PR14055: Implement support for sub-vector operations in SROA.

Now if we can transform an alloca into a single vector value, but it has
subvector, non-element accesses, we form the appropriate shufflevectors
to allow SROA to proceed. This fixes PR14055 which pointed out a very
common pattern that SROA couldn't handle -- mixed vec3 and vec4
operations on a single alloca.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168418 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chandler Carruth 2012-11-21 08:16:30 +00:00
parent 9648782552
commit 07df765e65
2 changed files with 150 additions and 23 deletions

View File

@ -2116,12 +2116,11 @@ static bool isVectorPromotionViable(const DataLayout &TD,
EndIndex > Ty->getNumElements())
return false;
// FIXME: We should build shuffle vector instructions to handle
// non-element-sized accesses. See PR14055 for an example of where this
// matters.
if ((EndOffset - BeginOffset) != ElementSize &&
(EndOffset - BeginOffset) != VecSize)
return false;
assert(EndIndex > BeginIndex && "Empty vector!");
uint64_t NumElements = EndIndex - BeginIndex;
Type *PartitionTy
= (NumElements == 1) ? Ty->getElementType()
: VectorType::get(Ty->getElementType(), NumElements);
if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I->U->getUser())) {
if (MI->isVolatile())
@ -2138,9 +2137,13 @@ static bool isVectorPromotionViable(const DataLayout &TD,
} else if (LoadInst *LI = dyn_cast<LoadInst>(I->U->getUser())) {
if (LI->isVolatile())
return false;
if (!canConvertValue(TD, PartitionTy, LI->getType()))
return false;
} else if (StoreInst *SI = dyn_cast<StoreInst>(I->U->getUser())) {
if (SI->isVolatile())
return false;
if (!canConvertValue(TD, SI->getValueOperand()->getType(), PartitionTy))
return false;
} else {
return false;
}
@ -2448,13 +2451,13 @@ private:
return getOffsetTypeAlign(Ty, BeginOffset - NewAllocaBeginOffset);
}
ConstantInt *getIndex(IRBuilder<> &IRB, uint64_t Offset) {
unsigned getIndex(uint64_t Offset) {
assert(VecTy && "Can only call getIndex when rewriting a vector");
uint64_t RelOffset = Offset - NewAllocaBeginOffset;
assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
uint32_t Index = RelOffset / ElementSize;
assert(Index * ElementSize == RelOffset);
return IRB.getInt32(Index);
return Index;
}
void deleteIfTriviallyDead(Value *V) {
@ -2466,10 +2469,24 @@ private:
Value *rewriteVectorizedLoadInst(IRBuilder<> &IRB, LoadInst &LI, Value *OldOp) {
Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
getName(".load"));
if (LI.getType() == VecTy->getElementType() ||
BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset) {
V = IRB.CreateExtractElement(V, getIndex(IRB, BeginOffset),
unsigned BeginIndex = getIndex(BeginOffset);
unsigned EndIndex = getIndex(EndOffset);
assert(EndIndex > BeginIndex && "Empty vector!");
unsigned NumElements = EndIndex - BeginIndex;
assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
if (NumElements == 1) {
V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
getName(".extract"));
DEBUG(dbgs() << " extract: " << *V << "\n");
} else if (NumElements < VecTy->getNumElements()) {
SmallVector<Constant*, 8> Mask;
Mask.reserve(NumElements);
for (unsigned i = BeginIndex; i != EndIndex; ++i)
Mask.push_back(IRB.getInt32(i));
V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
