llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp

1152 lines
46 KiB
C++
Raw Normal View History

//===- InstCombineCasts.cpp -----------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the visit functions for cast operations.
//
//===----------------------------------------------------------------------===//
#include "InstCombine.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/PatternMatch.h"
using namespace llvm;
using namespace PatternMatch;
/// CanEvaluateInDifferentType - Return true if we can take the specified value
/// and return it as type Ty without inserting any new casts and without
/// changing the computed value. This is used by code that tries to decide
/// whether promoting or shrinking integer operations to wider or smaller types
/// will allow us to eliminate a truncate or extend.
///
/// This is a truncation operation if Ty is smaller than V->getType(), or an
/// extension operation if Ty is larger.
///
/// If CastOpc is a truncation, then Ty will be a type smaller than V. We
/// should return true if trunc(V) can be computed by computing V in the smaller
/// type. If V is an instruction, then trunc(inst(x,y)) can be computed as
/// inst(trunc(x),trunc(y)), which only makes sense if x and y can be
/// efficiently truncated.
///
/// If CastOpc is a sext or zext, we are asking if the low bits of the value can
/// bit computed in a larger type, which is then and'd or sext_in_reg'd to get
/// the final result.
bool InstCombiner::CanEvaluateInDifferentType(Value *V, const Type *Ty,
unsigned CastOpc,
int &NumCastsRemoved){
// We can always evaluate constants in another type.
if (isa<Constant>(V))
return true;
Instruction *I = dyn_cast<Instruction>(V);
if (!I) return false;
const Type *OrigTy = V->getType();
// If this is an extension or truncate, we can often eliminate it.
if (isa<TruncInst>(I) || isa<ZExtInst>(I) || isa<SExtInst>(I)) {
// If this is a cast from the destination type, we can trivially eliminate
// it, and this will remove a cast overall.
if (I->getOperand(0)->getType() == Ty) {
// If the first operand is itself a cast, and is eliminable, do not count
// this as an eliminable cast. We would prefer to eliminate those two
// casts first.
if (!isa<CastInst>(I->getOperand(0)) && I->hasOneUse())
++NumCastsRemoved;
return true;
}
}
// We can't extend or shrink something that has multiple uses: doing so would
// require duplicating the instruction in general, which isn't profitable.
if (!I->hasOneUse()) return false;
unsigned Opc = I->getOpcode();
switch (Opc) {
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
// These operators can all arbitrarily be extended or truncated.
return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
NumCastsRemoved) &&
CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
NumCastsRemoved);
case Instruction::UDiv:
case Instruction::URem: {
// UDiv and URem can be truncated if all the truncated bits are zero.
uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
uint32_t BitWidth = Ty->getScalarSizeInBits();
if (BitWidth < OrigBitWidth) {
APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
if (MaskedValueIsZero(I->getOperand(0), Mask) &&
MaskedValueIsZero(I->getOperand(1), Mask)) {
return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
NumCastsRemoved) &&
CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
NumCastsRemoved);
}
}
break;
}
case Instruction::Shl:
// If we are truncating the result of this SHL, and if it's a shift of a
// constant amount, we can always perform a SHL in a smaller type.
if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
uint32_t BitWidth = Ty->getScalarSizeInBits();
if (BitWidth < OrigTy->getScalarSizeInBits() &&
CI->getLimitedValue(BitWidth) < BitWidth)
return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
NumCastsRemoved);
}
break;
case Instruction::LShr:
// If this is a truncate of a logical shr, we can truncate it to a smaller
// lshr iff we know that the bits we would otherwise be shifting in are
// already zeros.
if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
uint32_t BitWidth = Ty->getScalarSizeInBits();
if (BitWidth < OrigBitWidth &&
MaskedValueIsZero(I->getOperand(0),
APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
CI->getLimitedValue(BitWidth) < BitWidth) {
return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
NumCastsRemoved);
}
}
break;
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::Trunc:
// If this is the same kind of case as our original (e.g. zext+zext), we
// can safely replace it. Note that replacing it does not reduce the number
// of casts in the input.
if (Opc == CastOpc)
return true;
// sext (zext ty1), ty2 -> zext ty2
if (CastOpc == Instruction::SExt && Opc == Instruction::ZExt)
return true;
break;
case Instruction::Select: {
SelectInst *SI = cast<SelectInst>(I);
return CanEvaluateInDifferentType(SI->getTrueValue(), Ty, CastOpc,
NumCastsRemoved) &&
CanEvaluateInDifferentType(SI->getFalseValue(), Ty, CastOpc,
NumCastsRemoved);
}
case Instruction::PHI: {
// We can change a phi if we can change all operands.
