llvm/tools/analyze/analyze.cpp

337 lines
10 KiB
C++
Raw Normal View History

//===----------------------------------------------------------------------===//
// The LLVM analyze utility
//
// This utility is designed to print out the results of running various analysis
// passes on a program. This is useful for understanding a program, or for
// debugging an analysis pass.
//
// analyze --help - Output information about command line switches
// analyze --quiet - Do not print analysis name before output
//
//===----------------------------------------------------------------------===//
#include "llvm/Module.h"
#include "llvm/iPHINode.h"
#include "llvm/Type.h"
#include "llvm/PassManager.h"
#include "llvm/Bytecode/Reader.h"
#include "llvm/Assembly/Parser.h"
#include "llvm/Assembly/PrintModulePass.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Analysis/Writer.h"
#include "llvm/Analysis/InstForest.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/IntervalPartition.h"
#include "llvm/Analysis/Expressions.h"
#include "llvm/Analysis/InductionVariable.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/DataStructure.h"
#include "llvm/Analysis/FindUnsafePointerTypes.h"
#include "llvm/Analysis/FindUsedTypes.h"
#include "llvm/Support/InstIterator.h"
#include "Support/CommandLine.h"
#include <algorithm>
using std::ostream;
//===----------------------------------------------------------------------===//
// printPass - Specify how to print out a pass. For most passes, the standard
// way of using operator<< works great, so we use it directly...
//
template<class PassType>
static void printPass(PassType &P, ostream &O, Module &M) {
O << P;
}
template<class PassType>
static void printPass(PassType &P, ostream &O, Function &F) {
O << P;
}
// Other classes require more information to print out information, so we
// specialize the template here for them...
//
template<>
static void printPass(LocalDataStructures &P, ostream &O, Module &M) {
P.print(O, &M);
}
template<>
static void printPass(BUDataStructures &P, ostream &O, Module &M) {
P.print(O, &M);
}
template<>
static void printPass(FindUsedTypes &FUT, ostream &O, Module &M) {
FUT.printTypes(O, &M);
}
template<>
static void printPass(FindUnsafePointerTypes &FUPT, ostream &O, Module &M) {
FUPT.printResults(&M, O);
}
template <class PassType, class PassName>
class PassPrinter; // Do not implement
template <class PassName>
class PassPrinter<Pass, PassName> : public Pass {
const AnalysisID ID;
public:
PassPrinter(AnalysisID id) : ID(id) {}
const char *getPassName() const { return "IP Pass Printer"; }
virtual bool run(Module &M) {
printPass(getAnalysis<PassName>(ID), std::cout, M);
return false;
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired(ID);
}
};
template <class PassName>
class PassPrinter<FunctionPass, PassName> : public FunctionPass {
const AnalysisID ID;
public:
PassPrinter(AnalysisID id) : ID(id) {}
const char *getPassName() const { return "Function Pass Printer"; }
virtual bool runOnFunction(Function &F) {
std::cout << "Running on function '" << F.getName() << "'\n";
printPass(getAnalysis<PassName>(ID), std::cout, F);
return false;
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired(ID);
AU.setPreservesAll();
}
};
template <class PassType, class PassName>
Pass *New() {
return new PassPrinter<PassType, PassName>(PassName::ID);
}
Pass *createPrintFunctionPass() {
return new PrintFunctionPass("", &std::cout);
}
Pass *createPrintModulePass() {
return new PrintModulePass(&std::cout);
}
struct InstForestHelper : public FunctionPass {
const char *getPassName() const { return "InstForest Printer"; }
void doit(Function &F) {
std::cout << InstForest<char>(&F);
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
}
};
struct IndVars : public FunctionPass {
const char *getPassName() const { return "IndVars Printer"; }
void doit(Function &F) {
LoopInfo &LI = getAnalysis<LoopInfo>();
for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
if (PHINode *PN = dyn_cast<PHINode>(*I)) {
InductionVariable IV(PN, &LI);
if (IV.InductionType != InductionVariable::Unknown)
std::cout << IV;
}
}
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired(LoopInfo::ID);
AU.setPreservesAll();
}
};
struct Exprs : public FunctionPass {
const char *getPassName() const { return "Expression Printer"; }
static void doit(Function &F) {
std::cout << "Classified expressions for: " << F.getName() << "\n";
for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) {
std::cout << *I;
if ((*I)->getType() == Type::VoidTy) continue;
analysis::ExprType R = analysis::ClassifyExpression(*I);
