret
LBB1_2: #F
movl (%ecx), %eax
ret
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@35970 91177308-0d34-0410-b5e6-96231b3b80d8
2007-04-13 20:30:56 +00:00
|
|
|
// If these values will be promoted, find out what they will be promoted
|
|
|
|
// to. This helps us consider truncates on PPC as noop copies when they
|
|
|
|
// are.
|
|
|
|
if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote)
|
|
|
|
SrcVT = TLI.getTypeToTransformTo(SrcVT);
|
|
|
|
if (TLI.getTypeAction(DstVT) == TargetLowering::Promote)
|
|
|
|
DstVT = TLI.getTypeToTransformTo(DstVT);
|
2007-03-31 04:06:36 +00:00
|
|
|
|
Completely rewrite addressing-mode related sinking of code. In particular,
this fixes problems where codegenprepare would sink expressions into load/stores
that are not valid, and fixes cases where it would miss important valid ones.
This fixes several serious codesize and perf issues, particularly on targets
with complex addressing modes like arm and x86. For example, now we compile
CodeGen/X86/isel-sink.ll to:
_test:
movl 8(%esp), %eax
movl 4(%esp), %ecx
cmpl $1233, %eax
ja LBB1_2 #F
LBB1_1: #T
movl $4, (%ecx,%eax,4)
movl $141, %eax
ret
LBB1_2: #F
movl (%ecx,%eax,4), %eax
ret
instead of:
_test:
movl 8(%esp), %eax
leal (,%eax,4), %ecx
addl 4(%esp), %ecx
cmpl $1233, %eax
ja LBB1_2 #F
LBB1_1: #T
movl $4, (%ecx)
movl $141, %eax
ret
LBB1_2: #F
movl (%ecx), %eax
ret
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@35970 91177308-0d34-0410-b5e6-96231b3b80d8
2007-04-13 20:30:56 +00:00
|
|
|
// If, after promotion, these are the same types, this is a noop copy.
|
|
|
|
if (SrcVT != DstVT)
|
2007-03-31 04:06:36 +00:00
|
|
|
return false;
|
Completely rewrite addressing-mode related sinking of code. In particular,
this fixes problems where codegenprepare would sink expressions into load/stores
that are not valid, and fixes cases where it would miss important valid ones.
This fixes several serious codesize and perf issues, particularly on targets
with complex addressing modes like arm and x86. For example, now we compile
CodeGen/X86/isel-sink.ll to:
_test:
movl 8(%esp), %eax
movl 4(%esp), %ecx
cmpl $1233, %eax
ja LBB1_2 #F
LBB1_1: #T
movl $4, (%ecx,%eax,4)
movl $141, %eax
ret
LBB1_2: #F
movl (%ecx,%eax,4), %eax
ret
instead of:
_test:
movl 8(%esp), %eax
leal (,%eax,4), %ecx
addl 4(%esp), %ecx
cmpl $1233, %eax
ja LBB1_2 #F
LBB1_1: #T
movl $4, (%ecx)
movl $141, %eax
ret
LBB1_2: #F
movl (%ecx), %eax
ret
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@35970 91177308-0d34-0410-b5e6-96231b3b80d8
2007-04-13 20:30:56 +00:00
|
|
|
|
2007-03-31 04:06:36 +00:00
|
|
|
BasicBlock *DefBB = CI->getParent();
|
|
|
|
|
|
|
|
/// InsertedCasts - Only insert a cast in each block once.
|
|
|
|
std::map<BasicBlock*, CastInst*> InsertedCasts;
|
|
|
|
|
|
|
|
bool MadeChange = false;
|
|
|
|
for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
|
|
|
|
UI != E; ) {
|
|
|
|
Use &TheUse = UI.getUse();
|
|
|
|
Instruction *User = cast<Instruction>(*UI);
|
|
|
|
|
|
|
|
// Figure out which BB this cast is used in. For PHI's this is the
|
|
|
|
// appropriate predecessor block.
|
|
|
|
BasicBlock *UserBB = User->getParent();
|
|
|
|
if (PHINode *PN = dyn_cast<PHINode>(User)) {
|
|
|
|
unsigned OpVal = UI.getOperandNo()/2;
|
|
|
|
UserBB = PN->getIncomingBlock(OpVal);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Preincrement use iterator so we don't invalidate it.
|
|
|
|
++UI;
|
|
|
|
|
|
|
|
// If this user is in the same block as the cast, don't change the cast.
|
|
|
|
if (UserBB == DefBB) continue;
|
|
|
|
|
|
|
|
// If we have already inserted a cast into this block, use it.
|
|
|
|
CastInst *&InsertedCast = InsertedCasts[UserBB];
|
|
|
|
|
|
|
|
if (!InsertedCast) {
|
|
|
|
BasicBlock::iterator InsertPt = UserBB->begin();
|
|
|
|
while (isa<PHINode>(InsertPt)) ++InsertPt;
|
|
|
|
|
|
|
|
InsertedCast =
|
|
|
|
CastInst::create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
|
|
|
|
InsertPt);
|
|
|
|
MadeChange = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Replace a use of the cast with a use of the new casat.
|
|
|
|
TheUse = InsertedCast;
|
|
|
|
}
|
|
|
|
|
|
|
|
// If we removed all uses, nuke the cast.
|
|
|
|
if (CI->use_empty())
|
|
|
|
CI->eraseFromParent();
|
|
|
|
|
|
|
|
return MadeChange;
|
|
|
|
}
|
|
|
|
|
Completely rewrite addressing-mode related sinking of code. In particular,
this fixes problems where codegenprepare would sink expressions into load/stores
that are not valid, and fixes cases where it would miss important valid ones.