PHINode *PN = cast<PHINode>(I);
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (!CanEvaluateInDifferentType(PN->getIncomingValue(i), Ty, CastOpc,
NumCastsRemoved))
return false;
return true;
}
default:
// TODO: Can handle more cases here.
break;
}
return false;
}
/// EvaluateInDifferentType - Given an expression that
/// CanEvaluateInDifferentType returns true for, actually insert the code to
/// evaluate the expression.
Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
bool isSigned) {
if (Constant *C = dyn_cast<Constant>(V))
return ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
// Otherwise, it must be an instruction.
Instruction *I = cast<Instruction>(V);
Instruction *Res = 0;
unsigned Opc = I->getOpcode();
switch (Opc) {
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
case Instruction::AShr:
case Instruction::LShr:
case Instruction::Shl:
case Instruction::UDiv:
case Instruction::URem: {
Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
break;
}
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
// If the source type of the cast is the type we're trying for then we can
// just return the source. There's no need to insert it because it is not
// new.
if (I->getOperand(0)->getType() == Ty)
return I->getOperand(0);
// Otherwise, must be the same type of cast, so just reinsert a new one.
Res = CastInst::Create(cast<CastInst>(I)->getOpcode(), I->getOperand(0),Ty);
break;
case Instruction::Select: {
Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
Res = SelectInst::Create(I->getOperand(0), True, False);
break;
}
case Instruction::PHI: {
PHINode *OPN = cast<PHINode>(I);
PHINode *NPN = PHINode::Create(Ty);
for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
NPN->addIncoming(V, OPN->getIncomingBlock(i));
}
Res = NPN;
break;
}
default:
// TODO: Can handle more cases here.
llvm_unreachable("Unreachable!");
break;
}
Res->takeName(I);
return InsertNewInstBefore(Res, *I);
}
/// This function is a wrapper around CastInst::isEliminableCastPair. It
/// simply extracts arguments and returns what that function returns.
static Instruction::CastOps
isEliminableCastPair(
const CastInst *CI, ///< The first cast instruction
unsigned opcode, ///< The opcode of the second cast instruction
const Type *DstTy, ///< The target type for the second cast instruction
TargetData *TD ///< The target data for pointer size
) {
const Type *SrcTy = CI->getOperand(0)->getType(); // A from above
const Type *MidTy = CI->getType(); // B from above
// Get the opcodes of the two Cast instructions
Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
Instruction::CastOps secondOp = Instruction::CastOps(opcode);
unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
DstTy,
TD ? TD->getIntPtrType(CI->getContext()) : 0);
// We don't want to form an inttoptr or ptrtoint that converts to an integer
// type that differs from the pointer size.
if ((Res == Instruction::IntToPtr &&
(!TD || SrcTy != TD->getIntPtrType(CI->getContext()))) ||
(Res == Instruction::PtrToInt &&
(!TD || DstTy != TD->getIntPtrType(CI->getContext()))))
Res = 0;
return Instruction::CastOps(Res);
}
/// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
/// in any code being generated. It does not require codegen if V is simple
/// enough or if the cast can be folded into other casts.
bool InstCombiner::ValueRequiresCast(Instruction::CastOps opcode,const Value *V,
const Type *Ty) {
if (V->getType() == Ty || isa<Constant>(V)) return false;
// If this is another cast that can be eliminated, it isn't codegen either.
if (const CastInst *CI = dyn_cast<CastInst>(V))
if (isEliminableCastPair(CI, opcode, Ty, TD))
return false;
return true;
}
/// @brief Implement the transforms common to all CastInst visitors.
Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
Value *Src = CI.getOperand(0);
// Many cases of "cast of a cast" are eliminable. If it's eliminable we just
// eliminate it now.
if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
if (Instruction::CastOps opc =
isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
// The first cast (CSrc) is eliminable so we need to fix up or replace
// the second cast (CI). CSrc will then have a good chance of being dead.
return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
}
}
// If we are casting a select then fold the cast into the select
if (SelectInst *SI = dyn_cast<SelectInst>(Src))
if (Instruction *NV = FoldOpIntoSelect(CI, SI))
return NV;
// If we are casting a PHI then fold the cast into the PHI
if (isa<PHINode>(Src)) {
// We don't do this if this would create a PHI node with an illegal type if
// it is currently legal.
if (!isa<IntegerType>(Src->getType()) ||
!isa<IntegerType>(CI.getType()) ||
ShouldChangeType(CI.getType(), Src->getType()))
if (Instruction *NV = FoldOpIntoPhi(CI))
return NV;
}
return 0;
}
/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
Value *Src = CI.getOperand(0);
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
// If casting the result of a getelementptr instruction with no offset, turn
// this into a cast of the original pointer!
if (GEP->hasAllZeroIndices()) {
// Changing the cast operand is usually not a good idea but it is safe
// here because the pointer operand is being replaced with another
// pointer operand so the opcode doesn't need to change.
