llvm/unittests/DebugInfo/PDB/BinaryStreamTest.cpp

711 lines
23 KiB
C++
Raw Normal View History

//===- llvm/unittest/Support/BinaryStreamTest.cpp -------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/DebugInfo/MSF/BinaryByteStream.h"
#include "llvm/DebugInfo/MSF/BinaryItemStream.h"
#include "llvm/DebugInfo/MSF/BinaryStreamArray.h"
#include "llvm/DebugInfo/MSF/BinaryStreamReader.h"
#include "llvm/DebugInfo/MSF/BinaryStreamRef.h"
#include "llvm/DebugInfo/MSF/BinaryStreamWriter.h"
#include "gtest/gtest.h"
#include <unordered_map>
using namespace llvm;
using namespace llvm::support;
#define EXPECT_NO_ERROR(Err) \
{ \
auto E = Err; \
EXPECT_FALSE(static_cast<bool>(E)); \
if (E) \
consumeError(std::move(E)); \
}
#define ASSERT_NO_ERROR(Err) \
{ \
auto E = Err; \
ASSERT_FALSE(static_cast<bool>(E)); \
if (E) \
consumeError(std::move(E)); \
}
#define EXPECT_ERROR(Err) \
{ \
auto E = Err; \
EXPECT_TRUE(static_cast<bool>(E)); \
if (E) \
consumeError(std::move(E)); \
}
namespace {
class BrokenStream : public WritableBinaryStream {
public:
BrokenStream(MutableArrayRef<uint8_t> Data, endianness Endian,
uint32_t Align)
: Data(Data), PartitionIndex(alignDown(Data.size() / 2, Align)),
Endian(Endian) {}
endianness getEndian() const override { return Endian; }
Error readBytes(uint32_t Offset, uint32_t Size,
ArrayRef<uint8_t> &Buffer) override {
if (auto EC = checkOffset(Offset, Size))
return EC;
uint32_t S = startIndex(Offset);
auto Ref = Data.drop_front(S);
if (Ref.size() >= Size) {
Buffer = Ref.take_front(Size);
return Error::success();
}
uint32_t BytesLeft = Size - Ref.size();
uint8_t *Ptr = Allocator.Allocate<uint8_t>(Size);
::memcpy(Ptr, Ref.data(), Ref.size());
::memcpy(Ptr + Ref.size(), Data.data(), BytesLeft);
Buffer = makeArrayRef<uint8_t>(Ptr, Size);
return Error::success();
}
Error readLongestContiguousChunk(uint32_t Offset,
ArrayRef<uint8_t> &Buffer) override {
if (auto EC = checkOffset(Offset, 1))
return EC;
uint32_t S = startIndex(Offset);
Buffer = Data.drop_front(S);
return Error::success();
}
uint32_t getLength() override { return Data.size(); }
Error writeBytes(uint32_t Offset, ArrayRef<uint8_t> SrcData) override {
if (auto EC = checkOffset(Offset, SrcData.size()))
return EC;
if (SrcData.empty())
return Error::success();
uint32_t S = startIndex(Offset);
MutableArrayRef<uint8_t> Ref(Data);
Ref = Ref.drop_front(S);
if (Ref.size() >= SrcData.size()) {
::memcpy(Ref.data(), SrcData.data(), SrcData.size());
return Error::success();
}
uint32_t BytesLeft = SrcData.size() - Ref.size();
::memcpy(Ref.data(), SrcData.data(), Ref.size());
::memcpy(&Data[0], SrcData.data() + Ref.size(), BytesLeft);
return Error::success();
}
Error commit() override { return Error::success(); }
private:
uint32_t startIndex(uint32_t Offset) const {
return (Offset + PartitionIndex) % Data.size();
}
uint32_t endIndex(uint32_t Offset, uint32_t Size) const {
return (startIndex(Offset) + Size - 1) % Data.size();
}
// Buffer is organized like this:
// -------------------------------------------------
// | N/2 | N/2+1 | ... | N-1 | 0 | 1 | ... | N-2-1 |
// -------------------------------------------------
// So reads from the beginning actually come from the middle.
