llvm/unittests/ADT/SimpleIListTest.cpp

638 lines
14 KiB
C++
Raw Normal View History

ADT: Split out simple_ilist, a simple intrusive list Split out a new, low-level intrusive list type with clear semantics. Unlike iplist (and ilist), all operations on simple_ilist are intrusive, and simple_ilist never takes ownership of its nodes. This enables an intuitive API that has the right defaults for intrusive lists. - insert() takes references (not pointers!) to nodes (in iplist/ilist, passing a reference will cause the node to be copied). - erase() takes only iterators (like std::list), and does not destroy the nodes. - remove() takes only references and has the same behaviour as erase(). - clear() does not destroy the nodes. - The destructor does not destroy the nodes. - New API {erase,remove,clear}AndDispose() take an extra Disposer functor for callsites that want to call some disposal routine (e.g., std::default_delete). This list is not currently configurable, and has no callbacks. The initial motivation was to fix iplist<>::sort to work correctly (even with callbacks in ilist_traits<>). iplist<> uses simple_ilist<>::sort directly. The new test in unittests/IR/ModuleTest.cpp crashes without this commit. Fixing sort() via a low-level layer provided a good opportunity to: - Unit test the low-level functionality thoroughly. - Modernize the API, largely inspired by other intrusive list implementations. Here's a sketch of a longer-term plan: - Create BumpPtrList<>, a non-intrusive list implemented using simple_ilist<>, and use it for the Token list in lib/Support/YAMLParser.cpp. This will factor out the only real use of createNode(). - Evolve the iplist<> and ilist<> APIs in the direction of simple_ilist<>, making allocation/deallocation explicit at call sites (similar to simple_ilist<>::eraseAndDispose()). - Factor out remaining calls to createNode() and deleteNode() and remove the customization from ilist_traits<>. - Transition uses of iplist<>/ilist<> that don't need callbacks over to simple_ilist<>. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280107 91177308-0d34-0410-b5e6-96231b3b80d8
2016-08-30 16:23:55 +00:00
//===- unittests/ADT/SimpleIListTest.cpp - simple_ilist unit tests --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/simple_ilist.h"
#include "gtest/gtest.h"
using namespace llvm;
namespace {
struct Node : ilist_node<Node> {};
bool operator<(const Node &L, const Node &R) { return &L < &R; }
bool makeFalse(const Node &, const Node &) { return false; }
struct deleteNode : std::default_delete<Node> {};
void doNothing(Node *) {}
TEST(SimpleIListTest, DefaultConstructor) {
simple_ilist<Node> L;
EXPECT_EQ(L.begin(), L.end());
EXPECT_TRUE(L.empty());
EXPECT_EQ(0u, L.size());
}
TEST(SimpleIListTest, pushPopFront) {
simple_ilist<Node> L;
Node A, B;
L.push_front(B);
L.push_front(A);
EXPECT_EQ(&A, &L.front());
EXPECT_EQ(&B, &L.back());
EXPECT_FALSE(L.empty());
EXPECT_EQ(2u, L.size());
// Pop front and check the new front.
L.pop_front();
EXPECT_EQ(&B, &L.front());
// Pop to empty.
L.pop_front();
EXPECT_TRUE(L.empty());
}
TEST(SimpleIListTest, pushPopBack) {
simple_ilist<Node> L;
Node A, B;
L.push_back(A);
L.push_back(B);
EXPECT_EQ(&A, &L.front());
EXPECT_EQ(&B, &L.back());
EXPECT_FALSE(L.empty());
EXPECT_EQ(2u, L.size());
// Pop back and check the new front.
L.pop_back();
EXPECT_EQ(&A, &L.back());
// Pop to empty.
