2001-08-28 23:06:49 +00:00
|
|
|
/* -*-C++-*-
|
|
|
|
****************************************************************************
|
|
|
|
* File:
|
|
|
|
* SchedPriorities.h
|
|
|
|
*
|
|
|
|
* Purpose:
|
|
|
|
* Encapsulate heuristics for instruction scheduling.
|
|
|
|
*
|
|
|
|
* Strategy:
|
|
|
|
* Priority ordering rules:
|
|
|
|
* (1) Max delay, which is the order of the heap S.candsAsHeap.
|
|
|
|
* (2) Instruction that frees up a register.
|
|
|
|
* (3) Instruction that has the maximum number of dependent instructions.
|
|
|
|
* Note that rules 2 and 3 are only used if issue conflicts prevent
|
|
|
|
* choosing a higher priority instruction by rule 1.
|
|
|
|
*
|
|
|
|
* History:
|
|
|
|
* 7/30/01 - Vikram Adve - Created
|
|
|
|
***************************************************************************/
|
|
|
|
|
|
|
|
#include "llvm/CodeGen/SchedPriorities.h"
|
|
|
|
|
|
|
|
|
|
|
|
SchedPriorities::SchedPriorities(const Method* method,
|
|
|
|
const SchedGraph* _graph)
|
|
|
|
: curTime(0),
|
|
|
|
graph(_graph),
|
|
|
|
methodLiveVarInfo(method), // expensive!
|
|
|
|
lastUseMap(),
|
|
|
|
nodeDelayVec(_graph->getNumNodes(),INVALID_LATENCY), //make errors obvious
|
|
|
|
earliestForNode(_graph->getNumNodes(), 0),
|
|
|
|
earliestReadyTime(0),
|
|
|
|
candsAsHeap(),
|
|
|
|
candsAsSet(),
|
|
|
|
mcands(),
|
|
|
|
nextToTry(candsAsHeap.begin())
|
|
|
|
{
|
|
|
|
methodLiveVarInfo.analyze();
|
|
|
|
computeDelays(graph);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
SchedPriorities::initialize()
|
|
|
|
{
|
|
|
|
initializeReadyHeap(graph);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
SchedPriorities::computeDelays(const SchedGraph* graph)
|
|
|
|
{
|
|
|
|
sg_po_const_iterator poIter = sg_po_const_iterator::begin(graph->getRoot());
|
|
|
|
sg_po_const_iterator poEnd = sg_po_const_iterator::end( graph->getRoot());
|
|
|
|
for ( ; poIter != poEnd; ++poIter)
|
|
|
|
{
|
|
|
|
const SchedGraphNode* node = *poIter;
|
|
|
|
cycles_t nodeDelay;
|
|
|
|
if (node->beginOutEdges() == node->endOutEdges())
|
|
|
|
nodeDelay = node->getLatency();
|
|
|
|
else
|
|
|
|
{
|
|
|
|
// Iterate over the out-edges of the node to compute delay
|
|
|
|
nodeDelay = 0;
|
|
|
|
for (SchedGraphNode::const_iterator E=node->beginOutEdges();
|
|
|
|
E != node->endOutEdges(); ++E)
|
|
|
|
{
|
|
|
|
cycles_t sinkDelay = getNodeDelayRef((*E)->getSink());
|
|
|
|
nodeDelay = max(nodeDelay, sinkDelay + (*E)->getMinDelay());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
getNodeDelayRef(node) = nodeDelay;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
SchedPriorities::initializeReadyHeap(const SchedGraph* graph)
|
|
|
|
{
|
|
|
|
const SchedGraphNode* graphRoot = graph->getRoot();
|
|
|
|
assert(graphRoot->getMachineInstr() == NULL && "Expect dummy root");
|
|
|
|
|
|
|
|
// Insert immediate successors of dummy root, which are the actual roots
|
|
|
|
sg_succ_const_iterator SEnd = succ_end(graphRoot);
|
|
|
|
for (sg_succ_const_iterator S = succ_begin(graphRoot); S != SEnd; ++S)
|
|
|
|
this->insertReady(*S);
|
|
|
|
|
|
|
|
#undef TEST_HEAP_CONVERSION
|
|
|
|
#ifdef TEST_HEAP_CONVERSION
|
|
|
|
cout << "Before heap conversion:" << endl;
|
|
|
|
copy(candsAsHeap.begin(), candsAsHeap.end(),
|
|
|
|
ostream_iterator<NodeDelayPair*>(cout,"\n"));
|
|
|
|
#endif
|
|
|
|
|
|
|
|
candsAsHeap.makeHeap();
|
|
|
|
|
|
|
|
#ifdef TEST_HEAP_CONVERSION
|
|
|
|
cout << "After heap conversion:" << endl;
|
|
|
|
copy(candsAsHeap.begin(), candsAsHeap.end(),
|
|
|
|
ostream_iterator<NodeDelayPair*>(cout,"\n"));
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