MutableArrayRef<uint8_t> Data;
uint32_t PartitionIndex = 0;
endianness Endian;
BumpPtrAllocator Allocator;
};
constexpr endianness Endians[] = { big, little, native };
constexpr uint32_t NumEndians = llvm::array_lengthof(Endians);
constexpr uint32_t NumStreams = 2 * NumEndians;
class BinaryStreamTest : public testing::Test {
public:
BinaryStreamTest() {}
void SetUp() override {
Streams.clear();
Streams.resize(NumStreams);
for (uint32_t I = 0; I < NumStreams; ++I)
Streams[I].IsContiguous = (I % 2 == 0);
InputData.clear();
OutputData.clear();
}
protected:
struct StreamPair {
bool IsContiguous;
std::unique_ptr<BinaryStream> Input;
std::unique_ptr<WritableBinaryStream> Output;
};
void initializeInput(ArrayRef<uint8_t> Input, uint32_t Align) {
InputData = Input;
BrokenInputData.resize(InputData.size());
if (!Input.empty()) {
uint32_t PartitionIndex = alignDown(InputData.size() / 2, Align);
uint32_t RightBytes = InputData.size() - PartitionIndex;
uint32_t LeftBytes = PartitionIndex;
if (RightBytes > 0)
::memcpy(&BrokenInputData[PartitionIndex], Input.data(), RightBytes);
if (LeftBytes > 0)
::memcpy(&BrokenInputData[0], Input.data() + RightBytes, LeftBytes);
}
for (uint32_t I = 0; I < NumEndians; ++I) {
auto InByteStream =
llvm::make_unique<BinaryByteStream>(InputData, Endians[I]);
auto InBrokenStream = llvm::make_unique<BrokenStream>(
BrokenInputData, Endians[I], Align);
Streams[I * 2].Input = std::move(InByteStream);
Streams[I * 2 + 1].Input = std::move(InBrokenStream);
}
}
void initializeOutput(uint32_t Size, uint32_t Align) {
OutputData.resize(Size);
BrokenOutputData.resize(Size);
for (uint32_t I = 0; I < NumEndians; ++I) {
Streams[I * 2].Output =
llvm::make_unique<MutableBinaryByteStream>(OutputData, Endians[I]);
Streams[I * 2 + 1].Output = llvm::make_unique<BrokenStream>(
BrokenOutputData, Endians[I], Align);
}
}
void initializeOutputFromInput(uint32_t Align) {
for (uint32_t I = 0; I < NumEndians; ++I) {
Streams[I * 2].Output =
llvm::make_unique<MutableBinaryByteStream>(InputData, Endians[I]);
Streams[I * 2 + 1].Output = llvm::make_unique<BrokenStream>(
BrokenInputData, Endians[I], Align);
}
}
void initializeInputFromOutput(uint32_t Align) {
for (uint32_t I = 0; I < NumEndians; ++I) {
Streams[I * 2].Input =
llvm::make_unique<BinaryByteStream>(OutputData, Endians[I]);
Streams[I * 2 + 1].Input = llvm::make_unique<BrokenStream>(
BrokenOutputData, Endians[I], Align);
}
}
std::vector<uint8_t> InputData;
std::vector<uint8_t> BrokenInputData;
std::vector<uint8_t> OutputData;
std::vector<uint8_t> BrokenOutputData;
std::vector<StreamPair> Streams;
};
// Tests that a we can read from a BinaryByteStream without a StreamReader.
TEST_F(BinaryStreamTest, BinaryByteStreamBounds) {
std::vector<uint8_t> InputData = {1, 2, 3, 4, 5};
initializeInput(InputData, 1);
for (auto &Stream : Streams) {
ArrayRef<uint8_t> Buffer;
// 1. If the read fits it should work.