L.pop_back();
EXPECT_TRUE(L.empty());
}
TEST(SimpleIListTest, swap) {
simple_ilist<Node> L1, L2;
Node A, B;
L1.push_back(A);
L1.push_back(B);
L1.swap(L2);
EXPECT_TRUE(L1.empty());
EXPECT_EQ(0u, L1.size());
EXPECT_EQ(&A, &L2.front());
EXPECT_EQ(&B, &L2.back());
EXPECT_FALSE(L2.empty());
EXPECT_EQ(2u, L2.size());
}
TEST(SimpleIListTest, insertEraseAtEnd) {
simple_ilist<Node> L;
Node A, B;
L.insert(L.end(), A);
L.insert(L.end(), B);
EXPECT_EQ(&A, &L.front());
EXPECT_EQ(&B, &L.back());
EXPECT_FALSE(L.empty());
EXPECT_EQ(2u, L.size());
}
TEST(SimpleIListTest, insertAtBegin) {
simple_ilist<Node> L;
Node A, B;
L.insert(L.begin(), B);
L.insert(L.begin(), A);
EXPECT_EQ(&A, &L.front());
EXPECT_EQ(&B, &L.back());
EXPECT_FALSE(L.empty());
EXPECT_EQ(2u, L.size());
}
TEST(SimpleIListTest, remove) {
simple_ilist<Node> L;
Node A, B, C;
L.push_back(A);
L.push_back(B);
L.push_back(C);
EXPECT_EQ(&A, &L.front());
EXPECT_EQ(&B, &*++L.begin());
EXPECT_EQ(&C, &L.back());
EXPECT_EQ(3u, L.size());
L.remove(B);
EXPECT_EQ(&A, &L.front());
EXPECT_EQ(&C, &L.back());
EXPECT_EQ(2u, L.size());
L.remove(A);
EXPECT_EQ(&C, &L.front());
EXPECT_EQ(1u, L.size());
L.remove(C);
EXPECT_TRUE(L.empty());
}
TEST(SimpleIListTest, removeAndDispose) {
simple_ilist<Node> L;
Node A, C;
Node *B = new Node;
L.push_back(A);
L.push_back(*B);
L.push_back(C);
EXPECT_EQ(&A, &L.front());
EXPECT_EQ(B, &*++L.begin());
EXPECT_EQ(&C, &L.back());
EXPECT_EQ(3u, L.size());
L.removeAndDispose(*B, deleteNode());
EXPECT_EQ(&A, &L.front());
EXPECT_EQ(&C, &L.back());
EXPECT_EQ(2u, L.size());
}
TEST(SimpleIListTest, removeAndDisposeNullDeleter) {
simple_ilist<Node> L;
Node A, B, C;
L.push_back(A);
L.push_back(B);
L.push_back(C);
EXPECT_EQ(&A, &L.front());
EXPECT_EQ(&B, &*++L.begin());
EXPECT_EQ(&C, &L.back());
EXPECT_EQ(3u, L.size());
L.removeAndDispose(B, doNothing);
EXPECT_EQ(&A, &L.front());
EXPECT_EQ(&C, &L.back());
EXPECT_EQ(2u, L.size());
}
TEST(SimpleIListTest, erase) {
simple_ilist<Node> L;
Node A, B, C;
L.push_back(A);
L.push_back(B);
L.push_back(C);
EXPECT_EQ(&A, &L.front());
EXPECT_EQ(&B, &*++L.begin());
EXPECT_EQ(&C, &L.back());
EXPECT_EQ(3u, L.size());
EXPECT_EQ(C.getIterator(), L.erase(B.getIterator()));
EXPECT_EQ(&A, &L.front());
EXPECT_EQ(&C, &L.back());
EXPECT_EQ(2u, L.size());
}
TEST(SimpleIListTest, eraseAndDispose) {
simple_ilist<Node> L;
Node A, C;
Node *B = new Node;
L.push_back(A);
L.push_back(*B);
L.push_back(C);
EXPECT_EQ(&A, &L.front());
EXPECT_EQ(B, &*++L.begin());
EXPECT_EQ(&C, &L.back());
EXPECT_EQ(3u, L.size());
L.eraseAndDispose(B->getIterator(), deleteNode());
EXPECT_EQ(&A, &L.front());
EXPECT_EQ(&C, &L.back());
EXPECT_EQ(2u, L.size());
}
TEST(SimpleIListTest, eraseAndDisposeNullDeleter) {
simple_ilist<Node> L;
Node A, B, C;
L.push_back(A);
L.push_back(B);
L.push_back(C);
EXPECT_EQ(&A, &L.front());
EXPECT_EQ(&B, &*++L.begin());
EXPECT_EQ(&C, &L.back());
EXPECT_EQ(3u, L.size());
L.eraseAndDispose(B.getIterator(), doNothing);
EXPECT_EQ(&A, &L.front());
EXPECT_EQ(&C, &L.back());
EXPECT_EQ(2u, L.size());
}
TEST(SimpleIListTest, eraseRange) {
simple_ilist<Node> L;
Node A, B, C, D, E;
L.push_back(A);
L.push_back(B);
L.push_back(C);
L.push_back(D);
L.push_back(E);
auto I = L.begin();
EXPECT_EQ(&A, &*I++);
EXPECT_EQ(&B, &*I++);
EXPECT_EQ(&C, &*I++);
EXPECT_EQ(&D, &*I++);
EXPECT_EQ(&E, &*I++);
EXPECT_EQ(L.end(), I);
EXPECT_EQ(5u, L.size());
// Erase a range.