This fixes several serious codesize and perf issues, particularly on targets
with complex addressing modes like arm and x86. For example, now we compile
CodeGen/X86/isel-sink.ll to:
_test:
movl 8(%esp), %eax
movl 4(%esp), %ecx
cmpl $1233, %eax
ja LBB1_2 #F
LBB1_1: #T
movl $4, (%ecx,%eax,4)
movl $141, %eax
ret
LBB1_2: #F
movl (%ecx,%eax,4), %eax
ret
instead of:
_test:
movl 8(%esp), %eax
leal (,%eax,4), %ecx
addl 4(%esp), %ecx
cmpl $1233, %eax
ja LBB1_2 #F
LBB1_1: #T
movl $4, (%ecx)
movl $141, %eax
ret
LBB1_2: #F
movl (%ecx), %eax
ret
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@35970 91177308-0d34-0410-b5e6-96231b3b80d8
2007-04-13 20:30:56 +00:00
|
|
|
/// EraseDeadInstructions - Erase any dead instructions
|
|
|
|
static void EraseDeadInstructions(Value *V) {
|
|
|
|
Instruction *I = dyn_cast<Instruction>(V);
|
|
|
|
if (!I || !I->use_empty()) return;
|
|
|
|
|
|
|
|
SmallPtrSet<Instruction*, 16> Insts;
|
|
|
|
Insts.insert(I);
|
|
|
|
|
|
|
|
while (!Insts.empty()) {
|
|
|
|
I = *Insts.begin();
|
|
|
|
Insts.erase(I);
|
|
|
|
if (isInstructionTriviallyDead(I)) {
|
|
|
|
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
|
|
|
|
if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
|
|
|
|
Insts.insert(U);
|
|
|
|
I->eraseFromParent();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// ExtAddrMode - This is an extended version of TargetLowering::AddrMode which
|
|
|
|
/// holds actual Value*'s for register values.
|
|
|
|
struct ExtAddrMode : public TargetLowering::AddrMode {
|
|
|
|
Value *BaseReg;
|
|
|
|
Value *ScaledReg;
|
|
|
|
ExtAddrMode() : BaseReg(0), ScaledReg(0) {}
|
|
|
|
void dump() const;
|
|
|
|
};
|
|
|
|
|
|
|
|
static std::ostream &operator<<(std::ostream &OS, const ExtAddrMode &AM) {
|
|
|
|
bool NeedPlus = false;
|
|
|
|
OS << "[";
|
|
|
|
if (AM.BaseGV)
|
|
|
|
OS << (NeedPlus ? " + " : "")
|
|
|
|
<< "GV:%" << AM.BaseGV->getName(), NeedPlus = true;
|
|
|
|
|
|
|
|
if (AM.BaseOffs)
|
|
|
|
OS << (NeedPlus ? " + " : "") << AM.BaseOffs, NeedPlus = true;
|
|
|
|
|
|
|
|
if (AM.BaseReg)
|
|
|
|
OS << (NeedPlus ? " + " : "")
|
|
|
|
<< "Base:%" << AM.BaseReg->getName(), NeedPlus = true;
|
|
|
|
if (AM.Scale)
|
|
|
|
OS << (NeedPlus ? " + " : "")
|
|
|
|
<< AM.Scale << "*%" << AM.ScaledReg->getName(), NeedPlus = true;
|
|
|
|
|
|
|
|
return OS << "]";
|
|
|
|
}
|
|
|
|
|
|
|
|
void ExtAddrMode::dump() const {
|
|
|
|
cerr << *this << "\n";
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool TryMatchingScaledValue(Value *ScaleReg, int64_t Scale,
|
|
|
|
const Type *AccessTy, ExtAddrMode &AddrMode,
|
|
|
|
SmallVector<Instruction*, 16> &AddrModeInsts,
|
|
|
|
const TargetLowering &TLI, unsigned Depth);
|
|
|
|
|
|
|
|
/// FindMaximalLegalAddressingMode - If we can, try to merge the computation of
|
|
|
|
/// Addr into the specified addressing mode. If Addr can't be added to AddrMode
|
|
|
|
/// this returns false. This assumes that Addr is either a pointer type or
|
|
|
|
/// intptr_t for the target.