ASSERT_EQ(InputData.size(), Stream.Input->getLength());
ASSERT_NO_ERROR(Stream.Input->readBytes(2, 1, Buffer));
EXPECT_EQ(makeArrayRef(InputData).slice(2, 1), Buffer);
ASSERT_NO_ERROR(Stream.Input->readBytes(0, 4, Buffer));
EXPECT_EQ(makeArrayRef(InputData).slice(0, 4), Buffer);
// 2. Reading past the bounds of the input should fail.
EXPECT_ERROR(Stream.Input->readBytes(4, 2, Buffer));
}
}
TEST_F(BinaryStreamTest, StreamRefBounds) {
std::vector<uint8_t> InputData = {1, 2, 3, 4, 5};
initializeInput(InputData, 1);
for (const auto &Stream : Streams) {
ArrayRef<uint8_t> Buffer;
BinaryStreamRef Ref(*Stream.Input);
// Read 1 byte from offset 2 should work
ASSERT_EQ(InputData.size(), Ref.getLength());
ASSERT_NO_ERROR(Ref.readBytes(2, 1, Buffer));
EXPECT_EQ(makeArrayRef(InputData).slice(2, 1), Buffer);
// Reading everything from offset 2 on.
ASSERT_NO_ERROR(Ref.readLongestContiguousChunk(2, Buffer));
if (Stream.IsContiguous)
EXPECT_EQ(makeArrayRef(InputData).slice(2), Buffer);
else
EXPECT_FALSE(Buffer.empty());
// Reading 6 bytes from offset 0 is too big.
EXPECT_ERROR(Ref.readBytes(0, 6, Buffer));
EXPECT_ERROR(Ref.readLongestContiguousChunk(6, Buffer));
// Reading 1 byte from offset 2 after dropping 1 byte is the same as reading
// 1 byte from offset 3.
Ref = Ref.drop_front(1);
ASSERT_NO_ERROR(Ref.readBytes(2, 1, Buffer));
if (Stream.IsContiguous)
EXPECT_EQ(makeArrayRef(InputData).slice(3, 1), Buffer);
else
EXPECT_FALSE(Buffer.empty());
// Reading everything from offset 2 on after dropping 1 byte.
ASSERT_NO_ERROR(Ref.readLongestContiguousChunk(2, Buffer));
if (Stream.IsContiguous)
EXPECT_EQ(makeArrayRef(InputData).slice(3), Buffer);
else
EXPECT_FALSE(Buffer.empty());
// Reading 2 bytes from offset 2 after dropping 2 bytes is the same as
// reading 2 bytes from offset 4, and should fail.
Ref = Ref.drop_front(1);
EXPECT_ERROR(Ref.readBytes(2, 2, Buffer));
// But if we read the longest contiguous chunk instead, we should still
// get the 1 byte at the end.
ASSERT_NO_ERROR(Ref.readLongestContiguousChunk(2, Buffer));
EXPECT_EQ(makeArrayRef(InputData).take_back(), Buffer);
}
}
// Test that we can write to a BinaryStream without a StreamWriter.
TEST_F(BinaryStreamTest, MutableBinaryByteStreamBounds) {
std::vector<uint8_t> InputData = {'T', 'e', 's', 't', '\0'};
initializeInput(InputData, 1);
initializeOutput(InputData.size(), 1);
// For every combination of input stream and output stream.
for (auto &Stream : Streams) {
MutableArrayRef<uint8_t> Buffer;
ASSERT_EQ(InputData.size(), Stream.Input->getLength());
// 1. Try two reads that are supposed to work. One from offset 0, and one
// from the middle.
uint32_t Offsets[] = {0, 3};
for (auto Offset : Offsets) {
uint32_t ExpectedSize = Stream.Input->getLength() - Offset;
// Read everything from Offset until the end of the input data.
ArrayRef<uint8_t> Data;
ASSERT_NO_ERROR(Stream.Input->readBytes(Offset, ExpectedSize, Data));
ASSERT_EQ(ExpectedSize, Data.size());
// Then write it to the destination.