EXPECT_EQ(E.getIterator(), L.erase(B.getIterator(), E.getIterator()));
EXPECT_EQ(&A, &L.front());
EXPECT_EQ(&E, &L.back());
EXPECT_EQ(2u, L.size());
}
TEST(SimpleIListTest, eraseAndDisposeRange) {
simple_ilist<Node> L;
Node A, *B = new Node, *C = new Node, *D = new Node, E;
L.push_back(A);
L.push_back(*B);
L.push_back(*C);
L.push_back(*D);
L.push_back(E);
auto I = L.begin();
EXPECT_EQ(&A, &*I++);
EXPECT_EQ(B, &*I++);
EXPECT_EQ(C, &*I++);
EXPECT_EQ(D, &*I++);
EXPECT_EQ(&E, &*I++);
EXPECT_EQ(L.end(), I);
EXPECT_EQ(5u, L.size());
// Erase a range.
EXPECT_EQ(E.getIterator(),
L.eraseAndDispose(B->getIterator(), E.getIterator(), deleteNode()));
EXPECT_EQ(&A, &L.front());
EXPECT_EQ(&E, &L.back());
EXPECT_EQ(2u, L.size());
}
TEST(SimpleIListTest, eraseAndDisposeRangeNullDeleter) {
simple_ilist<Node> L;
Node A, B, C, D, E;
L.push_back(A);
L.push_back(B);
L.push_back(C);
L.push_back(D);
L.push_back(E);
auto I = L.begin();
EXPECT_EQ(&A, &*I++);
EXPECT_EQ(&B, &*I++);
EXPECT_EQ(&C, &*I++);
EXPECT_EQ(&D, &*I++);
EXPECT_EQ(&E, &*I++);
EXPECT_EQ(L.end(), I);
EXPECT_EQ(5u, L.size());
// Erase a range.
EXPECT_EQ(E.getIterator(),
L.eraseAndDispose(B.getIterator(), E.getIterator(), doNothing));
EXPECT_EQ(&A, &L.front());
EXPECT_EQ(&E, &L.back());
EXPECT_EQ(2u, L.size());
}
TEST(SimpleIListTest, clear) {
simple_ilist<Node> L;
Node A, B;
L.push_back(A);
L.push_back(B);
L.clear();
EXPECT_TRUE(L.empty());
EXPECT_EQ(0u, L.size());
}
TEST(SimpleIListTest, clearAndDispose) {
simple_ilist<Node> L;
Node *A = new Node;
Node *B = new Node;
L.push_back(*A);
L.push_back(*B);
L.clearAndDispose(deleteNode());
EXPECT_TRUE(L.empty());
EXPECT_EQ(0u, L.size());
}
TEST(SimpleIListTest, clearAndDisposeNullDeleter) {
simple_ilist<Node> L;
Node A, B;
L.push_back(A);
L.push_back(B);
L.clearAndDispose(doNothing);
EXPECT_TRUE(L.empty());
EXPECT_EQ(0u, L.size());
}
TEST(SimpleIListTest, spliceList) {
simple_ilist<Node> L1, L2;
Node A, B, C, D;
// [A, D].
L1.push_back(A);
L1.push_back(D);
// [B, C].
L2.push_back(B);
L2.push_back(C);
// Splice in L2, giving [A, B, C, D].
L1.splice(--L1.end(), L2);
EXPECT_TRUE(L2.empty());
EXPECT_EQ(4u, L1.size());
auto I = L1.begin();
EXPECT_EQ(&A, &*I++);
EXPECT_EQ(&B, &*I++);
EXPECT_EQ(&C, &*I++);
EXPECT_EQ(&D, &*I++);
EXPECT_EQ(L1.end(), I);
}
TEST(SimpleIListTest, spliceSingle) {
simple_ilist<Node> L1, L2;
Node A, B, C, D, E;
// [A, C].
L1.push_back(A);
L1.push_back(C);
// [D, B, E].
L2.push_back(D);
L2.push_back(B);
L2.push_back(E);
// Splice B from L2 to L1, giving [A, B, C] and [D, E].