|
|
|
|
static bool FindMaximalLegalAddressingMode(Value *Addr, const Type *AccessTy,
|
|
|
|
ExtAddrMode &AddrMode,
|
|
|
|
SmallVector<Instruction*, 16> &AddrModeInsts,
|
|
|
|
const TargetLowering &TLI,
|
|
|
|
unsigned Depth) {
|
|
|
|
|
|
|
|
// If this is a global variable, fold it into the addressing mode if possible.
|
|
|
|
if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
|
|
|
|
if (AddrMode.BaseGV == 0) {
|
|
|
|
AddrMode.BaseGV = GV;
|
|
|
|
if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
|
|
|
|
return true;
|
|
|
|
AddrMode.BaseGV = 0;
|
|
|
|
}
|
|
|
|
} else if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
|
|
|
|
AddrMode.BaseOffs += CI->getSExtValue();
|
|
|
|
if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
|
|
|
|
return true;
|
|
|
|
AddrMode.BaseOffs -= CI->getSExtValue();
|
|
|
|
} else if (isa<ConstantPointerNull>(Addr)) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Look through constant exprs and instructions.
|
|
|
|
unsigned Opcode = ~0U;
|
|
|
|
User *AddrInst = 0;
|
|
|
|
if (Instruction *I = dyn_cast<Instruction>(Addr)) {
|
|
|
|
Opcode = I->getOpcode();
|
|
|
|
AddrInst = I;
|
|
|
|
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
|
|
|
|
Opcode = CE->getOpcode();
|
|
|
|
AddrInst = CE;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Limit recursion to avoid exponential behavior.
|
|
|
|
if (Depth == 5) { AddrInst = 0; Opcode = ~0U; }
|
|
|
|
|
|
|
|
// If this is really an instruction, add it to our list of related
|
|
|
|
// instructions.
|
|
|
|
if (Instruction *I = dyn_cast_or_null<Instruction>(AddrInst))
|
|
|
|
AddrModeInsts.push_back(I);
|
|
|
|
|
|
|
|
switch (Opcode) {
|
|
|
|
case Instruction::PtrToInt:
|
|
|
|
// PtrToInt is always a noop, as we know that the int type is pointer sized.
|
|
|
|
if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
|
|
|
|
AddrMode, AddrModeInsts, TLI, Depth))
|
|
|
|
return true;
|
|
|
|
break;
|
|
|
|
case Instruction::IntToPtr:
|
|
|
|
// This inttoptr is a no-op if the integer type is pointer sized.
|
|
|
|
if (TLI.getValueType(AddrInst->getOperand(0)->getType()) ==
|
|
|
|
TLI.getPointerTy()) {
|
|
|
|
if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
|
|
|
|
AddrMode, AddrModeInsts, TLI, Depth))
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case Instruction::Add: {
|
|
|
|
// Check to see if we can merge in the RHS then the LHS. If so, we win.
|
|
|
|
ExtAddrMode BackupAddrMode = AddrMode;
|
|
|
|
unsigned OldSize = AddrModeInsts.size();
|
|
|
|
if (FindMaximalLegalAddressingMode(AddrInst->getOperand(1), AccessTy,
|
|
|
|
AddrMode, AddrModeInsts, TLI, Depth+1) &&
|
|
|
|
FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
|
|
|
|
AddrMode, AddrModeInsts, TLI, Depth+1))
|
|
|
|
return true;
|
|
|
|
|
|
|
|
// Restore the old addr mode info.
|
|
|
|
AddrMode = BackupAddrMode;
|
|
|
|
AddrModeInsts.resize(OldSize);
|
|
|
|
|
|
|
|
// Otherwise this was over-aggressive. Try merging in the LHS then the RHS.
|
|
|
|
if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
|
|
|
|
AddrMode, AddrModeInsts, TLI, Depth+1) &&
|
|
|
|
FindMaximalLegalAddressingMode(AddrInst->getOperand(1), AccessTy,
|
|
|
|
AddrMode, AddrModeInsts, TLI, Depth+1))
|
|
|
|
return true;
|
|
|
|
|
|
|
|
// Otherwise we definitely can't merge the ADD in.
|
|
|
|
AddrMode = BackupAddrMode;
|
|
|
|
AddrModeInsts.resize(OldSize);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case Instruction::Or: {
|
|
|
|
ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
|
|
|
|
if (!RHS) break;
|
|
|
|
// TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case Instruction::Mul:
|
|
|
|
case Instruction::Shl: {
|
|
|
|
// Can only handle X*C and X << C, and can only handle this when the scale
|
|
|
|
// field is available.
|
|
|
|
ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
|
|
|
|
if (!RHS) break;
|
|
|
|
int64_t Scale = RHS->getSExtValue();
|
|
|
|
if (Opcode == Instruction::Shl)
|
|
|
|
Scale = 1 << Scale;
|
|
|
|
|
|
|
|
if (TryMatchingScaledValue(AddrInst->getOperand(0), Scale, AccessTy,
|
|
|
|
AddrMode, AddrModeInsts, TLI, Depth))
|
|
|
|
return true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case Instruction::GetElementPtr: {
|
|
|
|
// Scan the GEP. We check it if it contains constant offsets and at most
|
|
|
|
// one variable offset.
