llvm/lib/Passes/PassRegistry.def

123 lines
4.7 KiB
Modula-2
Raw Normal View History

//===- PassRegistry.def - Registry of passes --------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is used as the registry of passes that are part of the core LLVM
// libraries. This file describes both transformation passes and analyses
// Analyses are registered while transformation passes have names registered
// that can be used when providing a textual pass pipeline.
//
//===----------------------------------------------------------------------===//
// NOTE: NO INCLUDE GUARD DESIRED!
#ifndef MODULE_ANALYSIS
#define MODULE_ANALYSIS(NAME, CREATE_PASS)
#endif
MODULE_ANALYSIS("callgraph", CallGraphAnalysis())
MODULE_ANALYSIS("lcg", LazyCallGraphAnalysis())
MODULE_ANALYSIS("no-op-module", NoOpModuleAnalysis())
MODULE_ANALYSIS("targetlibinfo", TargetLibraryAnalysis())
#undef MODULE_ANALYSIS
#ifndef MODULE_PASS
#define MODULE_PASS(NAME, CREATE_PASS)
#endif
MODULE_PASS("forceattrs", ForceFunctionAttrsPass())
MODULE_PASS("inferattrs", InferFunctionAttrsPass())
MODULE_PASS("invalidate<all>", InvalidateAllAnalysesPass())
MODULE_PASS("no-op-module", NoOpModulePass())
MODULE_PASS("print", PrintModulePass(dbgs()))
MODULE_PASS("print-callgraph", CallGraphPrinterPass(dbgs()))
MODULE_PASS("print-lcg", LazyCallGraphPrinterPass(dbgs()))
MODULE_PASS("strip-dead-prototypes", StripDeadPrototypesPass())
MODULE_PASS("verify", VerifierPass())
#undef MODULE_PASS
#ifndef CGSCC_ANALYSIS
#define CGSCC_ANALYSIS(NAME, CREATE_PASS)
#endif
CGSCC_ANALYSIS("no-op-cgscc", NoOpCGSCCAnalysis())
#undef CGSCC_ANALYSIS
#ifndef CGSCC_PASS
#define CGSCC_PASS(NAME, CREATE_PASS)
#endif
CGSCC_PASS("invalidate<all>", InvalidateAllAnalysesPass())
CGSCC_PASS("function-attrs", PostOrderFunctionAttrsPass())
CGSCC_PASS("no-op-cgscc", NoOpCGSCCPass())
#undef CGSCC_PASS
#ifndef FUNCTION_ANALYSIS
#define FUNCTION_ANALYSIS(NAME, CREATE_PASS)
#endif
FUNCTION_ANALYSIS("aa", AAManager())
FUNCTION_ANALYSIS("assumptions", AssumptionAnalysis())
FUNCTION_ANALYSIS("domtree", DominatorTreeAnalysis())
FUNCTION_ANALYSIS("postdomtree", PostDominatorTreeAnalysis())
FUNCTION_ANALYSIS("domfrontier", DominanceFrontierAnalysis())
FUNCTION_ANALYSIS("loops", LoopAnalysis())
FUNCTION_ANALYSIS("memdep", MemoryDependenceAnalysis())
FUNCTION_ANALYSIS("regions", RegionInfoAnalysis())
FUNCTION_ANALYSIS("no-op-function", NoOpFunctionAnalysis())
[PM] Port ScalarEvolution to the new pass manager. This change makes ScalarEvolution a stand-alone object and just produces one from a pass as needed. Making this work well requires making the object movable, using references instead of overwritten pointers in a number of places, and other refactorings. I've also wired it up to the new pass manager and added a RUN line to a test to exercise it under the new pass manager. This includes basic printing support much like with other analyses. But there is a big and somewhat scary change here. Prior to this patch ScalarEvolution was never *actually* invalidated!!! Re-running the pass just re-wired up the various other analyses and didn't remove any of the existing entries in the SCEV caches or clear out anything at all. This might seem OK as everything in SCEV that can uses ValueHandles to track updates to the values that serve as SCEV keys. However, this still means that as we ran SCEV over each function in the module, we kept accumulating more and more SCEVs into the cache. At the end, we would have a SCEV cache with every value that we ever needed a SCEV for in the entire module!!! Yowzers. The releaseMemory routine would dump all of this, but that isn't realy called during normal runs of the pipeline as far as I can see. To make matters worse, there *is* actually a key that we don't update with value handles -- there is a map keyed off of Loop*s. Because LoopInfo *does* release its memory from run to run, it is entirely possible to run SCEV over one function, then over another function, and then lookup a Loop* from the second function but find an entry inserted for the first function! Ouch. To make matters still worse, there are plenty of updates that *don't* trip a value handle. It seems incredibly unlikely that today GVN or another pass that invalidates SCEV can update values in *just* such a way that a subsequent run of SCEV will incorrectly find lookups in a cache, but it is