mirror of
https://github.com/RPCSX/llvm.git
synced 2024-12-14 07:31:47 +00:00
193 lines
6.2 KiB
C++
193 lines
6.2 KiB
C++
|
//===-- SchedInfo.cpp - Generic code to support target schedulers ----------==//
|
||
|
//
|
||
|
// This file implements the generic part of a Scheduler description for a
|
||
|
// target. This functionality is defined in the llvm/Target/SchedInfo.h file.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "llvm/Target/MachineSchedInfo.h"
|
||
|
|
||
|
// External object describing the machine instructions
|
||
|
// Initialized only when the TargetMachine class is created
|
||
|
// and reset when that class is destroyed.
|
||
|
//
|
||
|
const MachineInstrDescriptor* TargetInstrDescriptors = 0;
|
||
|
|
||
|
resourceId_t MachineResource::nextId = 0;
|
||
|
|
||
|
// Check if fromRVec and toRVec have *any* common entries.
|
||
|
// Assume the vectors are sorted in increasing order.
|
||
|
// Algorithm copied from function set_intersection() for sorted ranges
|
||
|
// (stl_algo.h).
|
||
|
//
|
||
|
inline static bool
|
||
|
RUConflict(const vector<resourceId_t>& fromRVec,
|
||
|
const vector<resourceId_t>& toRVec)
|
||
|
{
|
||
|
|
||
|
unsigned fN = fromRVec.size(), tN = toRVec.size();
|
||
|
unsigned fi = 0, ti = 0;
|
||
|
|
||
|
while (fi < fN && ti < tN)
|
||
|
{
|
||
|
if (fromRVec[fi] < toRVec[ti])
|
||
|
++fi;
|
||
|
else if (toRVec[ti] < fromRVec[fi])
|
||
|
++ti;
|
||
|
else
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
|
||
|
static cycles_t
|
||
|
ComputeMinGap(const InstrRUsage &fromRU,
|
||
|
const InstrRUsage &toRU)
|
||
|
{
|
||
|
cycles_t minGap = 0;
|
||
|
|
||
|
if (fromRU.numBubbles > 0)
|
||
|
minGap = fromRU.numBubbles;
|
||
|
|
||
|
if (minGap < fromRU.numCycles)
|
||
|
{
|
||
|
// only need to check from cycle `minGap' onwards
|
||
|
for (cycles_t gap=minGap; gap <= fromRU.numCycles-1; gap++)
|
||
|
{
|
||
|
// check if instr. #2 can start executing `gap' cycles after #1
|
||
|
// by checking for resource conflicts in each overlapping cycle
|
||
|
cycles_t numOverlap = min(fromRU.numCycles - gap, toRU.numCycles);
|
||
|
for (cycles_t c = 0; c <= numOverlap-1; c++)
|
||
|
if (RUConflict(fromRU.resourcesByCycle[gap + c],
|
||
|
toRU.resourcesByCycle[c]))
|
||
|
{
|
||
|
// conflict found so minGap must be more than `gap'
|
||
|
minGap = gap+1;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return minGap;
|
||
|
}
|
||
|
|
||
|
|
||
|
//---------------------------------------------------------------------------
|
||
|
// class MachineSchedInfo
|
||
|
// Interface to machine description for instruction scheduling
|
||
|
//---------------------------------------------------------------------------
|
||
|
|
||
|
MachineSchedInfo::MachineSchedInfo(int NumSchedClasses,
|
||
|
const MachineInstrInfo* Mii,
|
||
|
const InstrClassRUsage* ClassRUsages,
|
||
|
const InstrRUsageDelta* UsageDeltas,
|
||
|
const InstrIssueDelta* IssueDeltas,
|
||
|
unsigned int NumUsageDeltas,
|
||
|
unsigned int NumIssueDeltas)
|
||
|
: numSchedClasses(NumSchedClasses), mii(Mii),
|
||
|
classRUsages(ClassRUsages), usageDeltas(UsageDeltas),
|
||
|
issueDeltas(IssueDeltas), numUsageDeltas(NumUsageDeltas),
|
||
|
numIssueDeltas(NumIssueDeltas)
|
||
|
{}
|
||
|
|
||
|
void
|
||
|
MachineSchedInfo::initializeResources()
|
||
|
{
|
||
|
assert(MAX_NUM_SLOTS >= (int)getMaxNumIssueTotal()
|
||
|
&& "Insufficient slots for static data! Increase MAX_NUM_SLOTS");
|
||
|
|
||
|
// First, compute common resource usage info for each class because
|
||
|
// most instructions will probably behave the same as their class.
|
||
|
// Cannot allocate a vector of InstrRUsage so new each one.