|
|
|
|
int VariableOperand = -1;
|
|
|
|
unsigned VariableScale = 0;
|
|
|
|
|
|
|
|
int64_t ConstantOffset = 0;
|
|
|
|
const TargetData *TD = TLI.getTargetData();
|
|
|
|
gep_type_iterator GTI = gep_type_begin(AddrInst);
|
|
|
|
for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
|
|
|
|
if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
|
|
|
|
const StructLayout *SL = TD->getStructLayout(STy);
|
|
|
|
unsigned Idx =
|
|
|
|
cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
|
|
|
|
ConstantOffset += SL->getElementOffset(Idx);
|
|
|
|
} else {
|
|
|
|
uint64_t TypeSize = TD->getTypeSize(GTI.getIndexedType());
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
|
|
|
|
ConstantOffset += CI->getSExtValue()*TypeSize;
|
|
|
|
} else if (TypeSize) { // Scales of zero don't do anything.
|
|
|
|
// We only allow one variable index at the moment.
|
|
|
|
if (VariableOperand != -1) {
|
|
|
|
VariableOperand = -2;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Remember the variable index.
|
|
|
|
VariableOperand = i;
|
|
|
|
VariableScale = TypeSize;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// If the GEP had multiple variable indices, punt.
|
|
|
|
if (VariableOperand == -2)
|
|
|
|
break;
|
|
|
|
|
|
|
|
// A common case is for the GEP to only do a constant offset. In this case,
|
|
|
|
// just add it to the disp field and check validity.
|
|
|
|
if (VariableOperand == -1) {
|
|
|
|
AddrMode.BaseOffs += ConstantOffset;
|
|
|
|
if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){
|
|
|
|
// Check to see if we can fold the base pointer in too.
|
|
|
|
if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
|
|
|
|
AddrMode, AddrModeInsts, TLI,
|
|
|
|
Depth+1))
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
AddrMode.BaseOffs -= ConstantOffset;
|
|
|
|
} else {
|
|
|
|
// Check that this has no base reg yet. If so, we won't have a place to
|
|
|
|
// put the base of the GEP (assuming it is not a null ptr).
|
|
|
|
bool SetBaseReg = false;
|
|
|
|
if (AddrMode.HasBaseReg) {
|
|
|
|
if (!isa<ConstantPointerNull>(AddrInst->getOperand(0)))
|
|
|
|
break;
|
|
|
|
} else {
|
|
|
|
AddrMode.HasBaseReg = true;
|
|
|
|
AddrMode.BaseReg = AddrInst->getOperand(0);
|
|
|
|
SetBaseReg = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// See if the scale amount is valid for this target.
|
|
|
|
AddrMode.BaseOffs += ConstantOffset;
|
|
|
|
if (TryMatchingScaledValue(AddrInst->getOperand(VariableOperand),
|
|
|
|
VariableScale, AccessTy, AddrMode,
|
|
|
|
AddrModeInsts, TLI, Depth)) {
|
|
|
|
if (!SetBaseReg) return true;
|
|
|
|
|
|
|
|
// If this match succeeded, we know that we can form an address with the
|
|
|
|
// GepBase as the basereg. See if we can match *more*.
|
|
|
|
AddrMode.HasBaseReg = false;
|
|
|
|
AddrMode.BaseReg = 0;
|
|
|
|
if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
|
|
|
|
AddrMode, AddrModeInsts, TLI,
|
|
|
|
Depth+1))
|
|
|
|
return true;
|
|
|
|
// Strange, shouldn't happen. Restore the base reg and succeed the easy
|
|
|
|
// way.
|
|
|
|
AddrMode.HasBaseReg = true;
|
|
|
|
AddrMode.BaseReg = AddrInst->getOperand(0);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
AddrMode.BaseOffs -= ConstantOffset;
|
|
|
|
if (SetBaseReg) {
|
|
|
|
AddrMode.HasBaseReg = false;
|
|
|
|
AddrMode.BaseReg = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (Instruction *I = dyn_cast_or_null<Instruction>(AddrInst)) {
|
|
|
|
assert(AddrModeInsts.back() == I && "Stack imbalance");
|
|
|
|
AddrModeInsts.pop_back();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Worse case, the target should support [reg] addressing modes. :)
|
|
|
|
if (!AddrMode.HasBaseReg) {
|
|
|
|
AddrMode.HasBaseReg = true;
|
|
|
|
// Still check for legality in case the target supports [imm] but not [i+r].
|
|
|
|
if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) {
|
|
|
|
AddrMode.BaseReg = Addr;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
AddrMode.HasBaseReg = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// If the base register is already taken, see if we can do [r+r].
|
|
|
|
if (AddrMode.Scale == 0) {
|
|
|
|
AddrMode.Scale = 1;
|
|
|
|
if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) {
|
|
|
|
AddrMode.ScaledReg = Addr;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
AddrMode.Scale = 0;
|
|
|
|
}
|
|
|
|
// Couldn't match.
