llvm/lib/Support/Host.cpp

308 lines
11 KiB
C++
Raw Normal View History

//===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This header file implements the operating system Host concept.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/Host.h"
#include "llvm/Config/config.h"
#include <string.h>
// Include the platform-specific parts of this class.
#ifdef LLVM_ON_UNIX
#include "Unix/Host.inc"
#endif
#ifdef LLVM_ON_WIN32
#include "Windows/Host.inc"
#endif
#ifdef _MSC_VER
#include <intrin.h>
#endif
//===----------------------------------------------------------------------===//
//
// Implementations of the CPU detection routines
//
//===----------------------------------------------------------------------===//
using namespace llvm;
#if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)\
|| defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
/// GetX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in the
/// specified arguments. If we can't run cpuid on the host, return true.
static bool GetX86CpuIDAndInfo(unsigned value, unsigned *rEAX,
unsigned *rEBX, unsigned *rECX, unsigned *rEDX) {
#if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
#if defined(__GNUC__)
// gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
asm ("movq\t%%rbx, %%rsi\n\t"
"cpuid\n\t"
"xchgq\t%%rbx, %%rsi\n\t"
: "=a" (*rEAX),
"=S" (*rEBX),
"=c" (*rECX),
"=d" (*rEDX)
: "a" (value));
return false;
#elif defined(_MSC_VER)
int registers[4];
__cpuid(registers, value);
*rEAX = registers[0];
*rEBX = registers[1];
*rECX = registers[2];
*rEDX = registers[3];
return false;
#endif
#elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
#if defined(__GNUC__)
asm ("movl\t%%ebx, %%esi\n\t"
"cpuid\n\t"
"xchgl\t%%ebx, %%esi\n\t"
: "=a" (*rEAX),
"=S" (*rEBX),
"=c" (*rECX),
"=d" (*rEDX)
: "a" (value));
return false;
#elif defined(_MSC_VER)
__asm {
mov eax,value
cpuid
mov esi,rEAX
mov dword ptr [esi],eax
mov esi,rEBX
mov dword ptr [esi],ebx
mov esi,rECX
mov dword ptr [esi],ecx
mov esi,rEDX
mov dword ptr [esi],edx
}
return false;
#endif
#endif
return true;
}
static void DetectX86FamilyModel(unsigned EAX, unsigned &Family,
unsigned &Model) {
Family = (EAX >> 8) & 0xf; // Bits 8 - 11
Model = (EAX >> 4) & 0xf; // Bits 4 - 7
if (Family == 6 || Family == 0xf) {
if (Family == 0xf)
// Examine extended family ID if family ID is F.
Family += (EAX >> 20) & 0xff; // Bits 20 - 27
// Examine extended model ID if family ID is 6 or F.
Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
}
}
std::string sys::getHostCPUName() {
unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
if (GetX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX))
return "generic";
unsigned Family = 0;
unsigned Model = 0;
DetectX86FamilyModel(EAX, Family, Model);
bool HasSSE3 = (ECX & 0x1);
GetX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
bool Em64T = (EDX >> 29) & 0x1;
union {
unsigned u[3];
char c[12];
} text;
GetX86CpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1);
if (memcmp(text.c, "GenuineIntel", 12) == 0) {
switch (Family) {
case 3:
return "i386";
case 4:
switch (Model) {
case 0: // Intel486 DX processors
case 1: // Intel486 DX processors
case 2: // Intel486 SX processors
case 3: // Intel487 processors, IntelDX2 OverDrive processors,
// IntelDX2 processors
case 4: // Intel486 SL processor
case 5: // IntelSX2 processors
case 7: // Write-Back Enhanced IntelDX2 processors
case 8: // IntelDX4 OverDrive processors, IntelDX4 processors
default: return "i486";
}
case 5:
switch (Model) {
case 1: // Pentium OverDrive processor for Pentium processor (60, 66),
// Pentium processors (60, 66)
case 2: // Pentium OverDrive processor for Pentium processor (75, 90,
// 100, 120, 133), Pentium processors (75, 90, 100, 120, 133,
// 150, 166, 200)
case 3: // Pentium OverDrive processors for Intel486 processor-based
// systems
return "pentium";
case 4: // Pentium OverDrive processor with MMX technology for Pentium
// processor (75, 90, 100, 120, 133), Pentium processor with
// MMX technology (166, 200)
return "pentium-mmx";
default: return "pentium";
}
case 6:
switch (Model) {
case 1: // Pentium Pro processor
return "pentiumpro";
case 3: // Intel Pentium II OverDrive processor, Pentium II processor,
// model 03
case 5: // Pentium II processor, model 05, Pentium II Xeon processor,
// model 05, and Intel Celeron processor, model 05
case 6: // Celeron processor, model 06
return "pentium2";
case 7: // Pentium III processor, model 07, and Pentium III Xeon
// processor, model 07
case 8: // Pentium III processor, model 08, Pentium III Xeon processor,
// model 08, and Celeron processor, model 08
case 10: // Pentium III Xeon processor, model 0Ah
case 11: // Pentium III processor, model 0Bh
return "pentium3";
case 9: // Intel Pentium M processor, Intel Celeron M processor model 09.