ConstantVector::get(Mask),
getName(".extract"));
DEBUG(dbgs() << " shuffle: " << *V << "\n");
}
return V;
}
@ -2569,15 +2586,52 @@ private:
bool rewriteVectorizedStoreInst(IRBuilder<> &IRB, Value *V,
StoreInst &SI, Value *OldOp) {
if (V->getType() == ElementTy ||
BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset) {
if (V->getType() != ElementTy)
V = convertValue(TD, IRB, V, ElementTy);
unsigned BeginIndex = getIndex(BeginOffset);
unsigned EndIndex = getIndex(EndOffset);
assert(EndIndex > BeginIndex && "Empty vector!");
unsigned NumElements = EndIndex - BeginIndex;
assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
Type *PartitionTy
= (NumElements == 1) ? ElementTy
: VectorType::get(ElementTy, NumElements);
if (V->getType() != PartitionTy)
V = convertValue(TD, IRB, V, PartitionTy);
if (NumElements < VecTy->getNumElements()) {
// We need to mix in the existing elements.
LoadInst *LI = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
getName(".load"));
V = IRB.CreateInsertElement(LI, V, getIndex(IRB, BeginOffset),
getName(".insert"));
} else if (V->getType() != VecTy) {
if (NumElements == 1) {
V = IRB.CreateInsertElement(LI, V, IRB.getInt32(BeginIndex),
getName(".insert"));
DEBUG(dbgs() << " insert: " << *V << "\n");
} else {
// When inserting a smaller vector into the larger to store, we first
// use a shuffle vector to widen it with undef elements, and then
// a second shuffle vector to select between the loaded vector and the
// incoming vector.
SmallVector<Constant*, 8> Mask;
Mask.reserve(VecTy->getNumElements());
for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
if (i >= BeginIndex && i < EndIndex)
Mask.push_back(IRB.getInt32(i - BeginIndex));
else
Mask.push_back(UndefValue::get(IRB.getInt32Ty()));
V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
ConstantVector::get(Mask),
getName(".expand"));
DEBUG(dbgs() << " shuffle1: " << *V << "\n");
Mask.clear();
for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
if (i >= BeginIndex && i < EndIndex)
Mask.push_back(IRB.getInt32(i));
else
Mask.push_back(IRB.getInt32(i + VecTy->getNumElements()));
V = IRB.CreateShuffleVector(V, LI, ConstantVector::get(Mask),
getName("insert"));
DEBUG(dbgs() << " shuffle2: " << *V << "\n");
}
} else {
V = convertValue(TD, IRB, V, VecTy);
}
StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
@ -2731,7 +2785,7 @@ private:
IRB.CreateInsertElement(IRB.CreateAlignedLoad(&NewAI,
NewAI.getAlignment(),
getName(".load")),
V, getIndex(IRB, BeginOffset),
V, IRB.getInt32(getIndex(BeginOffset)),
getName(".insert")),
&NewAI, NewAI.getAlignment());
(void)Store;
@ -2899,7 +2953,7 @@ private:
// We have to extract rather than load.
Src = IRB.CreateExtractElement(
IRB.CreateAlignedLoad(SrcPtr, Align, getName(".copyload")),
getIndex(IRB, BeginOffset),
IRB.getInt32(getIndex(BeginOffset)),
getName(".copyextract"));
} else if (IntTy && !IsWholeAlloca && !IsDest) {
Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
@ -2927,7 +2981,7 @@ private:
// We have to insert into a loaded copy before storing.
Src = IRB.CreateInsertElement(
IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), getName(".load")),
Src, getIndex(IRB, BeginOffset),
Src, IRB.getInt32(getIndex(BeginOffset)),
getName(".insert"));
}