Worklist.Add(GEP);
CI.setOperand(0, GEP->getOperand(0));
return &CI;
}
// If the GEP has a single use, and the base pointer is a bitcast, and the
// GEP computes a constant offset, see if we can convert these three
// instructions into fewer. This typically happens with unions and other
// non-type-safe code.
if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0))) {
if (GEP->hasAllConstantIndices()) {
// We are guaranteed to get a constant from EmitGEPOffset.
ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP));
int64_t Offset = OffsetV->getSExtValue();
// Get the base pointer input of the bitcast, and the type it points to.
Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
const Type *GEPIdxTy =
cast<PointerType>(OrigBase->getType())->getElementType();
SmallVector<Value*, 8> NewIndices;
if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) {
// If we were able to index down into an element, create the GEP
// and bitcast the result. This eliminates one bitcast, potentially
// two.
Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
Builder->CreateInBoundsGEP(OrigBase,
NewIndices.begin(), NewIndices.end()) :
Builder->CreateGEP(OrigBase, NewIndices.begin(), NewIndices.end());
NGEP->takeName(GEP);
if (isa<BitCastInst>(CI))
return new BitCastInst(NGEP, CI.getType());
assert(isa<PtrToIntInst>(CI));
return new PtrToIntInst(NGEP, CI.getType());
}
}
}
}
return commonCastTransforms(CI);
}
/// commonIntCastTransforms - This function implements the common transforms
/// for trunc, zext, and sext.
Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
if (Instruction *Result = commonCastTransforms(CI))
return Result;
Value *Src = CI.getOperand(0);
const Type *SrcTy = Src->getType();
const Type *DestTy = CI.getType();
uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
uint32_t DestBitSize = DestTy->getScalarSizeInBits();
// See if we can simplify any instructions used by the LHS whose sole
// purpose is to compute bits we don't care about.
if (SimplifyDemandedInstructionBits(CI))
return &CI;
// If the source isn't an instruction or has more than one use then we
// can't do anything more.
Instruction *SrcI = dyn_cast<Instruction>(Src);
if (!SrcI || !Src->hasOneUse())
return 0;
// Attempt to propagate the cast into the instruction for int->int casts.
int NumCastsRemoved = 0;
// Only do this if the dest type is a simple type, don't convert the
// expression tree to something weird like i93 unless the source is also
// strange.
if ((isa<VectorType>(DestTy) ||
ShouldChangeType(SrcI->getType(), DestTy)) &&
CanEvaluateInDifferentType(SrcI, DestTy,
CI.getOpcode(), NumCastsRemoved)) {
// If this cast is a truncate, evaluting in a different type always
// eliminates the cast, so it is always a win. If this is a zero-extension,
// we need to do an AND to maintain the clear top-part of the computation,
// so we require that the input have eliminated at least one cast. If this
// is a sign extension, we insert two new casts (to do the extension) so we
// require that two casts have been eliminated.
bool DoXForm = false;
bool JustReplace = false;
switch (CI.getOpcode()) {
default:
// All the others use floating point so we shouldn't actually
// get here because of the check above.
llvm_unreachable("Unknown cast type");
case Instruction::Trunc:
DoXForm = true;
break;
case Instruction::ZExt: {
DoXForm = NumCastsRemoved >= 1;
if (!DoXForm && 0) {
// If it's unnecessary to issue an AND to clear the high bits, it's
// always profitable to do this xform.
Value *TryRes = EvaluateInDifferentType(SrcI, DestTy, false);
APInt Mask(APInt::getBitsSet(DestBitSize, SrcBitSize, DestBitSize));
if (MaskedValueIsZero(TryRes, Mask))
return ReplaceInstUsesWith(CI, TryRes);
if (Instruction *TryI = dyn_cast<Instruction>(TryRes))
if (TryI->use_empty())
EraseInstFromFunction(*TryI);
}
break;
}
case Instruction::SExt: {
DoXForm = NumCastsRemoved >= 2;
if (!DoXForm && !isa<TruncInst>(SrcI) && 0) {
// If we do not have to emit the truncate + sext pair, then it's always
// profitable to do this xform.