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// TryMatchingScaledValue - Try adding ScaleReg*Scale to the specified
|
|
|
|
/// addressing mode. Return true if this addr mode is legal for the target,
|
|
|
|
/// false if not.
|
|
|
|
static bool TryMatchingScaledValue(Value *ScaleReg, int64_t Scale,
|
|
|
|
const Type *AccessTy, ExtAddrMode &AddrMode,
|
|
|
|
SmallVector<Instruction*, 16> &AddrModeInsts,
|
|
|
|
const TargetLowering &TLI, unsigned Depth) {
|
|
|
|
// If we already have a scale of this value, we can add to it, otherwise, we
|
|
|
|
// need an available scale field.
|
|
|
|
if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
ExtAddrMode InputAddrMode = AddrMode;
|
|
|
|
|
|
|
|
// Add scale to turn X*4+X*3 -> X*7. This could also do things like
|
|
|
|
// [A+B + A*7] -> [B+A*8].
|
|
|
|
AddrMode.Scale += Scale;
|
|
|
|
AddrMode.ScaledReg = ScaleReg;
|
|
|
|
|
|
|
|
if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) {
|
|
|
|
// Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
|
|
|
|
// to see if ScaleReg is actually X+C. If so, we can turn this into adding
|
|
|
|
// X*Scale + C*Scale to addr mode.
|
|
|
|
BinaryOperator *BinOp = dyn_cast<BinaryOperator>(ScaleReg);
|
|
|
|
if (BinOp && BinOp->getOpcode() == Instruction::Add &&
|
|
|
|
isa<ConstantInt>(BinOp->getOperand(1)) && InputAddrMode.ScaledReg ==0) {
|
|
|
|
|
|
|
|
InputAddrMode.Scale = Scale;
|
|
|
|
InputAddrMode.ScaledReg = BinOp->getOperand(0);
|
|
|
|
InputAddrMode.BaseOffs +=
|
|
|
|
cast<ConstantInt>(BinOp->getOperand(1))->getSExtValue()*Scale;
|
|
|
|
if (TLI.isLegalAddressingMode(InputAddrMode, AccessTy)) {
|
|
|
|
AddrModeInsts.push_back(BinOp);
|
|
|
|
AddrMode = InputAddrMode;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Otherwise, not (x+c)*scale, just return what we have.
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Otherwise, back this attempt out.
|
|
|
|
AddrMode.Scale -= Scale;
|
|
|
|
if (AddrMode.Scale == 0) AddrMode.ScaledReg = 0;
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// IsNonLocalValue - Return true if the specified values are defined in a
|
|
|
|
/// different basic block than BB.
|
|
|
|
static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
|
|
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
|
|
return I->getParent() != BB;
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// OptimizeLoadStoreInst - Load and Store Instructions have often have
|
|
|
|
/// addressing modes that can do significant amounts of computation. As such,
|
|
|
|
/// instruction selection will try to get the load or store to do as much
|
|
|
|
/// computation as possible for the program. The problem is that isel can only
|
|
|
|
/// see within a single block. As such, we sink as much legal addressing mode
|
|
|
|
/// stuff into the block as possible.
|
|
|
|
bool CodeGenPrepare::OptimizeLoadStoreInst(Instruction *LdStInst, Value *Addr,
|
|
|
|
const Type *AccessTy,
|
|
|
|
DenseMap<Value*,Value*> &SunkAddrs) {
|
|
|
|
// Figure out what addressing mode will be built up for this operation.
|
|
|
|
SmallVector<Instruction*, 16> AddrModeInsts;
|
|
|
|
ExtAddrMode AddrMode;
|
|
|
|
bool Success = FindMaximalLegalAddressingMode(Addr, AccessTy, AddrMode,
|
|
|
|
AddrModeInsts, *TLI, 0);
|
|
|
|
Success = Success; assert(Success && "Couldn't select *anything*?");
|
|
|
|
|
|
|
|
// Check to see if any of the instructions supersumed by this addr mode are
|
|
|
|
// non-local to I's BB.
|
|
|
|
bool AnyNonLocal = false;
|
|
|
|
for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
|
|
|
|
if (IsNonLocalValue(AddrModeInsts[i], LdStInst->getParent())) {
|
|
|
|
AnyNonLocal = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// If all the instructions matched are already in this BB, don't do anything.
|
|
|
|
if (!AnyNonLocal) {
|
|
|
|
DEBUG(cerr << "CGP: Found local addrmode: " << AddrMode << "\n");
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Insert this computation right after this user. Since our caller is
|
|
|
|
// scanning from the top of the BB to the bottom, reuse of the expr are
|
|
|
|
// guaranteed to happen later.