case 13: // Intel Pentium M processor, Intel Celeron M processor, model
// 0Dh. All processors are manufactured using the 90 nm process.
return "pentium-m";
case 14: // Intel Core Duo processor, Intel Core Solo processor, model
// 0Eh. All processors are manufactured using the 65 nm process.
return "yonah";
case 15: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile
// processor, Intel Core 2 Quad processor, Intel Core 2 Quad
// mobile processor, Intel Core 2 Extreme processor, Intel
// Pentium Dual-Core processor, Intel Xeon processor, model
// 0Fh. All processors are manufactured using the 65 nm process.
case 22: // Intel Celeron processor model 16h. All processors are
// manufactured using the 65 nm process
return "core2";
case 21: // Intel EP80579 Integrated Processor and Intel EP80579
// Integrated Processor with Intel QuickAssist Technology
return "i686"; // FIXME: ???
case 23: // Intel Core 2 Extreme processor, Intel Xeon processor, model
// 17h. All processors are manufactured using the 45 nm process.
//
// 45nm: Penryn , Wolfdale, Yorkfield (XE)
return "penryn";
case 26: // Intel Core i7 processor and Intel Xeon processor. All
// processors are manufactured using the 45 nm process.
case 29: // Intel Xeon processor MP. All processors are manufactured using
// the 45 nm process.
case 30: // Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz.
// As found in a Summer 2010 model iMac.
case 37: // Intel Core i7, laptop version.
return "corei7";
case 28: // Intel Atom processor. All processors are manufactured using
// the 45 nm process
return "atom";
default: return "i686";
}
case 15: {
switch (Model) {
case 0: // Pentium 4 processor, Intel Xeon processor. All processors are
// model 00h and manufactured using the 0.18 micron process.
case 1: // Pentium 4 processor, Intel Xeon processor, Intel Xeon
// processor MP, and Intel Celeron processor. All processors are
// model 01h and manufactured using the 0.18 micron process.
case 2: // Pentium 4 processor, Mobile Intel Pentium 4 processor - M,
// Intel Xeon processor, Intel Xeon processor MP, Intel Celeron
// processor, and Mobile Intel Celeron processor. All processors
// are model 02h and manufactured using the 0.13 micron process.
return (Em64T) ? "x86-64" : "pentium4";
case 3: // Pentium 4 processor, Intel Xeon processor, Intel Celeron D
// processor. All processors are model 03h and manufactured using
// the 90 nm process.
case 4: // Pentium 4 processor, Pentium 4 processor Extreme Edition,
// Pentium D processor, Intel Xeon processor, Intel Xeon
// processor MP, Intel Celeron D processor. All processors are
// model 04h and manufactured using the 90 nm process.
case 6: // Pentium 4 processor, Pentium D processor, Pentium processor
// Extreme Edition, Intel Xeon processor, Intel Xeon processor
// MP, Intel Celeron D processor. All processors are model 06h
// and manufactured using the 65 nm process.
return (Em64T) ? "nocona" : "prescott";
default:
return (Em64T) ? "x86-64" : "pentium4";
}
}
default:
return "generic";
}
} else if (memcmp(text.c, "AuthenticAMD", 12) == 0) {
// FIXME: this poorly matches the generated SubtargetFeatureKV table. There
// appears to be no way to generate the wide variety of AMD-specific targets
// from the information returned from CPUID.
switch (Family) {
case 4:
return "i486";
case 5:
switch (Model) {
case 6:
case 7: return "k6";
case 8: return "k6-2";
case 9:
case 13: return "k6-3";
default: return "pentium";
}
case 6:
switch (Model) {
case 4: return "athlon-tbird";
case 6:
case 7:
case 8: return "athlon-mp";
case 10: return "athlon-xp";
default: return "athlon";
}
case 15:
if (HasSSE3)
return "k8-sse3";
switch (Model) {
case 1: return "opteron";
case 5: return "athlon-fx"; // also opteron
default: return "athlon64";
}
case 16:
return "amdfam10";
default:
return "generic";
}
}
return "generic";
}
#else
std::string sys::getHostCPUName() {
return "generic";
}
#endif
bool sys::getHostCPUFeatures(StringMap<bool> &Features){
return false;
}