2010-10-22 23:09:15 +00:00
|
|
|
//===-- LiveIntervalUnion.cpp - Live interval union data structure --------===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// LiveIntervalUnion represents a coalesced set of live intervals. This may be
|
|
|
|
// used during coalescing to represent a congruence class, or during register
|
|
|
|
// allocation to model liveness of a physical register.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#define DEBUG_TYPE "regalloc"
|
|
|
|
#include "LiveIntervalUnion.h"
|
|
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
#include <algorithm>
|
|
|
|
using namespace llvm;
|
|
|
|
|
|
|
|
// Merge a LiveInterval's segments. Guarantee no overlaps.
|
2010-10-26 18:34:01 +00:00
|
|
|
//
|
|
|
|
// Consider coalescing adjacent segments to save space, even though it makes
|
|
|
|
// extraction more complicated.
|
2010-10-22 23:09:15 +00:00
|
|
|
void LiveIntervalUnion::unify(LiveInterval &lvr) {
|
|
|
|
// Insert each of the virtual register's live segments into the map
|
|
|
|
SegmentIter segPos = segments_.begin();
|
|
|
|
for (LiveInterval::iterator lvrI = lvr.begin(), lvrEnd = lvr.end();
|
|
|
|
lvrI != lvrEnd; ++lvrI ) {
|
|
|
|
LiveSegment segment(lvrI->start, lvrI->end, lvr);
|
|
|
|
segPos = segments_.insert(segPos, segment);
|
|
|
|
assert(*segPos == segment && "need equal val for equal key");
|
2010-10-26 18:34:01 +00:00
|
|
|
#ifndef NDEBUG
|
|
|
|
// check for overlap (inductively)
|
|
|
|
if (segPos != segments_.begin()) {
|
|
|
|
SegmentIter prevPos = segPos;
|
|
|
|
--prevPos;
|
|
|
|
assert(prevPos->end <= segment.start && "overlapping segments" );
|
|
|
|
}
|
|
|
|
SegmentIter nextPos = segPos;
|
|
|
|
++nextPos;
|
|
|
|
if (nextPos != segments_.end())
|
|
|
|
assert(segment.end <= nextPos->start && "overlapping segments" );
|
|
|
|
#endif // NDEBUG
|
2010-10-22 23:09:15 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Low-level helper to find the first segment in the range [segI,segEnd) that
|
|
|
|
// intersects with a live virtual register segment, or segI.start >= lvr.end
|
|
|
|
//
|
|
|
|
// This logic is tied to the underlying LiveSegments data structure. For now, we
|
|
|
|
// use a binary search within the vector to find the nearest starting position,
|
|
|
|
// then reverse iterate to find the first overlap.
|
|
|
|
//
|
|
|
|
// Upon entry we have segI.start < lvrSeg.end
|
|
|
|
// seg |--...
|
|
|
|
// \ .
|
|
|
|
// lvr ...-|
|
|
|
|
//
|
|
|
|
// After binary search, we have segI.start >= lvrSeg.start:
|
|
|
|
// seg |--...
|
|
|
|
// /
|
|
|
|
// lvr |--...
|
|
|
|
//
|
|
|
|
// Assuming intervals are disjoint, if an intersection exists, it must be the
|
|
|
|
// segment found or immediately behind it. We continue reverse iterating to
|
|
|
|
// return the first overlap.
|
|
|
|
typedef LiveIntervalUnion::SegmentIter SegmentIter;
|
2010-10-26 18:34:01 +00:00
|
|
|
static SegmentIter upperBound(SegmentIter segBegin,
|
2010-10-22 23:09:15 +00:00
|
|
|
SegmentIter segEnd,
|
|
|
|
const LiveRange &lvrSeg) {
|
|
|
|
assert(lvrSeg.end > segBegin->start && "segment iterator precondition");
|
|
|
|
// get the next LIU segment such that setg.start is not less than
|
|
|
|
// lvrSeg.start
|
|
|
|
SegmentIter segI = std::upper_bound(segBegin, segEnd, lvrSeg.start);
|
|
|
|
while (segI != segBegin) {
|
|
|
|
--segI;
|
|
|
|
if (lvrSeg.start >= segI->end)
|
|
|
|
return ++segI;
|
|
|
|
}
|
|
|
|
return segI;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Private interface accessed by Query.