//
// It's not safe to eliminate the trunc + sext pair if one of the
// eliminated cast is a truncate. e.g.
// t2 = trunc i32 t1 to i16
// t3 = sext i16 t2 to i32
// !=
// i32 t1
Value *TryRes = EvaluateInDifferentType(SrcI, DestTy, true);
unsigned NumSignBits = ComputeNumSignBits(TryRes);
if (NumSignBits > (DestBitSize - SrcBitSize))
return ReplaceInstUsesWith(CI, TryRes);
if (Instruction *TryI = dyn_cast<Instruction>(TryRes))
if (TryI->use_empty())
EraseInstFromFunction(*TryI);
}
break;
}
}
if (DoXForm) {
DEBUG(errs() << "ICE: EvaluateInDifferentType converting expression type"
" to avoid cast: " << CI);
Value *Res = EvaluateInDifferentType(SrcI, DestTy,
CI.getOpcode() == Instruction::SExt);
if (JustReplace)
// Just replace this cast with the result.
return ReplaceInstUsesWith(CI, Res);
assert(Res->getType() == DestTy);
switch (CI.getOpcode()) {
default: llvm_unreachable("Unknown cast type!");
case Instruction::Trunc:
// Just replace this cast with the result.
return ReplaceInstUsesWith(CI, Res);
case Instruction::ZExt: {
assert(SrcBitSize < DestBitSize && "Not a zext?");
// If the high bits are already zero, just replace this cast with the
// result.
APInt Mask(APInt::getBitsSet(DestBitSize, SrcBitSize, DestBitSize));
if (MaskedValueIsZero(Res, Mask))
return ReplaceInstUsesWith(CI, Res);
// We need to emit an AND to clear the high bits.
Constant *C = ConstantInt::get(CI.getContext(),
APInt::getLowBitsSet(DestBitSize, SrcBitSize));
return BinaryOperator::CreateAnd(Res, C);
}
case Instruction::SExt: {
// If the high bits are already filled with sign bit, just replace this
// cast with the result.
unsigned NumSignBits = ComputeNumSignBits(Res);
if (NumSignBits > (DestBitSize - SrcBitSize))
return ReplaceInstUsesWith(CI, Res);
// We need to emit a cast to truncate, then a cast to sext.
return new SExtInst(Builder->CreateTrunc(Res, Src->getType()), DestTy);
}
}
}
}
Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
switch (SrcI->getOpcode()) {
case Instruction::Add:
case Instruction::Mul:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
// If we are discarding information, rewrite.
if (DestBitSize < SrcBitSize && DestBitSize != 1) {
// Don't insert two casts unless at least one can be eliminated.
if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy) ||
!ValueRequiresCast(CI.getOpcode(), Op0, DestTy)) {
Value *Op0c = Builder->CreateTrunc(Op0, DestTy, Op0->getName());
Value *Op1c = Builder->CreateTrunc(Op1, DestTy, Op1->getName());
return BinaryOperator::Create(
cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
}
}
// cast (xor bool X, true) to int --> xor (cast bool X to int), 1
if (isa<ZExtInst>(CI) && SrcBitSize == 1 &&
SrcI->getOpcode() == Instruction::Xor &&
Op1 == ConstantInt::getTrue(CI.getContext()) &&
(!Op0->hasOneUse() || !isa<CmpInst>(Op0))) {
Value *New = Builder->CreateZExt(Op0, DestTy, Op0->getName());
return BinaryOperator::CreateXor(New,
ConstantInt::get(CI.getType(), 1));
}
break;
case Instruction::Shl: {
// Canonicalize trunc inside shl, if we can.
ConstantInt *CI = dyn_cast<ConstantInt>(Op1);
if (CI && DestBitSize < SrcBitSize &&
CI->getLimitedValue(DestBitSize) < DestBitSize) {
Value *Op0c = Builder->CreateTrunc(Op0, DestTy, Op0->getName());
Value *Op1c = Builder->CreateTrunc(Op1, DestTy, Op1->getName());
return BinaryOperator::CreateShl(Op0c, Op1c);
}
break;
}
}
return 0;
}
Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
if (Instruction *Result = commonIntCastTransforms(CI))
return Result;
Value *Src = CI.getOperand(0);
const Type *Ty = CI.getType();
uint32_t DestBitWidth = Ty->getScalarSizeInBits();
uint32_t SrcBitWidth = Src->getType()->getScalarSizeInBits();
// Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0)
if (DestBitWidth == 1) {
Constant *One = ConstantInt::get(Src->getType(), 1);
Src = Builder->CreateAnd(Src, One, "tmp");
Value *Zero = Constant::getNullValue(Src->getType());
return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
}
// Optimize trunc(lshr(), c) to pull the shift through the truncate.