|
|
|
|
BasicBlock::iterator InsertPt = LdStInst;
|
|
|
|
|
|
|
|
// Now that we determined the addressing expression we want to use and know
|
|
|
|
// that we have to sink it into this block. Check to see if we have already
|
|
|
|
// done this for some other load/store instr in this block. If so, reuse the
|
|
|
|
// computation.
|
|
|
|
Value *&SunkAddr = SunkAddrs[Addr];
|
|
|
|
if (SunkAddr) {
|
|
|
|
DEBUG(cerr << "CGP: Reusing nonlocal addrmode: " << AddrMode << "\n");
|
|
|
|
if (SunkAddr->getType() != Addr->getType())
|
|
|
|
SunkAddr = new BitCastInst(SunkAddr, Addr->getType(), "tmp", InsertPt);
|
|
|
|
} else {
|
|
|
|
DEBUG(cerr << "CGP: SINKING nonlocal addrmode: " << AddrMode << "\n");
|
|
|
|
const Type *IntPtrTy = TLI->getTargetData()->getIntPtrType();
|
|
|
|
|
|
|
|
Value *Result = 0;
|
|
|
|
// Start with the scale value.
|
|
|
|
if (AddrMode.Scale) {
|
|
|
|
Value *V = AddrMode.ScaledReg;
|
|
|
|
if (V->getType() == IntPtrTy) {
|
|
|
|
// done.
|
|
|
|
} else if (isa<PointerType>(V->getType())) {
|
|
|
|
V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
|
|
|
|
} else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
|
|
|
|
cast<IntegerType>(V->getType())->getBitWidth()) {
|
|
|
|
V = new TruncInst(V, IntPtrTy, "sunkaddr", InsertPt);
|
|
|
|
} else {
|
|
|
|
V = new SExtInst(V, IntPtrTy, "sunkaddr", InsertPt);
|
|
|
|
}
|
|
|
|
if (AddrMode.Scale != 1)
|
|
|
|
V = BinaryOperator::createMul(V, ConstantInt::get(IntPtrTy,
|
|
|
|
AddrMode.Scale),
|
|
|
|
"sunkaddr", InsertPt);
|
|
|
|
Result = V;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Add in the base register.
|
|
|
|
if (AddrMode.BaseReg) {
|
|
|
|
Value *V = AddrMode.BaseReg;
|
|
|
|
if (V->getType() != IntPtrTy)
|
|
|
|
V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
|
|
|
|
if (Result)
|
|
|
|
Result = BinaryOperator::createAdd(Result, V, "sunkaddr", InsertPt);
|
|
|
|
else
|
|
|
|
Result = V;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Add in the BaseGV if present.
|
|
|
|
if (AddrMode.BaseGV) {
|
|
|
|
Value *V = new PtrToIntInst(AddrMode.BaseGV, IntPtrTy, "sunkaddr",
|
|
|
|
InsertPt);
|
|
|
|
if (Result)
|
|
|
|
Result = BinaryOperator::createAdd(Result, V, "sunkaddr", InsertPt);
|
|
|
|
else
|
|
|
|
Result = V;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Add in the Base Offset if present.
|
|
|
|
if (AddrMode.BaseOffs) {
|
|
|
|
Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
|
|
|
|
if (Result)
|
|
|
|
Result = BinaryOperator::createAdd(Result, V, "sunkaddr", InsertPt);
|
|
|
|
else
|
|
|
|
Result = V;
|
|
|
|
}
|
2007-03-31 04:06:36 +00:00
|
|
|
|
Completely rewrite addressing-mode related sinking of code. In particular,
this fixes problems where codegenprepare would sink expressions into load/stores
that are not valid, and fixes cases where it would miss important valid ones.
This fixes several serious codesize and perf issues, particularly on targets
with complex addressing modes like arm and x86. For example, now we compile
CodeGen/X86/isel-sink.ll to:
_test:
movl 8(%esp), %eax
movl 4(%esp), %ecx
cmpl $1233, %eax
ja LBB1_2 #F
LBB1_1: #T
movl $4, (%ecx,%eax,4)
movl $141, %eax
ret
LBB1_2: #F
movl (%ecx,%eax,4), %eax
ret
instead of:
_test:
movl 8(%esp), %eax
leal (,%eax,4), %ecx
addl 4(%esp), %ecx
cmpl $1233, %eax
ja LBB1_2 #F
LBB1_1: #T
movl $4, (%ecx)
movl $141, %eax
ret
LBB1_2: #F
movl (%ecx), %eax
ret
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@35970 91177308-0d34-0410-b5e6-96231b3b80d8
2007-04-13 20:30:56 +00:00
|
|
|
if (Result == 0)
|
|
|
|
SunkAddr = Constant::getNullValue(Addr->getType());
|
|
|
|
else
|
|
|
|
SunkAddr = new IntToPtrInst(Result, Addr->getType(), "sunkaddr",InsertPt);
|
|
|
|
}
|
|
|
|
|
|
|
|
LdStInst->replaceUsesOfWith(Addr, SunkAddr);
|
|
|
|
|
|
|
|
if (Addr->use_empty())
|
|
|
|
EraseDeadInstructions(Addr);
|
|
|
|
return true;
|
|
|
|
}
|
2007-03-31 04:06:36 +00:00
|
|
|
|
|
|
|
// In this pass we look for GEP and cast instructions that are used
|
|
|
|
// across basic blocks and rewrite them to improve basic-block-at-a-time
|
|
|
|
// selection.