|
|
|
|
//
|
|
|
|
// Find a pair of segments that intersect, one in the live virtual register
|
|
|
|
// (LiveInterval), and the other in this LiveIntervalUnion. The caller (Query)
|
|
|
|
// is responsible for advancing the LiveIntervalUnion segments to find a
|
|
|
|
// "notable" intersection, which requires query-specific logic.
|
|
|
|
//
|
|
|
|
// This design assumes only a fast mechanism for intersecting a single live
|
|
|
|
// virtual register segment with a set of LiveIntervalUnion segments. This may
|
|
|
|
// be ok since most LVRs have very few segments. If we had a data
|
|
|
|
// structure that optimizd MxN intersection of segments, then we would bypass
|
|
|
|
// the loop that advances within the LiveInterval.
|
|
|
|
//
|
|
|
|
// If no intersection exists, set lvrI = lvrEnd, and set segI to the first
|
|
|
|
// segment whose start point is greater than LiveInterval's end point.
|
|
|
|
//
|
|
|
|
// Assumes that segments are sorted by start position in both
|
|
|
|
// LiveInterval and LiveSegments.
|
|
|
|
void LiveIntervalUnion::Query::findIntersection(InterferenceResult &ir) const {
|
|
|
|
LiveInterval::iterator lvrEnd = lvr_.end();
|
|
|
|
SegmentIter liuEnd = liu_.end();
|
|
|
|
while (ir.liuSegI_ != liuEnd) {
|
|
|
|
// Slowly advance the live virtual reg iterator until we surpass the next
|
|
|
|
// segment in this union. If this is ever used for coalescing of fixed
|
|
|
|
// registers and we have a LiveInterval with thousands of segments, then use
|
|
|
|
// upper bound instead.
|
|
|
|
while (ir.lvrSegI_ != lvrEnd && ir.lvrSegI_->end <= ir.liuSegI_->start)
|
|
|
|
++ir.lvrSegI_;
|
|
|
|
if (ir.lvrSegI_ == lvrEnd)
|
|
|
|
break;
|
|
|
|
// lvrSegI_ may have advanced far beyond liuSegI_,
|
|
|
|
// do a fast intersection test to "catch up"
|
|
|
|
ir.liuSegI_ = upperBound(ir.liuSegI_, liuEnd, *ir.lvrSegI_);
|
|
|
|
// Check if no liuSegI_ exists with lvrSegI_->start < liuSegI_.end
|
|
|
|
if (ir.liuSegI_ == liuEnd)
|
|
|
|
break;
|
|
|
|
if (ir.liuSegI_->start < ir.lvrSegI_->end) {
|
|
|
|
assert(overlap(*ir.lvrSegI_, *ir.liuSegI_) && "upperBound postcondition");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (ir.liuSegI_ == liuEnd)
|
|
|
|
ir.lvrSegI_ = lvrEnd;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Find the first intersection, and cache interference info
|
|
|
|
// (retain segment iterators into both lvr_ and liu_).
|
|
|
|
LiveIntervalUnion::InterferenceResult
|
|
|
|
LiveIntervalUnion::Query::firstInterference() {
|
|
|
|
if (firstInterference_ != LiveIntervalUnion::InterferenceResult()) {
|
|
|
|
return firstInterference_;
|
|
|
|
}
|
|
|
|
firstInterference_ = InterferenceResult(lvr_.begin(), liu_.begin());
|
|
|
|
findIntersection(firstInterference_);
|
|
|
|
return firstInterference_;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Treat the result as an iterator and advance to the next interfering pair
|
|
|
|
// of segments. This is a plain iterator with no filter.
|
|
|
|
bool LiveIntervalUnion::Query::nextInterference(InterferenceResult &ir) const {
|
|
|
|
assert(isInterference(ir) && "iteration past end of interferences");
|
|
|
|
// Advance either the lvr or liu segment to ensure that we visit all unique
|
|
|
|
// overlapping pairs.
|
|
|
|
if (ir.lvrSegI_->end < ir.liuSegI_->end) {
|
|
|
|
if (++ir.lvrSegI_ == lvr_.end())
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
if (++ir.liuSegI_ == liu_.end()) {
|
|
|
|
ir.lvrSegI_ = lvr_.end();
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (overlap(*ir.lvrSegI_, *ir.liuSegI_))
|
|
|
|
return true;
|
|
|
|
// find the next intersection
|
|
|
|
findIntersection(ir);
|
|
|
|
return isInterference(ir);
|
|
|
|
}
|