theoretically possible and would be a nightmare to debug. With this refactoring, I've fixed all this by actually destroying and recreating the ScalarEvolution object from run to run. Technically, this could increase the amount of malloc traffic we see, but then again it is also technically correct. ;] I don't actually think we're suffering from tons of malloc traffic from SCEV because if we were, the fact that we never clear the memory would seem more likely to have come up as an actual problem before now. So, I've made the simple fix here. If in fact there are serious issues with too much allocation and deallocation, I can work on a clever fix that preserves the allocations (while clearing the data) between each run, but I'd prefer to do that kind of optimization with a test case / benchmark that shows why we need such cleverness (and that can test that we actually make it faster). It's possible that this will make some things faster by making the SCEV caches have higher locality (due to being significantly smaller) so until there is a clear benchmark, I think the simple change is best. Differential Revision: http://reviews.llvm.org/D12063 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245193 91177308-0d34-0410-b5e6-96231b3b80d8
2015-08-17 02:08:17 +00:00
FUNCTION_ANALYSIS("scalar-evolution", ScalarEvolutionAnalysis())
[PM] Rework how the TargetLibraryInfo pass integrates with the new pass manager to support the actual uses of it. =] When I ported instcombine to the new pass manager I discover that it didn't work because TLI wasn't available in the right places. This is a somewhat surprising and/or subtle aspect of the new pass manager design that came up before but I think is useful to be reminded of: While the new pass manager *allows* a function pass to query a module analysis, it requires that the module analysis is already run and cached prior to the function pass manager starting up, possibly with a 'require<foo>' style utility in the pass pipeline. This is an intentional hurdle because using a module analysis from a function pass *requires* that the module analysis is run prior to entering the function pass manager. Otherwise the other functions in the module could be in who-knows-what state, etc. A somewhat surprising consequence of this design decision (at least to me) is that you have to design a function pass that leverages a module analysis to do so as an optional feature. Even if that means your function pass does no work in the absence of the module analysis, you have to handle that possibility and remain conservatively correct. This is a natural consequence of things being able to invalidate the module analysis and us being unable to re-run it. And it's a generally good thing because it lets us reorder passes arbitrarily without breaking correctness, etc. This ends up causing problems in one case. What if we have a module analysis that is *definitionally* impossible to invalidate. In the places this might come up, the analysis is usually also definitionally trivial to run even while other transformation passes run on the module, regardless of the state of anything. And so, it follows that it is natural to have a hard requirement on such analyses from a function pass. It turns out, that TargetLibraryInfo is just such an analysis, and InstCombine has a hard requirement on it. The approach I've taken here is to produce an analysis that models this flexibility by making it both a module and a function analysis. This exposes the fact that it is in fact safe to compute at any point. We can even make it a valid CGSCC analysis at some point if that is useful. However, we don't want to have a copy of the actual target library info state for each function! This state is specific to the triple. The somewhat direct and blunt approach here is to turn TLI into a pimpl, with the state and mutators in the implementation class and the query routines primarily in the wrapper. Then the analysis can lazily construct and cache the implementations, keyed on the triple, and on-demand produce wrappers of them for each function. One minor annoyance is that we will end up with a wrapper for each function in the module. While this is a bit wasteful (one pointer per function) it seems tolerable. And it has the advantage of ensuring that we pay the absolute minimum synchronization cost to access this