|
|
|
|
bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
|
|
|
|
bool MadeChange = false;
|
|
|
|
|
|
|
|
// Split all critical edges where the dest block has a PHI and where the phi
|
|
|
|
// has shared immediate operands.
|
|
|
|
TerminatorInst *BBTI = BB.getTerminator();
|
|
|
|
if (BBTI->getNumSuccessors() > 1) {
|
|
|
|
for (unsigned i = 0, e = BBTI->getNumSuccessors(); i != e; ++i)
|
|
|
|
if (isa<PHINode>(BBTI->getSuccessor(i)->begin()) &&
|
|
|
|
isCriticalEdge(BBTI, i, true))
|
|
|
|
SplitEdgeNicely(BBTI, i, this);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
Completely rewrite addressing-mode related sinking of code. In particular,
this fixes problems where codegenprepare would sink expressions into load/stores
that are not valid, and fixes cases where it would miss important valid ones.
This fixes several serious codesize and perf issues, particularly on targets
with complex addressing modes like arm and x86. For example, now we compile
CodeGen/X86/isel-sink.ll to:
_test:
movl 8(%esp), %eax
movl 4(%esp), %ecx
cmpl $1233, %eax
ja LBB1_2 #F
LBB1_1: #T
movl $4, (%ecx,%eax,4)
movl $141, %eax
ret
LBB1_2: #F
movl (%ecx,%eax,4), %eax
ret
instead of:
_test:
movl 8(%esp), %eax
leal (,%eax,4), %ecx
addl 4(%esp), %ecx
cmpl $1233, %eax
ja LBB1_2 #F
LBB1_1: #T
movl $4, (%ecx)
movl $141, %eax
ret
LBB1_2: #F
movl (%ecx), %eax
ret
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@35970 91177308-0d34-0410-b5e6-96231b3b80d8
2007-04-13 20:30:56 +00:00
|
|
|
// Keep track of non-local addresses that have been sunk into this block.
|
|
|
|
// This allows us to avoid inserting duplicate code for blocks with multiple
|
|
|
|
// load/stores of the same address.
|
|
|
|
DenseMap<Value*, Value*> SunkAddrs;
|
|
|
|
|
2007-03-31 04:06:36 +00:00
|
|
|
for (BasicBlock::iterator BBI = BB.begin(), E = BB.end(); BBI != E; ) {
|
|
|
|
Instruction *I = BBI++;
|
|
|
|
|
Completely rewrite addressing-mode related sinking of code. In particular,
this fixes problems where codegenprepare would sink expressions into load/stores
that are not valid, and fixes cases where it would miss important valid ones.
This fixes several serious codesize and perf issues, particularly on targets
with complex addressing modes like arm and x86. For example, now we compile
CodeGen/X86/isel-sink.ll to:
_test:
movl 8(%esp), %eax
movl 4(%esp), %ecx
cmpl $1233, %eax
ja LBB1_2 #F
LBB1_1: #T
movl $4, (%ecx,%eax,4)
movl $141, %eax
ret
LBB1_2: #F
movl (%ecx,%eax,4), %eax
ret
instead of:
_test:
movl 8(%esp), %eax
leal (,%eax,4), %ecx
addl 4(%esp), %ecx
cmpl $1233, %eax
ja LBB1_2 #F
LBB1_1: #T
movl $4, (%ecx)
movl $141, %eax
ret
LBB1_2: #F
movl (%ecx), %eax
ret
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@35970 91177308-0d34-0410-b5e6-96231b3b80d8
2007-04-13 20:30:56 +00:00
|
|
|
if (CastInst *CI = dyn_cast<CastInst>(I)) {
|
2007-03-31 04:06:36 +00:00
|
|
|
// If the source of the cast is a constant, then this should have
|
|
|
|
// already been constant folded. The only reason NOT to constant fold
|
|
|
|
// it is if something (e.g. LSR) was careful to place the constant
|
|
|
|
// evaluation in a block other than then one that uses it (e.g. to hoist
|
|
|
|
// the address of globals out of a loop). If this is the case, we don't
|
|
|
|
// want to forward-subst the cast.
|
|
|
|
if (isa<Constant>(CI->getOperand(0)))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (TLI)
|
Completely rewrite addressing-mode related sinking of code. In particular,
this fixes problems where codegenprepare would sink expressions into load/stores
that are not valid, and fixes cases where it would miss important valid ones.
