llvm/lib/CodeGen/InstrSched/SchedPriorities.cpp

282 lines
8.1 KiB
C++
Raw Normal View History

/* -*-C++-*-
****************************************************************************
* File:
* SchedPriorities.h
*
* Purpose:
* Encapsulate heuristics for instruction scheduling.
*
* Strategy:
* Priority ordering rules:
* (1) Max delay, which is the order of the heap S.candsAsHeap.
* (2) Instruction that frees up a register.
* (3) Instruction that has the maximum number of dependent instructions.
* Note that rules 2 and 3 are only used if issue conflicts prevent
* choosing a higher priority instruction by rule 1.
*
* History:
* 7/30/01 - Vikram Adve - Created
***************************************************************************/
#include "llvm/CodeGen/SchedPriorities.h"
SchedPriorities::SchedPriorities(const Method* method,
const SchedGraph* _graph)
: curTime(0),
graph(_graph),
methodLiveVarInfo(method), // expensive!
lastUseMap(),
nodeDelayVec(_graph->getNumNodes(),INVALID_LATENCY), //make errors obvious
earliestForNode(_graph->getNumNodes(), 0),
earliestReadyTime(0),
candsAsHeap(),
candsAsSet(),
mcands(),
nextToTry(candsAsHeap.begin())
{
methodLiveVarInfo.analyze();
computeDelays(graph);
}
void
SchedPriorities::initialize()
{
initializeReadyHeap(graph);
}
void
SchedPriorities::computeDelays(const SchedGraph* graph)
{
sg_po_const_iterator poIter = sg_po_const_iterator::begin(graph->getRoot());
sg_po_const_iterator poEnd = sg_po_const_iterator::end( graph->getRoot());
for ( ; poIter != poEnd; ++poIter)
{
const SchedGraphNode* node = *poIter;
cycles_t nodeDelay;
if (node->beginOutEdges() == node->endOutEdges())
nodeDelay = node->getLatency();
else
{
// Iterate over the out-edges of the node to compute delay
nodeDelay = 0;
for (SchedGraphNode::const_iterator E=node->beginOutEdges();
E != node->endOutEdges(); ++E)
{
cycles_t sinkDelay = getNodeDelayRef((*E)->getSink());
nodeDelay = max(nodeDelay, sinkDelay + (*E)->getMinDelay());
}
}
getNodeDelayRef(node) = nodeDelay;
}
}
void
SchedPriorities::initializeReadyHeap(const SchedGraph* graph)
{
const SchedGraphNode* graphRoot = graph->getRoot();
assert(graphRoot->getMachineInstr() == NULL && "Expect dummy root");
// Insert immediate successors of dummy root, which are the actual roots
sg_succ_const_iterator SEnd = succ_end(graphRoot);
for (sg_succ_const_iterator S = succ_begin(graphRoot); S != SEnd; ++S)
this->insertReady(*S);
#undef TEST_HEAP_CONVERSION
#ifdef TEST_HEAP_CONVERSION
cout << "Before heap conversion:" << endl;
copy(candsAsHeap.begin(), candsAsHeap.end(),
ostream_iterator<NodeDelayPair*>(cout,"\n"));
#endif
candsAsHeap.makeHeap();
#ifdef TEST_HEAP_CONVERSION
cout << "After heap conversion:" << endl;
copy(candsAsHeap.begin(), candsAsHeap.end(),
ostream_iterator<NodeDelayPair*>(cout,"\n"));
#endif
}
void
SchedPriorities::issuedReadyNodeAt(cycles_t curTime,
const SchedGraphNode* node)
{
candsAsHeap.removeNode(node);
candsAsSet.erase(node);
mcands.clear(); // ensure reset choices is called before any more choices
if (earliestReadyTime == getEarliestForNodeRef(node))
{// earliestReadyTime may have been due to this node, so recompute it
earliestReadyTime = HUGE_LATENCY;
for (NodeHeap::const_iterator I=candsAsHeap.begin();
I != candsAsHeap.end(); ++I)
if (candsAsHeap.getNode(I))
earliestReadyTime = min(earliestReadyTime,
getEarliestForNodeRef(candsAsHeap.getNode(I)));
}
// Now update ready times for successors
for (SchedGraphNode::const_iterator E=node->beginOutEdges();
E != node->endOutEdges(); ++E)
{
cycles_t& etime = getEarliestForNodeRef((*E)->getSink());
etime = max(etime, curTime + (*E)->getMinDelay());
}
}
//----------------------------------------------------------------------
// Priority ordering rules:
// (1) Max delay, which is the order of the heap S.candsAsHeap.
// (2) Instruction that frees up a register.