ASSERT_NO_ERROR(Stream.Output->writeBytes(0, Data));
// Then we read back what we wrote, it should match the corresponding
// slice of the original input data.
ArrayRef<uint8_t> Data2;
ASSERT_NO_ERROR(Stream.Output->readBytes(Offset, ExpectedSize, Data2));
EXPECT_EQ(makeArrayRef(InputData).drop_front(Offset), Data2);
}
std::vector<uint8_t> BigData = {0, 1, 2, 3, 4};
// 2. If the write is too big, it should fail.
EXPECT_ERROR(Stream.Output->writeBytes(3, BigData));
}
}
// Test that FixedStreamArray works correctly.
TEST_F(BinaryStreamTest, FixedStreamArray) {
std::vector<uint32_t> Ints = {90823, 12908, 109823, 209823};
ArrayRef<uint8_t> IntBytes(reinterpret_cast<uint8_t *>(Ints.data()),
Ints.size() * sizeof(uint32_t));
initializeInput(IntBytes, alignof(uint32_t));
for (auto &Stream : Streams) {
MutableArrayRef<uint8_t> Buffer;
ASSERT_EQ(InputData.size(), Stream.Input->getLength());
FixedStreamArray<uint32_t> Array(*Stream.Input);
auto Iter = Array.begin();
ASSERT_EQ(Ints[0], *Iter++);
ASSERT_EQ(Ints[1], *Iter++);
ASSERT_EQ(Ints[2], *Iter++);
ASSERT_EQ(Ints[3], *Iter++);
ASSERT_EQ(Array.end(), Iter);
}
}
// Test that VarStreamArray works correctly.
TEST_F(BinaryStreamTest, VarStreamArray) {
StringLiteral Strings("1. Test2. Longer Test3. Really Long Test4. Super "
"Extra Longest Test Of All");
ArrayRef<uint8_t> StringBytes(
reinterpret_cast<const uint8_t *>(Strings.data()), Strings.size());
initializeInput(StringBytes, 1);
struct StringExtractor {
public:
Error operator()(BinaryStreamRef Stream, uint32_t &Len, StringRef &Item) {
if (Index == 0)
Len = strlen("1. Test");
else if (Index == 1)
Len = strlen("2. Longer Test");
else if (Index == 2)
Len = strlen("3. Really Long Test");
else
Len = strlen("4. Super Extra Longest Test Of All");
ArrayRef<uint8_t> Bytes;
if (auto EC = Stream.readBytes(0, Len, Bytes))
return EC;
Item =
StringRef(reinterpret_cast<const char *>(Bytes.data()), Bytes.size());
++Index;
return Error::success();
}
private:
uint32_t Index = 0;
};
for (auto &Stream : Streams) {
VarStreamArray<StringRef, StringExtractor> Array(*Stream.Input);
auto Iter = Array.begin();
ASSERT_EQ("1. Test", *Iter++);
ASSERT_EQ("2. Longer Test", *Iter++);
ASSERT_EQ("3. Really Long Test", *Iter++);
ASSERT_EQ("4. Super Extra Longest Test Of All", *Iter++);
ASSERT_EQ(Array.end(), Iter);
}
}
TEST_F(BinaryStreamTest, StreamReaderBounds) {
std::vector<uint8_t> Bytes;
initializeInput(Bytes, 1);
for (auto &Stream : Streams) {
StringRef S;
BinaryStreamReader Reader(*Stream.Input);
EXPECT_EQ(0U, Reader.bytesRemaining());
EXPECT_ERROR(Reader.readFixedString(S, 1));
}
Bytes.resize(5);
initializeInput(Bytes, 1);
for (auto &Stream : Streams) {
StringRef S;
BinaryStreamReader Reader(*Stream.Input);
EXPECT_EQ(Bytes.size(), Reader.bytesRemaining());
EXPECT_NO_ERROR(Reader.readFixedString(S, 5));
EXPECT_ERROR(Reader.readFixedString(S, 6));
}
}
TEST_F(BinaryStreamTest, StreamReaderIntegers) {
support::ulittle64_t Little{908234};
support::ubig32_t Big{28907823};
short NS = 2897;
int NI = -89723;
unsigned long NUL = 902309023UL;
constexpr uint32_t Size =
sizeof(Little) + sizeof(Big) + sizeof(NS) + sizeof(NI) + sizeof(NUL);
initializeOutput(Size, alignof(support::ulittle64_t));
initializeInputFromOutput(alignof(support::ulittle64_t));
for (auto &Stream : Streams) {
BinaryStreamWriter Writer(*Stream.Output);
ASSERT_NO_ERROR(Writer.writeObject(Little));
ASSERT_NO_ERROR(Writer.writeObject(Big));
ASSERT_NO_ERROR(Writer.writeInteger(NS));
ASSERT_NO_ERROR(Writer.writeInteger(NI));
ASSERT_NO_ERROR(Writer.writeInteger(NUL));
const support::ulittle64_t *Little2;
const support::ubig32_t *Big2;
short NS2;
int NI2;
unsigned long NUL2;
// 1. Reading fields individually.