|
||
|
//
|
||
|
vector<InstrRUsage> instrRUForClasses;
|
||
|
instrRUForClasses.resize(numSchedClasses);
|
||
|
for (InstrSchedClass sc = 0; sc < numSchedClasses; sc++) {
|
||
|
// instrRUForClasses.push_back(new InstrRUsage);
|
||
|
instrRUForClasses[sc].setMaxSlots(getMaxNumIssueTotal());
|
||
|
instrRUForClasses[sc] = classRUsages[sc];
|
||
|
}
|
||
|
|
||
|
computeInstrResources(instrRUForClasses);
|
||
|
computeIssueGaps(instrRUForClasses);
|
||
|
}
|
||
|
|
||
|
|
||
|
void
|
||
|
MachineSchedInfo::computeInstrResources(const vector<InstrRUsage>&
|
||
|
instrRUForClasses)
|
||
|
{
|
||
|
int numOpCodes = mii->getNumRealOpCodes();
|
||
|
instrRUsages.resize(numOpCodes);
|
||
|
|
||
|
// First get the resource usage information from the class resource usages.
|
||
|
for (MachineOpCode op = 0; op < numOpCodes; ++op) {
|
||
|
InstrSchedClass sc = getSchedClass(op);
|
||
|
assert(sc >= 0 && sc < numSchedClasses);
|
||
|
instrRUsages[op] = instrRUForClasses[sc];
|
||
|
}
|
||
|
|
||
|
// Now, modify the resource usages as specified in the deltas.
|
||
|
for (unsigned i = 0; i < numUsageDeltas; ++i) {
|
||
|
MachineOpCode op = usageDeltas[i].opCode;
|
||
|
assert(op < numOpCodes);
|
||
|
instrRUsages[op].addUsageDelta(usageDeltas[i]);
|
||
|
}
|
||
|
|
||
|
// Then modify the issue restrictions as specified in the deltas.
|
||
|
for (unsigned i = 0; i < numIssueDeltas; ++i) {
|
||
|
MachineOpCode op = issueDeltas[i].opCode;
|
||
|
assert(op < numOpCodes);
|
||
|
instrRUsages[issueDeltas[i].opCode].addIssueDelta(issueDeltas[i]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void
|
||
|
MachineSchedInfo::computeIssueGaps(const vector<InstrRUsage>&
|
||
|
instrRUForClasses)
|
||
|
{
|
||
|
int numOpCodes = mii->getNumRealOpCodes();
|
||
|
instrRUsages.resize(numOpCodes);
|
||
|
|
||
|
assert(numOpCodes < (1 << MAX_OPCODE_SIZE) - 1
|
||
|
&& "numOpCodes invalid for implementation of class OpCodePair!");
|
||
|
|
||
|
// First, compute issue gaps between pairs of classes based on common
|
||
|
// resources usages for each class, because most instruction pairs will
|
||
|
// usually behave the same as their class.
|
||
|
//
|
||
|
int classPairGaps[numSchedClasses][numSchedClasses];
|
||
|
for (InstrSchedClass fromSC=0; fromSC < numSchedClasses; fromSC++)
|
||
|
for (InstrSchedClass toSC=0; toSC < numSchedClasses; toSC++)
|
||
|
{
|
||
|
int classPairGap = ComputeMinGap(instrRUForClasses[fromSC],
|
||
|
instrRUForClasses[toSC]);
|
||
|
classPairGaps[fromSC][toSC] = classPairGap;
|
||
|
}
|
||
|
|
||
|
// Now, for each pair of instructions, use the class pair gap if both
|
||
|
// instructions have identical resource usage as their respective classes.
|
||
|
// If not, recompute the gap for the pair from scratch.
|
||
|
|
||
|
longestIssueConflict = 0;
|
||
|
|
||
|
for (MachineOpCode fromOp=0; fromOp < numOpCodes; fromOp++)
|
||
|
for (MachineOpCode toOp=0; toOp < numOpCodes; toOp++)
|
||
|
{
|
||
|
int instrPairGap =
|
||
|
(instrRUsages[fromOp].sameAsClass && instrRUsages[toOp].sameAsClass)
|
||
|
? classPairGaps[getSchedClass(fromOp)][getSchedClass(toOp)]
|
||
|
: ComputeMinGap(instrRUsages[fromOp], instrRUsages[toOp]);
|
||
|
|
||
|
if (instrPairGap > 0)
|
||
|
{
|
||
|
issueGaps[OpCodePair(fromOp,toOp)] = instrPairGap;
|
||
|
conflictLists[fromOp].push_back(toOp);
|
||
|
longestIssueConflict = max(longestIssueConflict, instrPairGap);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|