ConstantInt *ShAmtV = 0;
Value *ShiftOp = 0;
if (Src->hasOneUse() &&
match(Src, m_LShr(m_Value(ShiftOp), m_ConstantInt(ShAmtV)))) {
uint32_t ShAmt = ShAmtV->getLimitedValue(SrcBitWidth);
// Get a mask for the bits shifting in.
APInt Mask(APInt::getLowBitsSet(SrcBitWidth, ShAmt).shl(DestBitWidth));
if (MaskedValueIsZero(ShiftOp, Mask)) {
if (ShAmt >= DestBitWidth) // All zeros.
return ReplaceInstUsesWith(CI, Constant::getNullValue(Ty));
// Okay, we can shrink this. Truncate the input, then return a new
// shift.
Value *V1 = Builder->CreateTrunc(ShiftOp, Ty, ShiftOp->getName());
Value *V2 = ConstantExpr::getTrunc(ShAmtV, Ty);
return BinaryOperator::CreateLShr(V1, V2);
}
}
return 0;
}
/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
/// in order to eliminate the icmp.
Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
bool DoXform) {
// If we are just checking for a icmp eq of a single bit and zext'ing it
// to an integer, then shift the bit to the appropriate place and then
// cast to integer to avoid the comparison.
if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
const APInt &Op1CV = Op1C->getValue();
// zext (x <s 0) to i32 --> x>>u31 true if signbit set.
// zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
(ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
if (!DoXform) return ICI;
Value *In = ICI->getOperand(0);
Value *Sh = ConstantInt::get(In->getType(),
In->getType()->getScalarSizeInBits()-1);
In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
if (In->getType() != CI.getType())
In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/, "tmp");
if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
Constant *One = ConstantInt::get(In->getType(), 1);
In = Builder->CreateXor(In, One, In->getName()+".not");
}
return ReplaceInstUsesWith(CI, In);
}
// zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
// zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
// zext (X == 1) to i32 --> X iff X has only the low bit set.
// zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
// zext (X != 0) to i32 --> X iff X has only the low bit set.
// zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
// zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
// zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
// This only works for EQ and NE
ICI->isEquality()) {
// If Op1C some other power of two, convert:
uint32_t BitWidth = Op1C->getType()->getBitWidth();
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
APInt TypeMask(APInt::getAllOnesValue(BitWidth));
ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
APInt KnownZeroMask(~KnownZero);
if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
if (!DoXform) return ICI;
bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
// (X&4) == 2 --> false
// (X&4) != 2 --> true
Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
isNE);
Res = ConstantExpr::getZExt(Res, CI.getType());
return ReplaceInstUsesWith(CI, Res);
}
uint32_t ShiftAmt = KnownZeroMask.logBase2();
Value *In = ICI->getOperand(0);
if (ShiftAmt) {
// Perform a logical shr by shiftamt.
// Insert the shift to put the result in the low bit.
In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
In->getName()+".lobit");
}
if ((Op1CV != 0) == isNE) { // Toggle the low bit.
Constant *One = ConstantInt::get(In->getType(), 1);
In = Builder->CreateXor(In, One, "tmp");
}
if (CI.getType() == In->getType())
return ReplaceInstUsesWith(CI, In);
else
return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
}
}
}
// icmp ne A, B is equal to xor A, B when A and B only really have one bit.
// It is also profitable to transform icmp eq into not(xor(A, B)) because that
// may lead to additional simplifications.
if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
if (const IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
uint32_t BitWidth = ITy->getBitWidth();
Value *LHS = ICI->getOperand(0);
Value *RHS = ICI->getOperand(1);
APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
APInt TypeMask(APInt::getAllOnesValue(BitWidth));
ComputeMaskedBits(LHS, TypeMask, KnownZeroLHS, KnownOneLHS);
ComputeMaskedBits(RHS, TypeMask, KnownZeroRHS, KnownOneRHS);
if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
APInt KnownBits = KnownZeroLHS | KnownOneLHS;
APInt UnknownBit = ~KnownBits;
if (UnknownBit.countPopulation() == 1) {
if (!DoXform) return ICI;
Value *Result = Builder->CreateXor(LHS, RHS);
// Mask off any bits that are set and won't be shifted away.
if (KnownOneLHS.uge(UnknownBit))
Result = Builder->CreateAnd(Result,
ConstantInt::get(ITy, UnknownBit));
// Shift the bit we're testing down to the lsb.