BinaryStreamReader Reader(*Stream.Input);
ASSERT_NO_ERROR(Reader.readObject(Little2));
ASSERT_NO_ERROR(Reader.readObject(Big2));
ASSERT_NO_ERROR(Reader.readInteger(NS2));
ASSERT_NO_ERROR(Reader.readInteger(NI2));
ASSERT_NO_ERROR(Reader.readInteger(NUL2));
ASSERT_EQ(0U, Reader.bytesRemaining());
EXPECT_EQ(Little, *Little2);
EXPECT_EQ(Big, *Big2);
EXPECT_EQ(NS, NS2);
EXPECT_EQ(NI, NI2);
EXPECT_EQ(NUL, NUL2);
}
}
TEST_F(BinaryStreamTest, StreamReaderIntegerArray) {
// 1. Arrays of integers
std::vector<int> Ints = {1, 2, 3, 4, 5};
ArrayRef<uint8_t> IntBytes(reinterpret_cast<uint8_t *>(&Ints[0]),
Ints.size() * sizeof(int));
initializeInput(IntBytes, alignof(int));
for (auto &Stream : Streams) {
BinaryStreamReader Reader(*Stream.Input);
ArrayRef<int> IntsRef;
ASSERT_NO_ERROR(Reader.readArray(IntsRef, Ints.size()));
ASSERT_EQ(0U, Reader.bytesRemaining());
EXPECT_EQ(makeArrayRef(Ints), IntsRef);
Reader.setOffset(0);
FixedStreamArray<int> FixedIntsRef;
ASSERT_NO_ERROR(Reader.readArray(FixedIntsRef, Ints.size()));
ASSERT_EQ(0U, Reader.bytesRemaining());
ASSERT_EQ(Ints, std::vector<int>(FixedIntsRef.begin(), FixedIntsRef.end()));
}
}
TEST_F(BinaryStreamTest, StreamReaderEnum) {
enum class MyEnum : int64_t { Foo = -10, Bar = 0, Baz = 10 };
std::vector<MyEnum> Enums = {MyEnum::Bar, MyEnum::Baz, MyEnum::Foo};
initializeOutput(Enums.size() * sizeof(MyEnum), alignof(MyEnum));
initializeInputFromOutput(alignof(MyEnum));
for (auto &Stream : Streams) {
BinaryStreamWriter Writer(*Stream.Output);
for (auto Value : Enums)
ASSERT_NO_ERROR(Writer.writeEnum(Value));
BinaryStreamReader Reader(*Stream.Input);
ArrayRef<MyEnum> Array;
FixedStreamArray<MyEnum> FSA;
for (size_t I = 0; I < Enums.size(); ++I) {
MyEnum Value;
ASSERT_NO_ERROR(Reader.readEnum(Value));
EXPECT_EQ(Enums[I], Value);
}
ASSERT_EQ(0U, Reader.bytesRemaining());
}
}
TEST_F(BinaryStreamTest, StreamReaderObject) {
struct Foo {
int X;
double Y;
char Z;
bool operator==(const Foo &Other) const {
return X == Other.X && Y == Other.Y && Z == Other.Z;
}
};
std::vector<Foo> Foos;
Foos.push_back({-42, 42.42, 42});
Foos.push_back({100, 3.1415, static_cast<char>(-89)});
Foos.push_back({200, 2.718, static_cast<char>(-12) });
const uint8_t *Bytes = reinterpret_cast<const uint8_t *>(&Foos[0]);
initializeInput(makeArrayRef(Bytes, 3 * sizeof(Foo)), alignof(Foo));
for (auto &Stream : Streams) {
// 1. Reading object pointers.