This fixes several serious codesize and perf issues, particularly on targets
with complex addressing modes like arm and x86. For example, now we compile
CodeGen/X86/isel-sink.ll to:
_test:
movl 8(%esp), %eax
movl 4(%esp), %ecx
cmpl $1233, %eax
ja LBB1_2 #F
LBB1_1: #T
movl $4, (%ecx,%eax,4)
movl $141, %eax
ret
LBB1_2: #F
movl (%ecx,%eax,4), %eax
ret
instead of:
_test:
movl 8(%esp), %eax
leal (,%eax,4), %ecx
addl 4(%esp), %ecx
cmpl $1233, %eax
ja LBB1_2 #F
LBB1_1: #T
movl $4, (%ecx)
movl $141, %eax
ret
LBB1_2: #F
movl (%ecx), %eax
ret
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@35970 91177308-0d34-0410-b5e6-96231b3b80d8
2007-04-13 20:30:56 +00:00
|
|
|
MadeChange |= OptimizeNoopCopyExpression(CI, *TLI);
|
|
|
|
} else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
|
|
|
|
if (TLI)
|
|
|
|
MadeChange |= OptimizeLoadStoreInst(I, I->getOperand(0), LI->getType(),
|
|
|
|
SunkAddrs);
|
|
|
|
} else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
|
|
|
|
if (TLI)
|
|
|
|
MadeChange |= OptimizeLoadStoreInst(I, SI->getOperand(1),
|
|
|
|
SI->getOperand(0)->getType(),
|
|
|
|
SunkAddrs);
|
|
|
|
} else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
|
2007-04-14 00:17:39 +00:00
|
|
|
if (GEPI->hasAllZeroIndices()) {
|
Completely rewrite addressing-mode related sinking of code. In particular,
this fixes problems where codegenprepare would sink expressions into load/stores
that are not valid, and fixes cases where it would miss important valid ones.
This fixes several serious codesize and perf issues, particularly on targets
with complex addressing modes like arm and x86. For example, now we compile
CodeGen/X86/isel-sink.ll to:
_test:
movl 8(%esp), %eax
movl 4(%esp), %ecx
cmpl $1233, %eax
ja LBB1_2 #F
LBB1_1: #T
movl $4, (%ecx,%eax,4)
movl $141, %eax
ret
LBB1_2: #F
movl (%ecx,%eax,4), %eax
ret
instead of:
_test:
movl 8(%esp), %eax
leal (,%eax,4), %ecx
addl 4(%esp), %ecx
cmpl $1233, %eax
ja LBB1_2 #F
LBB1_1: #T
movl $4, (%ecx)
movl $141, %eax
ret
LBB1_2: #F
movl (%ecx), %eax
ret
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@35970 91177308-0d34-0410-b5e6-96231b3b80d8
2007-04-13 20:30:56 +00:00
|
|
|
/// The GEP operand must be a pointer, so must its result -> BitCast
|
|
|
|
Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
|
|
|
|
GEPI->getName(), GEPI);
|
|
|
|
GEPI->replaceAllUsesWith(NC);
|
|
|
|
GEPI->eraseFromParent();
|
|
|
|
MadeChange = true;
|
|
|
|
BBI = NC;
|
|
|
|
}
|
|
|
|
} else if (CallInst *CI = dyn_cast<CallInst>(I)) {
|
|
|
|
// If we found an inline asm expession, and if the target knows how to
|
|
|
|
// lower it to normal LLVM code, do so now.
|
|
|
|
if (TLI && isa<InlineAsm>(CI->getCalledValue()))
|
|
|
|
if (const TargetAsmInfo *TAI =
|
|
|
|
TLI->getTargetMachine().getTargetAsmInfo()) {
|
|
|
|
if (TAI->ExpandInlineAsm(CI))
|
|
|
|
BBI = BB.begin();
|
|
|
|
}
|
2007-03-31 04:06:36 +00:00
|
|
|
}
|
|
|
|
}
|
Completely rewrite addressing-mode related sinking of code. In particular,
this fixes problems where codegenprepare would sink expressions into load/stores
that are not valid, and fixes cases where it would miss important valid ones.
This fixes several serious codesize and perf issues, particularly on targets
with complex addressing modes like arm and x86. For example, now we compile
CodeGen/X86/isel-sink.ll to:
_test:
movl 8(%esp), %eax
movl 4(%esp), %ecx
cmpl $1233, %eax
ja LBB1_2 #F
LBB1_1: #T
movl $4, (%ecx,%eax,4)
movl $141, %eax
ret
LBB1_2: #F
movl (%ecx,%eax,4), %eax
ret
instead of:
_test:
movl 8(%esp), %eax
leal (,%eax,4), %ecx
addl 4(%esp), %ecx
cmpl $1233, %eax
ja LBB1_2 #F
LBB1_1: #T
movl $4, (%ecx)
movl $141, %eax
ret
LBB1_2: #F
movl (%ecx), %eax
ret
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@35970 91177308-0d34-0410-b5e6-96231b3b80d8
2007-04-13 20:30:56 +00:00
|
|
|
|
2007-03-31 04:06:36 +00:00
|
|
|
return MadeChange;
|
|
|
|
}
|
|
|
|
|