Result = Builder->CreateLShr(
Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
Result->takeName(ICI);
return ReplaceInstUsesWith(CI, Result);
}
}
}
}
return 0;
}
Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
// If one of the common conversion will work, do it.
if (Instruction *Result = commonIntCastTransforms(CI))
return Result;
Value *Src = CI.getOperand(0);
// If this is a TRUNC followed by a ZEXT then we are dealing with integral
// types and if the sizes are just right we can convert this into a logical
// 'and' which will be much cheaper than the pair of casts.
if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast
// Get the sizes of the types involved. We know that the intermediate type
// will be smaller than A or C, but don't know the relation between A and C.
Value *A = CSrc->getOperand(0);
unsigned SrcSize = A->getType()->getScalarSizeInBits();
unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
unsigned DstSize = CI.getType()->getScalarSizeInBits();
// If we're actually extending zero bits, then if
// SrcSize < DstSize: zext(a & mask)
// SrcSize == DstSize: a & mask
// SrcSize > DstSize: trunc(a) & mask
if (SrcSize < DstSize) {
APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
return new ZExtInst(And, CI.getType());
}
if (SrcSize == DstSize) {
APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
AndValue));
}
if (SrcSize > DstSize) {
Value *Trunc = Builder->CreateTrunc(A, CI.getType(), "tmp");
APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
return BinaryOperator::CreateAnd(Trunc,
ConstantInt::get(Trunc->getType(),
AndValue));
}
}
if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
return transformZExtICmp(ICI, CI);
BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
if (SrcI && SrcI->getOpcode() == Instruction::Or) {
// zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
// of the (zext icmp) will be transformed.
ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
(transformZExtICmp(LHS, CI, false) ||
transformZExtICmp(RHS, CI, false))) {
Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
return BinaryOperator::Create(Instruction::Or, LCast, RCast);
}
}
// zext(trunc(t) & C) -> (t & zext(C)).
if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse())
if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) {
Value *TI0 = TI->getOperand(0);
if (TI0->getType() == CI.getType())
return
BinaryOperator::CreateAnd(TI0,
ConstantExpr::getZExt(C, CI.getType()));
}
// zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)).
if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse())
if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0)))
if (And->getOpcode() == Instruction::And && And->hasOneUse() &&
And->getOperand(1) == C)
if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) {
Value *TI0 = TI->getOperand(0);
if (TI0->getType() == CI.getType()) {
Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
Value *NewAnd = Builder->CreateAnd(TI0, ZC, "tmp");
return BinaryOperator::CreateXor(NewAnd, ZC);
}
}
return 0;
}
Instruction *InstCombiner::visitSExt(SExtInst &CI) {
if (Instruction *I = commonIntCastTransforms(CI))
return I;
Value *Src = CI.getOperand(0);
// Canonicalize sign-extend from i1 to a select.
if (Src->getType() == Type::getInt1Ty(CI.getContext()))
return SelectInst::Create(Src,
Constant::getAllOnesValue(CI.getType()),
Constant::getNullValue(CI.getType()));
// See if the value being truncated is already sign extended. If so, just
// eliminate the trunc/sext pair.
if (Operator::getOpcode(Src) == Instruction::Trunc) {
Value *Op = cast<User>(Src)->getOperand(0);
unsigned OpBits = Op->getType()->getScalarSizeInBits();
unsigned MidBits = Src->getType()->getScalarSizeInBits();
unsigned DestBits = CI.getType()->getScalarSizeInBits();
unsigned NumSignBits = ComputeNumSignBits(Op);
if (OpBits == DestBits) {
// Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
// bits, it is already ready.
if (NumSignBits > DestBits-MidBits)
return ReplaceInstUsesWith(CI, Op);
} else if (OpBits < DestBits) {
// Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
// bits, just sext from i32.
if (NumSignBits > OpBits-MidBits)
return new SExtInst(Op, CI.getType(), "tmp");
} else {
// Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
// bits, just truncate to i32.