View File

@ -36,15 +36,15 @@ entry:
define i32 @test2(<4 x i32> %x, <4 x i32> %y) {
; CHECK: @test2
; FIXME: This should be handled!
entry:
%a = alloca [2 x <4 x i32>]
; CHECK: alloca <4 x i32>
; CHECK-NOT: alloca
%a.x = getelementptr inbounds [2 x <4 x i32>]* %a, i64 0, i64 0
store <4 x i32> %x, <4 x i32>* %a.x
%a.y = getelementptr inbounds [2 x <4 x i32>]* %a, i64 0, i64 1
store <4 x i32> %y, <4 x i32>* %a.y
; CHECK-NOT: store
%a.tmp1 = getelementptr inbounds [2 x <4 x i32>]* %a, i64 0, i64 0, i64 2
%tmp1 = load i32* %a.tmp1
@ -54,10 +54,18 @@ entry:
%a.tmp3.cast = bitcast i32* %a.tmp3 to <2 x i32>*
%tmp3.vec = load <2 x i32>* %a.tmp3.cast
%tmp3 = extractelement <2 x i32> %tmp3.vec, i32 0
; CHECK-NOT: load
; CHECK: %[[extract1:.*]] = extractelement <4 x i32> %x, i32 2
; CHECK-NEXT: %[[extract2:.*]] = extractelement <4 x i32> %y, i32 3
; CHECK-NEXT: %[[extract3:.*]] = shufflevector <4 x i32> %y, <4 x i32> undef, <2 x i32> <i32 0, i32 1>
; CHECK-NEXT: %[[extract4:.*]] = extractelement <2 x i32> %[[extract3]], i32 0
%tmp4 = add i32 %tmp1, %tmp2
%tmp5 = add i32 %tmp3, %tmp4
ret i32 %tmp5
; CHECK-NEXT: %[[sum1:.*]] = add i32 %[[extract1]], %[[extract2]]
; CHECK-NEXT: %[[sum2:.*]] = add i32 %[[extract4]], %[[sum1]]
; CHECK-NEXT: ret i32 %[[sum2]]
}
define i32 @test3(<4 x i32> %x, <4 x i32> %y) {
@ -206,6 +214,71 @@ define i64 @test6(<4 x i64> %x, <4 x i64> %y, i64 %n) {
ret i64 %res
}
define <4 x i32> @test_subvec_store() {
; CHECK: @test_subvec_store
entry:
%a = alloca <4 x i32>
; CHECK-NOT: alloca
%a.gep0 = getelementptr <4 x i32>* %a, i32 0, i32 0
%a.cast0 = bitcast i32* %a.gep0 to <2 x i32>*
store <2 x i32> <i32 0, i32 0>, <2 x i32>* %a.cast0
; CHECK-NOT: store
; CHECK: %[[insert1:.*]] = shufflevector <4 x i32> <i32 0, i32 0, i32 undef, i32 undef>, <4 x i32> undef, <4 x i32> <i32 0, i32 1, {{.*}}>
%a.gep1 = getelementptr <4 x i32>* %a, i32 0, i32 1
%a.cast1 = bitcast i32* %a.gep1 to <2 x i32>*
store <2 x i32> <i32 1, i32 1>, <2 x i32>* %a.cast1
; CHECK-NEXT: %[[insert2:.*]] = shufflevector <4 x i32> <i32 undef, i32 1, i32 1, i32 undef>, <4 x i32> %[[insert1]], <4 x i32> <i32 4, i32 1, i32 2, {{.*}}>
%a.gep2 = getelementptr <4 x i32>* %a, i32 0, i32 2
%a.cast2 = bitcast i32* %a.gep2 to <2 x i32>*
store <2 x i32> <i32 2, i32 2>, <2 x i32>* %a.cast2
; CHECK-NEXT: %[[insert3:.*]] = shufflevector <4 x i32> <i32 undef, i32 undef, i32 2, i32 2>, <4 x i32> %[[insert2]], <4 x i32> <i32 4, i32 5, i32 2, i32 3>
%a.gep3 = getelementptr <4 x i32>* %a, i32 0, i32 3
store i32 3, i32* %a.gep3
; CHECK-NEXT: %[[insert4:.*]] = insertelement <4 x i32> %[[insert3]], i32 3, i32 3
%ret = load <4 x i32>* %a
ret <4 x i32> %ret
; CHECK-NEXT: ret <4 x i32> %[[insert4]]
}
define <4 x i32> @test_subvec_load() {
; CHECK: @test_subvec_load
entry:
%a = alloca <4 x i32>
; CHECK-NOT: alloca
store <4 x i32> <i32 0, i32 1, i32 2, i32 3>, <4 x i32>* %a
; CHECK-NOT: store
%a.gep0 = getelementptr <4 x i32>* %a, i32 0, i32 0
%a.cast0 = bitcast i32* %a.gep0 to <2 x i32>*
%first = load <2 x i32>* %a.cast0
; CHECK-NOT: load
; CHECK: %[[extract1:.*]] = shufflevector <4 x i32> <i32 0, i32 1, i32 2, i32 3>, <4 x i32> undef, <2 x i32> <i32 0, i32 1>
%a.gep1 = getelementptr <4 x i32>* %a, i32 0, i32 1
%a.cast1 = bitcast i32* %a.gep1 to <2 x i32>*
%second = load <2 x i32>* %a.cast1
; CHECK-NEXT: %[[extract2:.*]] = shufflevector <4 x i32> <i32 0, i32 1, i32 2, i32 3>, <4 x i32> undef, <2 x i32> <i32 1, i32 2>
%a.gep2 = getelementptr <4 x i32>* %a, i32 0, i32 2
%a.cast2 = bitcast i32* %a.gep2 to <2 x i32>*
%third = load <2 x i32>* %a.cast2
; CHECK-NEXT: %[[extract3:.*]] = shufflevector <4 x i32> <i32 0, i32 1, i32 2, i32 3>, <4 x i32> undef, <2 x i32> <i32 2, i32 3>
%tmp = shufflevector <2 x i32> %first, <2 x i32> %second, <2 x i32> <i32 0, i32 2>
%ret = shufflevector <2 x i32> %tmp, <2 x i32> %third, <4 x i32> <i32 0, i32 1, i32 2, i32 3>
; CHECK-NEXT: %[[tmp:.*]] = shufflevector <2 x i32> %[[extract1]], <2 x i32> %[[extract2]], <2 x i32> <i32 0, i32 2>
; CHECK-NEXT: %[[ret:.*]] = shufflevector <2 x i32> %[[tmp]], <2 x i32> %[[extract3]], <4 x i32> <i32 0, i32 1, i32 2, i32 3>
ret <4 x i32> %ret
; CHECK-NEXT: ret <4 x i32> %[[ret]]
}
define i32 @PR14212() {
; CHECK: @PR14212
; This caused a crash when "splitting" the load of the i32 in order to promote