BinaryStreamReader Reader(*Stream.Input);
const Foo *FPtrOut = nullptr;
const Foo *GPtrOut = nullptr;
const Foo *HPtrOut = nullptr;
ASSERT_NO_ERROR(Reader.readObject(FPtrOut));
ASSERT_NO_ERROR(Reader.readObject(GPtrOut));
ASSERT_NO_ERROR(Reader.readObject(HPtrOut));
EXPECT_EQ(0U, Reader.bytesRemaining());
EXPECT_EQ(Foos[0], *FPtrOut);
EXPECT_EQ(Foos[1], *GPtrOut);
EXPECT_EQ(Foos[2], *HPtrOut);
}
}
TEST_F(BinaryStreamTest, StreamReaderStrings) {
std::vector<uint8_t> Bytes = {'O', 'n', 'e', '\0', 'T', 'w', 'o',
'\0', 'T', 'h', 'r', 'e', 'e', '\0',
'F', 'o', 'u', 'r', '\0'};
initializeInput(Bytes, 1);
for (auto &Stream : Streams) {
BinaryStreamReader Reader(*Stream.Input);
StringRef S1;
StringRef S2;
StringRef S3;
StringRef S4;
ASSERT_NO_ERROR(Reader.readCString(S1));
ASSERT_NO_ERROR(Reader.readCString(S2));
ASSERT_NO_ERROR(Reader.readCString(S3));
ASSERT_NO_ERROR(Reader.readCString(S4));
ASSERT_EQ(0U, Reader.bytesRemaining());
EXPECT_EQ("One", S1);
EXPECT_EQ("Two", S2);
EXPECT_EQ("Three", S3);
EXPECT_EQ("Four", S4);
S1 = S2 = S3 = S4 = "";
Reader.setOffset(0);
ASSERT_NO_ERROR(Reader.readFixedString(S1, 3));
ASSERT_NO_ERROR(Reader.skip(1));
ASSERT_NO_ERROR(Reader.readFixedString(S2, 3));
ASSERT_NO_ERROR(Reader.skip(1));
ASSERT_NO_ERROR(Reader.readFixedString(S3, 5));
ASSERT_NO_ERROR(Reader.skip(1));
ASSERT_NO_ERROR(Reader.readFixedString(S4, 4));
ASSERT_NO_ERROR(Reader.skip(1));
ASSERT_EQ(0U, Reader.bytesRemaining());
EXPECT_EQ("One", S1);
EXPECT_EQ("Two", S2);
EXPECT_EQ("Three", S3);
EXPECT_EQ("Four", S4);
}
}
TEST_F(BinaryStreamTest, StreamWriterBounds) {
initializeOutput(5, 1);
for (auto &Stream : Streams) {
BinaryStreamWriter Writer(*Stream.Output);
// 1. Can write a string that exactly fills the buffer.
EXPECT_EQ(5U, Writer.bytesRemaining());
EXPECT_NO_ERROR(Writer.writeFixedString("abcde"));
EXPECT_EQ(0U, Writer.bytesRemaining());
// 2. Can write an empty string even when you're full
EXPECT_NO_ERROR(Writer.writeFixedString(""));
EXPECT_ERROR(Writer.writeFixedString("a"));
// 3. Can't write a string that is one character too long.