information should we end up with a nice parallel function pass manager in the future. We could look into trying to mark when analysis results are especially cheap to recompute and more eagerly GC-ing the cached results, or we could look at supporting a variant of analyses whose results are specifically *not* cached and expected to just be used and discarded by the consumer. Either way, these seem like incremental enhancements that should happen when we start profiling the memory and CPU usage of the new pass manager and not before. The other minor annoyance is that if we end up using the TLI in both a module pass and a function pass, those will be produced by two separate analyses, and thus will point to separate copies of the implementation state. While a minor issue, I dislike this and would like to find a way to cleanly allow a single analysis instance to be used across multiple IR unit managers. But I don't have a good solution to this today, and I don't want to hold up all of the work waiting to come up with one. This too seems like a reasonable thing to incrementally improve later. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226981 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-24 02:06:09 +00:00
FUNCTION_ANALYSIS("targetlibinfo", TargetLibraryAnalysis())
FUNCTION_ANALYSIS("targetir",
TM ? TM->getTargetIRAnalysis() : TargetIRAnalysis())
#ifndef FUNCTION_ALIAS_ANALYSIS
#define FUNCTION_ALIAS_ANALYSIS(NAME, CREATE_PASS) \
FUNCTION_ANALYSIS(NAME, CREATE_PASS)
#endif
FUNCTION_ALIAS_ANALYSIS("basic-aa", BasicAA())
FUNCTION_ALIAS_ANALYSIS("cfl-aa", CFLAA())
FUNCTION_ALIAS_ANALYSIS("scev-aa", SCEVAA())
FUNCTION_ALIAS_ANALYSIS("scoped-noalias-aa", ScopedNoAliasAA())
FUNCTION_ALIAS_ANALYSIS("type-based-aa", TypeBasedAA())
#undef FUNCTION_ALIAS_ANALYSIS
#undef FUNCTION_ANALYSIS
#ifndef FUNCTION_PASS
#define FUNCTION_PASS(NAME, CREATE_PASS)
#endif
FUNCTION_PASS("aa-eval", AAEvaluator())
FUNCTION_PASS("adce", ADCEPass())
FUNCTION_PASS("early-cse", EarlyCSEPass())
FUNCTION_PASS("instcombine", InstCombinePass())
FUNCTION_PASS("invalidate<all>", InvalidateAllAnalysesPass())
FUNCTION_PASS("no-op-function", NoOpFunctionPass())
FUNCTION_PASS("lower-expect", LowerExpectIntrinsicPass())
FUNCTION_PASS("print", PrintFunctionPass(dbgs()))
FUNCTION_PASS("print<assumptions>", AssumptionPrinterPass(dbgs()))
FUNCTION_PASS("print<domtree>", DominatorTreePrinterPass(dbgs()))
FUNCTION_PASS("print<postdomtree>", PostDominatorTreePrinterPass(dbgs()))
FUNCTION_PASS("print<domfrontier>", DominanceFrontierPrinterPass(dbgs()))
FUNCTION_PASS("print<loops>", LoopPrinterPass(dbgs()))
FUNCTION_PASS("print<regions>", RegionInfoPrinterPass(dbgs()))
[PM] Port ScalarEvolution to the new pass manager. This change makes ScalarEvolution a stand-alone object and just produces one from a pass as needed. Making this work well requires making the object movable, using references instead of overwritten pointers in a number of places, and other refactorings. I've also wired it up to the new pass manager and added a RUN line to a test to exercise it under the new pass manager. This includes basic printing support much like with other analyses. But there is a big and somewhat scary change here. Prior to this patch ScalarEvolution was never *actually* invalidated!!! Re-running the pass just re-wired up the various other analyses and didn't remove any of the existing entries in the SCEV caches or clear out anything at all. This might seem OK as everything in SCEV that can uses ValueHandles to track updates to the values that serve as SCEV keys. However, this still means that as we ran SCEV over each function in the module, we kept accumulating more and more SCEVs into the cache. At the end, we would have a SCEV cache with every value that we ever needed a SCEV for in the entire module!!! Yowzers. The releaseMemory routine would dump all of this, but that isn't realy called during normal runs of the pipeline as far as I can see. To make matters worse, there *is* actually a key that we don't update with value handles -- there is a map keyed off of Loop*s. Because LoopInfo *does* release its memory from run to run, it is entirely possible to run SCEV over one function, then over another function, and then lookup a Loop* from the second function but find an entry inserted for the first function! Ouch. To make matters still