if (NumSignBits > OpBits-MidBits)
return new TruncInst(Op, CI.getType(), "tmp");
}
}
// If the input is a shl/ashr pair of a same constant, then this is a sign
// extension from a smaller value. If we could trust arbitrary bitwidth
// integers, we could turn this into a truncate to the smaller bit and then
// use a sext for the whole extension. Since we don't, look deeper and check
// for a truncate. If the source and dest are the same type, eliminate the
// trunc and extend and just do shifts. For example, turn:
// %a = trunc i32 %i to i8
// %b = shl i8 %a, 6
// %c = ashr i8 %b, 6
// %d = sext i8 %c to i32
// into:
// %a = shl i32 %i, 30
// %d = ashr i32 %a, 30
Value *A = 0;
ConstantInt *BA = 0, *CA = 0;
if (match(Src, m_AShr(m_Shl(m_Value(A), m_ConstantInt(BA)),
m_ConstantInt(CA))) &&
BA == CA && isa<TruncInst>(A)) {
Value *I = cast<TruncInst>(A)->getOperand(0);
if (I->getType() == CI.getType()) {
unsigned MidSize = Src->getType()->getScalarSizeInBits();
unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
I = Builder->CreateShl(I, ShAmtV, CI.getName());
return BinaryOperator::CreateAShr(I, ShAmtV);
}
}
return 0;
}
/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
/// in the specified FP type without changing its value.
static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
bool losesInfo;
APFloat F = CFP->getValueAPF();
(void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
if (!losesInfo)
return ConstantFP::get(CFP->getContext(), F);
return 0;
}
/// LookThroughFPExtensions - If this is an fp extension instruction, look
/// through it until we get the source value.
static Value *LookThroughFPExtensions(Value *V) {
if (Instruction *I = dyn_cast<Instruction>(V))
if (I->getOpcode() == Instruction::FPExt)
return LookThroughFPExtensions(I->getOperand(0));
// If this value is a constant, return the constant in the smallest FP type
// that can accurately represent it. This allows us to turn
// (float)((double)X+2.0) into x+2.0f.
if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
return V; // No constant folding of this.
// See if the value can be truncated to float and then reextended.
if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
return V;
if (CFP->getType() == Type::getDoubleTy(V->getContext()))
return V; // Won't shrink.
if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
return V;
// Don't try to shrink to various long double types.
}
return V;
}
Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
if (Instruction *I = commonCastTransforms(CI))
return I;
// If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are
// smaller than the destination type, we can eliminate the truncate by doing
// the add as the smaller type. This applies to fadd/fsub/fmul/fdiv as well
// as many builtins (sqrt, etc).
BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
if (OpI && OpI->hasOneUse()) {
switch (OpI->getOpcode()) {
default: break;
case Instruction::FAdd:
case Instruction::FSub:
case Instruction::FMul:
case Instruction::FDiv:
case Instruction::FRem:
const Type *SrcTy = OpI->getType();
Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
if (LHSTrunc->getType() != SrcTy &&
RHSTrunc->getType() != SrcTy) {
unsigned DstSize = CI.getType()->getScalarSizeInBits();
// If the source types were both smaller than the destination type of
// the cast, do this xform.
if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize &&
RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) {
LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType());
RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType());
return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
}
}
break;
}
}
return 0;
}
Instruction *InstCombiner::visitFPExt(CastInst &CI) {
return commonCastTransforms(CI);
}
Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
if (OpI == 0)
return commonCastTransforms(FI);
// fptoui(uitofp(X)) --> X
// fptoui(sitofp(X)) --> X
// This is safe if the intermediate type has enough bits in its mantissa to
// accurately represent all values of X. For example, do not do this with
// i64->float->i64. This is also safe for sitofp case, because any negative
// 'X' value would cause an undefined result for the fptoui.
if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
OpI->getOperand(0)->getType() == FI.getType() &&
(int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
OpI->getType()->getFPMantissaWidth())
return ReplaceInstUsesWith(FI, OpI->getOperand(0));
return commonCastTransforms(FI);
}
Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
if (OpI == 0)
return commonCastTransforms(FI);
// fptosi(sitofp(X)) --> X
// fptosi(uitofp(X)) --> X
// This is safe if the intermediate type has enough bits in its mantissa to
// accurately represent all values of X. For example, do not do this with
// i64->float->i64. This is also safe for sitofp case, because any negative
// 'X' value would cause an undefined result for the fptoui.