L1.splice(--L1.end(), L2, ++L2.begin());
auto I = L1.begin();
EXPECT_EQ(&A, &*I++);
EXPECT_EQ(&B, &*I++);
EXPECT_EQ(&C, &*I++);
EXPECT_EQ(L1.end(), I);
I = L2.begin();
EXPECT_EQ(&D, &*I++);
EXPECT_EQ(&E, &*I++);
EXPECT_EQ(L2.end(), I);
}
TEST(SimpleIListTest, spliceRange) {
simple_ilist<Node> L1, L2;
Node A, B, C, D, E, F;
// [A, D].
L1.push_back(A);
L1.push_back(D);
// [E, B, C, F].
L2.push_back(E);
L2.push_back(B);
L2.push_back(C);
L2.push_back(F);
// Splice B from L2 to L1, giving [A, B, C, D] and [E, F].
L1.splice(--L1.end(), L2, ++L2.begin(), --L2.end());
auto I = L1.begin();
EXPECT_EQ(&A, &*I++);
EXPECT_EQ(&B, &*I++);
EXPECT_EQ(&C, &*I++);
EXPECT_EQ(&D, &*I++);
EXPECT_EQ(L1.end(), I);
I = L2.begin();
EXPECT_EQ(&E, &*I++);
EXPECT_EQ(&F, &*I++);
EXPECT_EQ(L2.end(), I);
}
TEST(SimpleIListTest, merge) {
for (bool IsL1LHS : {false, true}) {
simple_ilist<Node> L1, L2;
Node Ns[10];
// Fill L1.
L1.push_back(Ns[0]);
L1.push_back(Ns[3]);
L1.push_back(Ns[4]);
L1.push_back(Ns[8]);
// Fill L2.
L2.push_back(Ns[1]);
L2.push_back(Ns[2]);
L2.push_back(Ns[5]);
L2.push_back(Ns[6]);
L2.push_back(Ns[7]);
L2.push_back(Ns[9]);
// Check setup.
EXPECT_EQ(4u, L1.size());
EXPECT_EQ(6u, L2.size());
EXPECT_TRUE(std::is_sorted(L1.begin(), L1.end()));
EXPECT_TRUE(std::is_sorted(L2.begin(), L2.end()));
// Merge.
auto &LHS = IsL1LHS ? L1 : L2;
auto &RHS = IsL1LHS ? L2 : L1;
LHS.merge(RHS);
EXPECT_TRUE(RHS.empty());
EXPECT_FALSE(LHS.empty());
EXPECT_TRUE(std::is_sorted(LHS.begin(), LHS.end()));
auto I = LHS.begin();
for (Node &N : Ns)
EXPECT_EQ(&N, &*I++);
EXPECT_EQ(LHS.end(), I);
}
}
TEST(SimpleIListTest, mergeIsStable) {
simple_ilist<Node> L1, L2;
Node Ns[5];
auto setup = [&]() {
EXPECT_TRUE(L1.empty());
EXPECT_TRUE(L2.empty());
// Fill L1.
L1.push_back(Ns[0]);
L1.push_back(Ns[3]);
L1.push_back(Ns[4]);
// Fill L2.
L2.push_back(Ns[1]);
L2.push_back(Ns[2]);
// Check setup.
EXPECT_EQ(3u, L1.size());
EXPECT_EQ(2u, L2.size());
EXPECT_TRUE(std::is_sorted(L1.begin(), L1.end(), makeFalse));
EXPECT_TRUE(std::is_sorted(L2.begin(), L2.end(), makeFalse));
};
// Merge. Should be stable.
setup();
L1.merge(L2, makeFalse);
EXPECT_TRUE(L2.empty());
EXPECT_FALSE(L1.empty());
EXPECT_TRUE(std::is_sorted(L1.begin(), L1.end(), makeFalse));
auto I = L1.begin();
EXPECT_EQ(&Ns[0], &*I++);
EXPECT_EQ(&Ns[3], &*I++);
EXPECT_EQ(&Ns[4], &*I++);
EXPECT_EQ(&Ns[1], &*I++);
EXPECT_EQ(&Ns[2], &*I++);
EXPECT_EQ(L1.end(), I);
// Merge the other way. Should be stable.
L1.clear();
setup();
L2.merge(L1, makeFalse);
EXPECT_TRUE(L1.empty());
EXPECT_FALSE(L2.empty());
EXPECT_TRUE(std::is_sorted(L2.begin(), L2.end(), makeFalse));
I = L2.begin();
EXPECT_EQ(&Ns[1], &*I++);
EXPECT_EQ(&Ns[2], &*I++);
EXPECT_EQ(&Ns[0], &*I++);
EXPECT_EQ(&Ns[3], &*I++);
EXPECT_EQ(&Ns[4], &*I++);
EXPECT_EQ(L2.end(), I);
}
TEST(SimpleIListTest, mergeEmpty) {
for (bool IsL1LHS : {false, true}) {
simple_ilist<Node> L1, L2;
Node Ns[4];
// Fill L1.