// (3) Instruction that has the maximum number of dependent instructions.
// Note that rules 2 and 3 are only used if issue conflicts prevent
// choosing a higher priority instruction by rule 1.
//----------------------------------------------------------------------
inline int
SchedPriorities::chooseByRule1(vector<candIndex>& mcands)
{
return (mcands.size() == 1)? 0 // only one choice exists so take it
: -1; // -1 indicates multiple choices
}
inline int
SchedPriorities::chooseByRule2(vector<candIndex>& mcands)
{
assert(mcands.size() >= 1 && "Should have at least one candidate here.");
for (unsigned i=0, N = mcands.size(); i < N; i++)
if (instructionHasLastUse(methodLiveVarInfo,
candsAsHeap.getNode(mcands[i])))
return i;
return -1;
}
inline int
SchedPriorities::chooseByRule3(vector<candIndex>& mcands)
{
assert(mcands.size() >= 1 && "Should have at least one candidate here.");
int maxUses = candsAsHeap.getNode(mcands[0])->getNumOutEdges();
int indexWithMaxUses = 0;
for (unsigned i=1, N = mcands.size(); i < N; i++)
{
int numUses = candsAsHeap.getNode(mcands[i])->getNumOutEdges();
if (numUses > maxUses)
{
maxUses = numUses;
indexWithMaxUses = i;
}
}
return indexWithMaxUses;
}
const SchedGraphNode*
SchedPriorities::getNextHighest(const SchedulingManager& S,
cycles_t curTime)
{
int nextIdx = -1;
const SchedGraphNode* nextChoice = NULL;
if (mcands.size() == 0)
findSetWithMaxDelay(mcands, S);
while (nextIdx < 0 && mcands.size() > 0)
{
nextIdx = chooseByRule1(mcands); // rule 1
if (nextIdx == -1)
nextIdx = chooseByRule2(mcands); // rule 2
if (nextIdx == -1)
nextIdx = chooseByRule3(mcands); // rule 3
if (nextIdx == -1)
nextIdx = 0; // default to first choice by delays
// We have found the next best candidate. Check if it ready in
// the current cycle, and if it is feasible.
// If not, remove it from mcands and continue. Refill mcands if
// it becomes empty.
nextChoice = candsAsHeap.getNode(mcands[nextIdx]);
if (getEarliestForNodeRef(nextChoice) > curTime
|| ! instrIsFeasible(S, nextChoice->getMachineInstr()->getOpCode()))
{
mcands.erase(mcands.begin() + nextIdx);
nextIdx = -1;
if (mcands.size() == 0)
findSetWithMaxDelay(mcands, S);
}
}
if (nextIdx >= 0)
{
mcands.erase(mcands.begin() + nextIdx);
return nextChoice;
}
else
return NULL;
}
void
SchedPriorities::findSetWithMaxDelay(vector<candIndex>& mcands,
const SchedulingManager& S)
{
if (mcands.size() == 0 && nextToTry != candsAsHeap.end())
{ // out of choices at current maximum delay;
// put nodes with next highest delay in mcands
candIndex next = nextToTry;
cycles_t maxDelay = candsAsHeap.getDelay(next);
for (; next != candsAsHeap.end()
&& candsAsHeap.getDelay(next) == maxDelay; ++next)
mcands.push_back(next);
nextToTry = next;
if (SchedDebugLevel >= Sched_PrintSchedTrace)
{
cout << " Cycle " << this->getTime() << ": "
<< "Next highest delay = " << maxDelay << " : "
<< mcands.size() << " Nodes with this delay: ";
for (unsigned i=0; i < mcands.size(); i++)
cout << candsAsHeap.getNode(mcands[i])->getNodeId() << ", ";
cout << endl;
}
}
}
bool
SchedPriorities::instructionHasLastUse(MethodLiveVarInfo& methodLiveVarInfo,
const SchedGraphNode* graphNode)
{
const MachineInstr* minstr = graphNode->getMachineInstr();
hash_map<const MachineInstr*, bool>::const_iterator
ui = lastUseMap.find(minstr);
if (ui != lastUseMap.end())
return (*ui).second;
// else check if instruction is a last use and save it in the hash_map
bool hasLastUse = false;
const BasicBlock* bb = graphNode->getInstr()->getParent();
const LiveVarSet* liveVars =
methodLiveVarInfo.getLiveVarSetBeforeMInst(minstr, bb);
for (MachineInstr::val_op_const_iterator vo(minstr); ! vo.done(); ++vo)
if (liveVars->find(*vo) == liveVars->end())
{
hasLastUse = true;
break;
}
lastUseMap[minstr] = hasLastUse;
return hasLastUse;
}