if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
OpI->getOperand(0)->getType() == FI.getType() &&
(int)FI.getType()->getScalarSizeInBits() <=
OpI->getType()->getFPMantissaWidth())
return ReplaceInstUsesWith(FI, OpI->getOperand(0));
return commonCastTransforms(FI);
}
Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
return commonCastTransforms(CI);
}
Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
return commonCastTransforms(CI);
}
Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
// If the destination integer type is smaller than the intptr_t type for
// this target, do a ptrtoint to intptr_t then do a trunc. This allows the
// trunc to be exposed to other transforms. Don't do this for extending
// ptrtoint's, because we don't know if the target sign or zero extends its
// pointers.
if (TD &&
CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) {
Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
TD->getIntPtrType(CI.getContext()),
"tmp");
return new TruncInst(P, CI.getType());
}
return commonPointerCastTransforms(CI);
}
Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
// If the source integer type is larger than the intptr_t type for
// this target, do a trunc to the intptr_t type, then inttoptr of it. This
// allows the trunc to be exposed to other transforms. Don't do this for
// extending inttoptr's, because we don't know if the target sign or zero
// extends to pointers.
if (TD && CI.getOperand(0)->getType()->getScalarSizeInBits() >
TD->getPointerSizeInBits()) {
Value *P = Builder->CreateTrunc(CI.getOperand(0),
TD->getIntPtrType(CI.getContext()), "tmp");
return new IntToPtrInst(P, CI.getType());
}
if (Instruction *I = commonCastTransforms(CI))
return I;
return 0;
}
Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
// If the operands are integer typed then apply the integer transforms,
// otherwise just apply the common ones.
Value *Src = CI.getOperand(0);
const Type *SrcTy = Src->getType();
const Type *DestTy = CI.getType();
if (isa<PointerType>(SrcTy)) {
if (Instruction *I = commonPointerCastTransforms(CI))
return I;
} else {
if (Instruction *Result = commonCastTransforms(CI))
return Result;
}
// Get rid of casts from one type to the same type. These are useless and can
// be replaced by the operand.
if (DestTy == Src->getType())
return ReplaceInstUsesWith(CI, Src);
if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
const PointerType *SrcPTy = cast<PointerType>(SrcTy);
const Type *DstElTy = DstPTy->getElementType();
const Type *SrcElTy = SrcPTy->getElementType();
// If the address spaces don't match, don't eliminate the bitcast, which is
// required for changing types.
if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
return 0;
// If we are casting a alloca to a pointer to a type of the same
// size, rewrite the allocation instruction to allocate the "right" type.
// There is no need to modify malloc calls because it is their bitcast that
// needs to be cleaned up.
if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
return V;
// If the source and destination are pointers, and this cast is equivalent
// to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
// This can enhance SROA and other transforms that want type-safe pointers.
Constant *ZeroUInt =
Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
unsigned NumZeros = 0;
while (SrcElTy != DstElTy &&
isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) &&
SrcElTy->getNumContainedTypes() /* not "{}" */) {
SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
++NumZeros;
}
// If we found a path from the src to dest, create the getelementptr now.
if (SrcElTy == DstElTy) {
SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
return GetElementPtrInst::CreateInBounds(Src, Idxs.begin(), Idxs.end(),"",
((Instruction*) NULL));
}
}
if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
if (DestVTy->getNumElements() == 1) {
if (!isa<VectorType>(SrcTy)) {
Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
}
// FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
}
}
if (const VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
if (SrcVTy->getNumElements() == 1) {
if (!isa<VectorType>(DestTy)) {
Value *Elem =
Builder->CreateExtractElement(Src,
Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
return CastInst::Create(Instruction::BitCast, Elem, DestTy);
}
}
}
if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
if (SVI->hasOneUse()) {
// Okay, we have (bitconvert (shuffle ..)). Check to see if this is
// a bitconvert to a vector with the same # elts.
if (isa<VectorType>(DestTy) &&
cast<VectorType>(DestTy)->getNumElements() ==
SVI->getType()->getNumElements() &&
SVI->getType()->getNumElements() ==
cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
CastInst *Tmp;
// If either of the operands is a cast from CI.getType(), then
// evaluating the shuffle in the casted destination's type will allow
// us to eliminate at least one cast.
if (((Tmp = dyn_cast<CastInst>(SVI->getOperand(0))) &&
Tmp->getOperand(0)->getType() == DestTy) ||
((Tmp = dyn_cast<CastInst>(SVI->getOperand(1))) &&
Tmp->getOperand(0)->getType() == DestTy)) {
Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
// Return a new shuffle vector. Use the same element ID's, as we
// know the vector types match #elts.
return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
}
}
}
}
return 0;
}