L1.push_back(Ns[0]);
L1.push_back(Ns[1]);
L1.push_back(Ns[2]);
L1.push_back(Ns[3]);
// Check setup.
EXPECT_EQ(4u, L1.size());
EXPECT_TRUE(L2.empty());
EXPECT_TRUE(std::is_sorted(L1.begin(), L1.end()));
// Merge.
auto &LHS = IsL1LHS ? L1 : L2;
auto &RHS = IsL1LHS ? L2 : L1;
LHS.merge(RHS);
EXPECT_TRUE(RHS.empty());
EXPECT_FALSE(LHS.empty());
EXPECT_TRUE(std::is_sorted(LHS.begin(), LHS.end()));
auto I = LHS.begin();
for (Node &N : Ns)
EXPECT_EQ(&N, &*I++);
EXPECT_EQ(LHS.end(), I);
}
}
TEST(SimpleIListTest, mergeBothEmpty) {
simple_ilist<Node> L1, L2;
L1.merge(L2);
EXPECT_TRUE(L1.empty());
EXPECT_TRUE(L2.empty());
}
TEST(SimpleIListTest, sort) {
simple_ilist<Node> L;
Node Ns[10];
// Fill L.
for (int I : {3, 4, 0, 8, 1, 2, 6, 7, 9, 5})
L.push_back(Ns[I]);
// Check setup.
EXPECT_EQ(10u, L.size());
EXPECT_FALSE(std::is_sorted(L.begin(), L.end()));
// Sort.
L.sort();
EXPECT_TRUE(std::is_sorted(L.begin(), L.end()));
auto I = L.begin();
for (Node &N : Ns)
EXPECT_EQ(&N, &*I++);
EXPECT_EQ(L.end(), I);
}
TEST(SimpleIListTest, sortIsStable) {
simple_ilist<Node> L;
Node Ns[10];
// Compare such that nodes are partitioned but not fully sorted.
auto partition = [&](const Node &N) { return &N >= &Ns[5]; };
auto compare = [&](const Node &L, const Node &R) {
return partition(L) < partition(R);
};
// Fill L.
for (int I : {3, 4, 7, 8, 1, 2, 6, 0, 9, 5})
L.push_back(Ns[I]);
// Check setup.
EXPECT_EQ(10u, L.size());
EXPECT_FALSE(std::is_sorted(L.begin(), L.end(), compare));
// Sort.
L.sort(compare);
EXPECT_TRUE(std::is_sorted(L.begin(), L.end(), compare));
auto I = L.begin();
for (int O : {3, 4, 1, 2, 0})
EXPECT_EQ(&Ns[O], &*I++);
for (int O : {7, 8, 6, 9, 5})
EXPECT_EQ(&Ns[O], &*I++);
EXPECT_EQ(L.end(), I);
}
TEST(SimpleIListTest, sortEmpty) {
simple_ilist<Node> L;
L.sort();
}
ADT: Add sentinel tracking and custom tags to ilists This adds two declarative configuration options for intrusive lists (available for simple_ilist, iplist, and ilist). Both of these options affect ilist_node interoperability and need to be passed both to the node and the list. Instead of adding a new traits class, they're specified as optional template parameters (in any order). The two options: 1. Pass ilist_sentinel_tracking<true> or ilist_sentinel_tracking<false> to control whether there's a bit on ilist_node "prev" pointer indicating whether it's the sentinel. The default behaviour is to use a bit if and only if LLVM_ENABLE_ABI_BREAKING_CHECKS. 2. Pass ilist_tag<TagA> and ilist_tag<TagB> to allow insertion of a single node into two different lists (simultaneously). I have an immediate use-case for (1) ilist_sentinel_tracking: fixing the validation semantics of MachineBasicBlock::reverse_iterator to match ilist::reverse_iterator (ala r280032: see the comments at the end of the commit message there). I'm adding (2) ilist_tag in the same commit to validate that the options framework supports expansion. Justin Bogner mentioned this might enable a possible cleanup in SelectionDAG, but I'll leave this to others to explore. In the meantime, the unit tests and the comments for simple_ilist and ilist_node have usage examples. Note that there's a layer of indirection to support optional, out-of-order, template paramaters. Internal classes are templated on an instantiation of the non-variadic ilist_detail::node_options. User-facing classes use ilist_detail::compute_node_options to compute the correct instantiation of ilist_detail::node_options. The comments for ilist_detail::is_valid_option describe how to add new options (e.g., ilist_packed_int<int NumBits>). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@281167 91177308-0d34-0410-b5e6-96231b3b80d8