if (R.Var == *I) continue; // Doesn't tell us anything
std::cout << "\t\tExpr =";
switch (R.ExprTy) {
case analysis::ExprType::ScaledLinear:
WriteAsOperand(std::cout << "(", (Value*)R.Scale) << " ) *";
// fall through
case analysis::ExprType::Linear:
WriteAsOperand(std::cout << "(", R.Var) << " )";
if (R.Offset == 0) break;
else std::cout << " +";
// fall through
case analysis::ExprType::Constant:
if (R.Offset) WriteAsOperand(std::cout, (Value*)R.Offset);
else std::cout << " 0";
break;
}
std::cout << "\n\n";
}
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
}
};
template<class TraitClass>
struct PrinterPass : public TraitClass {
PrinterPass() {}
virtual bool runOnFunction(Function &F) {
std::cout << "Running on function '" << F.getName() << "'\n";
TraitClass::doit(F);
return false;
}
};
template<class PassClass>
Pass *Create() {
return new PassClass();
}
enum Ans {
// global analyses
print, intervals, exprs, instforest, loops, indvars,
// ip analyses
printmodule, callgraph, datastructure, budatastructure,
printusedtypes, unsafepointertypes,
domset, idom, domtree, domfrontier,
postdomset, postidom, postdomtree, postdomfrontier,
};
static cl::opt<std::string>
InputFilename(cl::Positional, cl::desc("<input file>"), cl::init("-"),
cl::value_desc("filename"));
static cl::opt<bool> Quiet("q", cl::desc("Don't print analysis pass names"));
static cl::alias QuietA("quiet", cl::desc("Alias for -q"),
cl::aliasopt(Quiet));
static cl::list<enum Ans>
AnalysesList(cl::desc("Analyses available:"),
cl::values(
clEnumVal(print , "Print each function"),
clEnumVal(intervals , "Print Interval Partitions"),
clEnumVal(exprs , "Classify Expressions"),
clEnumVal(instforest , "Print Instruction Forest"),
clEnumVal(loops , "Print natural loops"),
clEnumVal(indvars , "Print Induction Variables"),
clEnumVal(printmodule , "Print entire module"),
clEnumVal(callgraph , "Print Call Graph"),
clEnumVal(datastructure , "Print data structure information"),
clEnumVal(budatastructure, "Print bottom-up data structure information"),
clEnumVal(printusedtypes , "Print types used by module"),
clEnumVal(unsafepointertypes, "Print unsafe pointer types"),
clEnumVal(domset , "Print Dominator Sets"),
clEnumVal(idom , "Print Immediate Dominators"),
clEnumVal(domtree , "Print Dominator Tree"),
clEnumVal(domfrontier , "Print Dominance Frontier"),
clEnumVal(postdomset , "Print Postdominator Sets"),
clEnumVal(postidom , "Print Immediate Postdominators"),
clEnumVal(postdomtree , "Print Post Dominator Tree"),
clEnumVal(postdomfrontier, "Print Postdominance Frontier"),
0));
struct {
enum Ans AnID;
Pass *(*PassConstructor)();
} AnTable[] = {
// Global analyses
{ print , createPrintFunctionPass },
{ intervals , New<FunctionPass, IntervalPartition> },
{ loops , New<FunctionPass, LoopInfo> },
{ instforest , Create<PrinterPass<InstForestHelper> > },
{ indvars , Create<PrinterPass<IndVars> > },
{ exprs , Create<PrinterPass<Exprs> > },
// IP Analyses...
{ printmodule , createPrintModulePass },
{ printusedtypes , New<Pass, FindUsedTypes> },
{ callgraph , New<Pass, CallGraph> },
{ datastructure , New<Pass, LocalDataStructures> },
{ budatastructure , New<Pass, BUDataStructures> },
{ unsafepointertypes, New<Pass, FindUnsafePointerTypes> },
// Dominator analyses
{ domset , New<FunctionPass, DominatorSet> },
{ idom , New<FunctionPass, ImmediateDominators> },
{ domtree , New<FunctionPass, DominatorTree> },
{ domfrontier , New<FunctionPass, DominanceFrontier> },
{ postdomset , New<FunctionPass, PostDominatorSet> },
{ postidom , New<FunctionPass, ImmediatePostDominators> },
{ postdomtree , New<FunctionPass, PostDominatorTree> },
{ postdomfrontier , New<FunctionPass, PostDominanceFrontier> },
};
int main(int argc, char **argv) {
cl::ParseCommandLineOptions(argc, argv, " llvm analysis printer tool\n");
Module *CurMod = 0;
try {
CurMod = ParseBytecodeFile(InputFilename);
if (!CurMod && !(CurMod = ParseAssemblyFile(InputFilename))){
std::cerr << "Input file didn't read correctly.\n";
return 1;
}
} catch (const ParseException &E) {
std::cerr << E.getMessage() << "\n";
return 1;
}
// Create a PassManager to hold and optimize the collection of passes we are
// about to build...
//
PassManager Analyses;
// Loop over all of the analyses looking for analyses to run...
for (unsigned i = 0; i < AnalysesList.size(); ++i) {
enum Ans AnalysisPass = AnalysesList[i];
for (unsigned j = 0; j < sizeof(AnTable)/sizeof(AnTable[0]); ++j) {
if (AnTable[j].AnID == AnalysisPass) {
Analyses.add(AnTable[j].PassConstructor());
break; // get an error later
}
}
}
Analyses.run(*CurMod);
delete CurMod;
return 0;
}