Writer.setOffset(0);
EXPECT_ERROR(Writer.writeFixedString("abcdef"));
}
}
TEST_F(BinaryStreamTest, StreamWriterIntegerArrays) {
// 3. Arrays of integers
std::vector<int> SourceInts = {1, 2, 3, 4, 5};
ArrayRef<uint8_t> SourceBytes(reinterpret_cast<uint8_t *>(&SourceInts[0]),
SourceInts.size() * sizeof(int));
initializeInput(SourceBytes, alignof(int));
initializeOutputFromInput(alignof(int));
for (auto &Stream : Streams) {
BinaryStreamReader Reader(*Stream.Input);
BinaryStreamWriter Writer(*Stream.Output);
ArrayRef<int> Ints;
ArrayRef<int> Ints2;
// First read them, then write them, then read them back.
ASSERT_NO_ERROR(Reader.readArray(Ints, SourceInts.size()));
ASSERT_NO_ERROR(Writer.writeArray(Ints));
BinaryStreamReader ReaderBacker(*Stream.Output);
ASSERT_NO_ERROR(ReaderBacker.readArray(Ints2, SourceInts.size()));
EXPECT_EQ(makeArrayRef(SourceInts), Ints2);
}
}
TEST_F(BinaryStreamTest, StringWriterStrings) {
StringRef Strings[] = {"First", "Second", "Third", "Fourth"};
size_t Length = 0;
for (auto S : Strings)
Length += S.size() + 1;
initializeOutput(Length, 1);
initializeInputFromOutput(1);
for (auto &Stream : Streams) {
BinaryStreamWriter Writer(*Stream.Output);
for (auto S : Strings)
ASSERT_NO_ERROR(Writer.writeCString(S));
std::vector<StringRef> InStrings;
BinaryStreamReader Reader(*Stream.Input);
while (!Reader.empty()) {
StringRef S;
ASSERT_NO_ERROR(Reader.readCString(S));
InStrings.push_back(S);
}
EXPECT_EQ(makeArrayRef(Strings), makeArrayRef(InStrings));
}
}
}
namespace {
struct BinaryItemStreamObject {
explicit BinaryItemStreamObject(ArrayRef<uint8_t> Bytes) : Bytes(Bytes) {}
ArrayRef<uint8_t> Bytes;
};
}
namespace llvm {
template <> struct BinaryItemTraits<BinaryItemStreamObject> {
static size_t length(const BinaryItemStreamObject &Item) {
return Item.Bytes.size();
}
static ArrayRef<uint8_t> bytes(const BinaryItemStreamObject &Item) {
return Item.Bytes;
}
};
}
namespace {
TEST_F(BinaryStreamTest, BinaryItemStream) {
std::vector<BinaryItemStreamObject> Objects;
struct Foo {
int X;
double Y;
};
std::vector<Foo> Foos = {{1, 1.0}, {2, 2.0}, {3, 3.0}};
BumpPtrAllocator Allocator;
for (const auto &F : Foos) {
uint8_t *Ptr = Allocator.Allocate<uint8_t>(sizeof(Foo));
MutableArrayRef<uint8_t> Buffer(Ptr, sizeof(Foo));
MutableBinaryByteStream Stream(Buffer, llvm::support::big);
BinaryStreamWriter Writer(Stream);
ASSERT_NO_ERROR(Writer.writeObject(F));
Objects.push_back(BinaryItemStreamObject(Buffer));
}
BinaryItemStream<BinaryItemStreamObject> ItemStream(big);
ItemStream.setItems(Objects);
BinaryStreamReader Reader(ItemStream);
for (const auto &F : Foos) {
const Foo *F2;
ASSERT_NO_ERROR(Reader.readObject(F2));
EXPECT_EQ(F.X, F2->X);
EXPECT_DOUBLE_EQ(F.Y, F2->Y);
}
}
} // end anonymous namespace