worse, there are plenty of updates that *don't* trip a value handle. It seems incredibly unlikely that today GVN or another pass that invalidates SCEV can update values in *just* such a way that a subsequent run of SCEV will incorrectly find lookups in a cache, but it is theoretically possible and would be a nightmare to debug. With this refactoring, I've fixed all this by actually destroying and recreating the ScalarEvolution object from run to run. Technically, this could increase the amount of malloc traffic we see, but then again it is also technically correct. ;] I don't actually think we're suffering from tons of malloc traffic from SCEV because if we were, the fact that we never clear the memory would seem more likely to have come up as an actual problem before now. So, I've made the simple fix here. If in fact there are serious issues with too much allocation and deallocation, I can work on a clever fix that preserves the allocations (while clearing the data) between each run, but I'd prefer to do that kind of optimization with a test case / benchmark that shows why we need such cleverness (and that can test that we actually make it faster). It's possible that this will make some things faster by making the SCEV caches have higher locality (due to being significantly smaller) so until there is a clear benchmark, I think the simple change is best. Differential Revision: http://reviews.llvm.org/D12063 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245193 91177308-0d34-0410-b5e6-96231b3b80d8
2015-08-17 02:08:17 +00:00
FUNCTION_PASS("print<scalar-evolution>", ScalarEvolutionPrinterPass(dbgs()))
FUNCTION_PASS("simplify-cfg", SimplifyCFGPass())
[PM] Port SROA to the new pass manager. In some ways this is a very boring port to the new pass manager as there are no interesting analyses or dependencies or other oddities. However, this does introduce the first good example of a transformation pass with non-trivial state porting to the new pass manager. I've tried to carve out patterns here to replicate elsewhere, and would appreciate comments on whether folks like these patterns: - A common need in the new pass manager is to effectively lift the pass class and some of its state into a public header file. Prior to this, LLVM used anonymous namespaces to provide "module private" types and utilities, but that doesn't scale to cases where a public header file is needed and the new pass manager will exacerbate that. The pattern I've adopted here is to use the namespace-cased-name of the core pass (what would be a module if we had them) as a module-private namespace. Then utility and other code can be declared and defined in this namespace. At some point in the future, we could even have (conditionally compiled) code that used modules features when available to do the same basic thing. - I've split the actual pass run method in two in order to expose a private method usable by the old pass manager to wrap the new class with a minimum of duplicated code. I actually looked at a bunch of ways to automate or generate these, but they are all quite terrible IMO. The fundamental need is to extract the set of analyses which need to cross this interface boundary, and that will end up being too unpredictable to effectively encapsulate IMO. This is also a relatively small amount of boiler plate that will live a relatively short time, so I'm not too worried about the fact that it is boiler plate. The rest of the patch is totally boring but results in a massive diff (sorry). It just moves code around and removes or adds qualifiers to reflect the new name and nesting structure. Differential Revision: http://reviews.llvm.org/D12773 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@247501 91177308-0d34-0410-b5e6-96231b3b80d8
2015-09-12 09:09:14 +00:00
FUNCTION_PASS("sroa", SROA())
FUNCTION_PASS("verify", VerifierPass())
FUNCTION_PASS("verify<domtree>", DominatorTreeVerifierPass())
FUNCTION_PASS("verify<regions>", RegionInfoVerifierPass())
#undef FUNCTION_PASS
#ifndef LOOP_ANALYSIS
#define LOOP_ANALYSIS(NAME, CREATE_PASS)
#endif
LOOP_ANALYSIS("no-op-loop", NoOpLoopAnalysis())
#undef LOOP_ANALYSIS
#ifndef LOOP_PASS
#define LOOP_PASS(NAME, CREATE_PASS)
#endif
LOOP_PASS("invalidate<all>", InvalidateAllAnalysesPass())
LOOP_PASS("no-op-loop", NoOpLoopPass())
LOOP_PASS("print", PrintLoopPass(dbgs()))
#undef LOOP_PASS