SchedPriorities::issuedReadyNodeAt(cycles_t curTime,
|
|
|
|
const SchedGraphNode* node)
|
|
|
|
{
|
|
|
|
candsAsHeap.removeNode(node);
|
|
|
|
candsAsSet.erase(node);
|
|
|
|
mcands.clear(); // ensure reset choices is called before any more choices
|
|
|
|
|
|
|
|
if (earliestReadyTime == getEarliestForNodeRef(node))
|
|
|
|
{// earliestReadyTime may have been due to this node, so recompute it
|
|
|
|
earliestReadyTime = HUGE_LATENCY;
|
|
|
|
for (NodeHeap::const_iterator I=candsAsHeap.begin();
|
|
|
|
I != candsAsHeap.end(); ++I)
|
|
|
|
if (candsAsHeap.getNode(I))
|
|
|
|
earliestReadyTime = min(earliestReadyTime,
|
|
|
|
getEarliestForNodeRef(candsAsHeap.getNode(I)));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Now update ready times for successors
|
|
|
|
for (SchedGraphNode::const_iterator E=node->beginOutEdges();
|
|
|
|
E != node->endOutEdges(); ++E)
|
|
|
|
{
|
|
|
|
cycles_t& etime = getEarliestForNodeRef((*E)->getSink());
|
|
|
|
etime = max(etime, curTime + (*E)->getMinDelay());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//----------------------------------------------------------------------
|
|
|
|
// Priority ordering rules:
|
|
|
|
// (1) Max delay, which is the order of the heap S.candsAsHeap.
|
|
|
|
// (2) Instruction that frees up a register.
|
|
|
|
// (3) Instruction that has the maximum number of dependent instructions.
|
|
|
|
// Note that rules 2 and 3 are only used if issue conflicts prevent
|
|
|
|
// choosing a higher priority instruction by rule 1.
|
|
|
|
//----------------------------------------------------------------------
|
|
|
|
|
|
|
|
inline int
|
|
|
|
SchedPriorities::chooseByRule1(vector<candIndex>& mcands)
|
|
|
|
{
|
|
|
|
return (mcands.size() == 1)? 0 // only one choice exists so take it
|
|
|
|
: -1; // -1 indicates multiple choices
|
|
|
|
}
|
|
|
|
|
|
|
|
inline int
|
|
|
|
SchedPriorities::chooseByRule2(vector<candIndex>& mcands)
|
|
|
|
{
|
|
|
|
assert(mcands.size() >= 1 && "Should have at least one candidate here.");
|
|
|
|
for (unsigned i=0, N = mcands.size(); i < N; i++)
|
|
|
|
if (instructionHasLastUse(methodLiveVarInfo,
|
|
|
|
candsAsHeap.getNode(mcands[i])))
|
|
|
|
return i;
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline int
|
|
|
|
SchedPriorities::chooseByRule3(vector<candIndex>& mcands)
|
|
|
|
{
|
|
|
|
assert(mcands.size() >= 1 && "Should have at least one candidate here.");
|
|
|
|
int maxUses = candsAsHeap.getNode(mcands[0])->getNumOutEdges();
|
|
|
|
int indexWithMaxUses = 0;
|
|
|
|
for (unsigned i=1, N = mcands.size(); i < N; i++)
|
|
|
|
{
|
|
|
|
int numUses = candsAsHeap.getNode(mcands[i])->getNumOutEdges();
|
|
|
|
if (numUses > maxUses)
|
|
|
|
{
|
|
|
|
maxUses = numUses;
|
|
|
|
indexWithMaxUses = i;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return indexWithMaxUses;
|
|
|
|
}
|
|
|
|
|
|
|
|
const SchedGraphNode*
|
|
|
|
SchedPriorities::getNextHighest(const SchedulingManager& S,
|
|
|
|
cycles_t curTime)
|
|
|
|
{
|
|
|
|
int nextIdx = -1;
|
|
|
|
const SchedGraphNode* nextChoice = NULL;
|
|
|
|
|
|
|
|
if (mcands.size() == 0)
|
|
|
|
findSetWithMaxDelay(mcands, S);
|
|
|
|
|
|
|
|
while (nextIdx < 0 && mcands.size() > 0)
|
|
|
|
{
|
|
|
|
nextIdx = chooseByRule1(mcands); // rule 1
|
|
|
|
|
|
|
|
if (nextIdx == -1)
|
|
|
|
nextIdx = chooseByRule2(mcands); // rule 2
|
|
|
|
|
|
|
|
if (nextIdx == -1)
|
|
|
|
nextIdx = chooseByRule3(mcands); // rule 3
|
|
|
|
|
|
|
|
if (nextIdx == -1)
|
|
|
|
nextIdx = 0; // default to first choice by delays
|
|
|
|
|
|
|
|
// We have found the next best candidate. Check if it ready in
|
|
|
|
// the current cycle, and if it is feasible.