2016-09-11 16:20:53 +00:00
struct Tag1 {};
struct Tag2 {};
struct DoubleNode : ilist_node<DoubleNode, ilist_tag<Tag1>>,
ilist_node<DoubleNode, ilist_tag<Tag2>> {
typedef ilist_node<DoubleNode, ilist_tag<Tag1>> Node1Type;
typedef ilist_node<DoubleNode, ilist_tag<Tag2>> Node2Type;
Node1Type::self_iterator getIterator1() { return Node1Type::getIterator(); }
Node2Type::self_iterator getIterator2() { return Node2Type::getIterator(); }
Node1Type::const_self_iterator getIterator1() const {
return Node1Type::getIterator();
}
Node2Type::const_self_iterator getIterator2() const {
return Node2Type::getIterator();
}
};
typedef simple_ilist<DoubleNode, ilist_tag<Tag1>> TaggedList1Type;
typedef simple_ilist<DoubleNode, ilist_tag<Tag2>> TaggedList2Type;
TEST(SimpleIListTest, TaggedLists) {
TaggedList1Type L1;
TaggedList2Type L2;
// Build the two lists, sharing a couple of nodes.
DoubleNode Ns[10];
int Order1[] = {0, 1, 2, 3, 4, 7, 9};
int Order2[] = {2, 5, 6, 7, 8, 4, 9, 1};
for (int I : Order1)
L1.push_back(Ns[I]);
for (int I : Order2)
L2.push_back(Ns[I]);
// Check that each list is correct.
EXPECT_EQ(sizeof(Order1) / sizeof(int), L1.size());
auto I1 = L1.begin();
for (int I : Order1) {
EXPECT_EQ(Ns[I].getIterator1(), I1);
EXPECT_EQ(&Ns[I], &*I1++);
}
EXPECT_EQ(L1.end(), I1);
EXPECT_EQ(sizeof(Order2) / sizeof(int), L2.size());
auto I2 = L2.begin();
for (int I : Order2) {
EXPECT_EQ(Ns[I].getIterator2(), I2);
EXPECT_EQ(&Ns[I], &*I2++);
}
EXPECT_EQ(L2.end(), I2);
}
ADT: Split out simple_ilist, a simple intrusive list Split out a new, low-level intrusive list type with clear semantics. Unlike iplist (and ilist), all operations on simple_ilist are intrusive, and simple_ilist never takes ownership of its nodes. This enables an intuitive API that has the right defaults for intrusive lists. - insert() takes references (not pointers!) to nodes (in iplist/ilist, passing a reference will cause the node to be copied). - erase() takes only iterators (like std::list), and does not destroy the nodes. - remove() takes only references and has the same behaviour as erase(). - clear() does not destroy the nodes. - The destructor does not destroy the nodes. - New API {erase,remove,clear}AndDispose() take an extra Disposer functor for callsites that want to call some disposal routine (e.g., std::default_delete). This list is not currently configurable, and has no callbacks. The initial motivation was to fix iplist<>::sort to work correctly (even with callbacks in ilist_traits<>). iplist<> uses simple_ilist<>::sort directly. The new test in unittests/IR/ModuleTest.cpp crashes without this commit. Fixing sort() via a low-level layer provided a good opportunity to: - Unit test the low-level functionality thoroughly. - Modernize the API, largely inspired by other intrusive list implementations. Here's a sketch of a longer-term plan: - Create BumpPtrList<>, a non-intrusive list implemented using simple_ilist<>, and use it for the Token list in lib/Support/YAMLParser.cpp. This will factor out the only real use of createNode(). - Evolve the iplist<> and ilist<> APIs in the direction of simple_ilist<>, making allocation/deallocation explicit at call sites (similar to simple_ilist<>::eraseAndDispose()). - Factor out remaining calls to createNode() and deleteNode() and remove the customization from ilist_traits<>. - Transition uses of iplist<>/ilist<> that don't need callbacks over to simple_ilist<>. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280107 91177308-0d34-0410-b5e6-96231b3b80d8
2016-08-30 16:23:55 +00:00
} // end namespace