|
|
|
|
// If not, remove it from mcands and continue. Refill mcands if
|
|
|
|
// it becomes empty.
|
|
|
|
nextChoice = candsAsHeap.getNode(mcands[nextIdx]);
|
|
|
|
if (getEarliestForNodeRef(nextChoice) > curTime
|
2001-09-07 21:22:28 +00:00
|
|
|
|| ! instrIsFeasible(S, nextChoice->getMachineInstr()->getOpCode()))
|
2001-08-28 23:06:49 +00:00
|
|
|
{
|
|
|
|
mcands.erase(mcands.begin() + nextIdx);
|
|
|
|
nextIdx = -1;
|
|
|
|
if (mcands.size() == 0)
|
|
|
|
findSetWithMaxDelay(mcands, S);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (nextIdx >= 0)
|
|
|
|
{
|
|
|
|
mcands.erase(mcands.begin() + nextIdx);
|
|
|
|
return nextChoice;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
SchedPriorities::findSetWithMaxDelay(vector<candIndex>& mcands,
|
|
|
|
const SchedulingManager& S)
|
|
|
|
{
|
|
|
|
if (mcands.size() == 0 && nextToTry != candsAsHeap.end())
|
|
|
|
{ // out of choices at current maximum delay;
|
|
|
|
// put nodes with next highest delay in mcands
|
|
|
|
candIndex next = nextToTry;
|
|
|
|
cycles_t maxDelay = candsAsHeap.getDelay(next);
|
|
|
|
for (; next != candsAsHeap.end()
|
|
|
|
&& candsAsHeap.getDelay(next) == maxDelay; ++next)
|
|
|
|
mcands.push_back(next);
|
|
|
|
|
|
|
|
nextToTry = next;
|
|
|
|
|
|
|
|
if (SchedDebugLevel >= Sched_PrintSchedTrace)
|
|
|
|
{
|
2001-09-07 21:22:28 +00:00
|
|
|
cout << " Cycle " << this->getTime() << ": "
|
2001-08-28 23:06:49 +00:00
|
|
|
<< "Next highest delay = " << maxDelay << " : "
|
|
|
|
<< mcands.size() << " Nodes with this delay: ";
|
|
|
|
for (unsigned i=0; i < mcands.size(); i++)
|
|
|
|
cout << candsAsHeap.getNode(mcands[i])->getNodeId() << ", ";
|
|
|
|
cout << endl;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool
|
|
|
|
SchedPriorities::instructionHasLastUse(MethodLiveVarInfo& methodLiveVarInfo,
|
|
|
|
const SchedGraphNode* graphNode)
|
|
|
|
{
|
|
|
|
const MachineInstr* minstr = graphNode->getMachineInstr();
|
|
|
|
|
|
|
|
hash_map<const MachineInstr*, bool>::const_iterator
|
|
|
|
ui = lastUseMap.find(minstr);
|
|
|
|
if (ui != lastUseMap.end())
|
|
|
|
return (*ui).second;
|
|
|
|
|
|
|
|
// else check if instruction is a last use and save it in the hash_map
|
|
|
|
bool hasLastUse = false;
|
|
|
|
const BasicBlock* bb = graphNode->getInstr()->getParent();
|
|
|
|
const LiveVarSet* liveVars =
|
|
|
|
methodLiveVarInfo.getLiveVarSetBeforeMInst(minstr, bb);
|
|
|
|
|
|
|
|
for (MachineInstr::val_op_const_iterator vo(minstr); ! vo.done(); ++vo)
|
|
|
|
if (liveVars->find(*vo) == liveVars->end())
|
|
|
|
{
|
|
|
|
hasLastUse = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
lastUseMap[minstr] = hasLastUse;
|
|
|
|
return hasLastUse;
|
|
|
|
}
|
|
|
|
|