Revert "[SimplifyCFG] Extend TryToSimplifyUncondBranchFromEmptyBlock for empty block including lifetime intrinsics"

This reverts commit r268254.

This change causes assertion failures while building Chromium. Reduced
test case coming soon.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@268288 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Reid Kleckner 2016-05-02 19:43:22 +00:00
parent c82cf31b47
commit 0e77da267e
5 changed files with 66 additions and 425 deletions

View File

@ -152,15 +152,6 @@ public:
return const_cast<BasicBlock*>(this)->getFirstNonPHIOrDbgOrLifetime();
}
/// \brief Returns a pointer to the first instruction in this block that is
/// not a PHINode, a debug intrinsic, a lifetime intrinsic, or a bitcast
/// instruction coupled with the following lifetime intrinsic.
Instruction *getFirstNonPHIOrDbgOrLifetimeOrBitCast();
const Instruction *getFirstNonPHIOrDbgOrLifetimeOrBitCast() const {
return const_cast<BasicBlock *>(this)
->getFirstNonPHIOrDbgOrLifetimeOrBitCast();
}
/// \brief Returns an iterator to the first instruction in this block that is
/// suitable for inserting a non-PHI instruction.
///

View File

@ -206,30 +206,6 @@ Instruction* BasicBlock::getFirstNonPHIOrDbgOrLifetime() {
return nullptr;
}
Instruction *BasicBlock::getFirstNonPHIOrDbgOrLifetimeOrBitCast() {
for (Instruction &I : *this) {
if (isa<PHINode>(I) || isa<DbgInfoIntrinsic>(I))
continue;
if (auto *II = dyn_cast<IntrinsicInst>(&I))
if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
II->getIntrinsicID() == Intrinsic::lifetime_end)
continue;
if (auto *BCI = dyn_cast<BitCastInst>(&I)) {
if (auto *II = dyn_cast<IntrinsicInst>(++I.getIterator())) {
if ((II->getIntrinsicID() == Intrinsic::lifetime_start ||
II->getIntrinsicID() == Intrinsic::lifetime_end) &&
II->getOperand(1) == BCI) {
continue;
}
}
}
return &I;
}
return nullptr;
}
BasicBlock::iterator BasicBlock::getFirstInsertionPt() {
Instruction *FirstNonPHI = getFirstNonPHI();
if (!FirstNonPHI)

View File

@ -800,55 +800,6 @@ static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
replaceUndefValuesInPhi(PN, IncomingValues);
}
/// Return true if BB has lifetime.end intrinsic.
///
static bool hasLifetime(BasicBlock *BB) {
for (auto &I : *BB) {
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
if (II->getIntrinsicID() == Intrinsic::lifetime_end ||
II->getIntrinsicID() == Intrinsic::lifetime_start) {
return true;
}
}
}
return false;
}
/// hoistLifetimeFromEmptyBlockToPred - Hoist lifetime.end intrinsics and
/// related bitcast instructions from BB to predecessors of BB.
///
static bool hoistLifetimeFromEmptyBlockToPred(BasicBlock *BB) {
// Check to see if all Preds have single successor and if not, we cannot
// hoist lifetime intrinsics because it would change semantics.
for (auto Pred : predecessors(BB))
if (!Pred->getSingleSuccessor())
return false;
// Hoist all lifetime.end intrinsics and related bitcast instrunctions
// in BB to Preds.
for (auto &I : *BB) {
if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
if (II->getIntrinsicID() == Intrinsic::lifetime_end ||
II->getIntrinsicID() == Intrinsic::lifetime_start) {
for (auto Pred : predecessors(BB)) {
Instruction *NewII = I.clone();
NewII->insertBefore(Pred->getTerminator());
if (I.getIterator() != BB->begin()) {
if (auto BC = dyn_cast<BitCastInst>(--I.getIterator())) {
assert(BC == I.getOperand(1));
auto NewBC = BC->clone();
NewBC->insertBefore(NewII);
NewII->setOperand(1, NewBC);
}
}
}
}
}
}
return true;
}
/// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
/// unconditional branch, and contains no instructions other than PHI nodes,
/// potential side-effect free intrinsics and the branch. If possible,
@ -862,118 +813,74 @@ bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
if (BB == Succ) return false;
// If BB has lifetime.end intrinsics, simplify BB under more constraints.
if (hasLifetime(BB)) {
// Check to see if BB and its predecessors and successors have PHI.
if (isa<PHINode>(BB->begin()))
return false;
// Check to see if merging these blocks would cause conflicts for any of the
// phi nodes in BB or Succ. If not, we can safely merge.
if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
for (auto Pred : predecessors(BB))
if (isa<PHINode>(Pred->begin()))
return false;
for (auto Succ : successors(BB))
if (isa<PHINode>(Succ->begin()))
return false;
if (Succ->getSinglePredecessor()) {
// BB is the only predecessor of Succ, so Succ will end up with exactly
// the same predecessors BB had.
// Copy over any debug or lifetime instruction.
BB->getTerminator()->eraseFromParent();
Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
BB->getInstList());
} else {
// Unless BB is the only predecessor of Succ, hoist lifetime intrinsics
// to predecessors of BB and simplify BB.
if (!hoistLifetimeFromEmptyBlockToPred(BB)) {
return false;
}
}
DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
// Everything that jumped to BB now goes to Succ.
BB->replaceAllUsesWith(Succ);
if (!Succ->hasName())
Succ->takeName(BB);
BB->eraseFromParent(); // Delete the old basic block.
return true;
} else {
// Check to see if merging these blocks would cause conflicts for any of the
// phi nodes in BB or Succ. If not, we can safely merge.
if (!CanPropagatePredecessorsForPHIs(BB, Succ))
return false;
// Check for cases where Succ has multiple predecessors and a PHI node in BB
// has uses which will not disappear when the PHI nodes are merged. It is
// possible to handle such cases, but difficult: it requires checking
// whether BB dominates Succ, which is non-trivial to calculate in the
// case where Succ has multiple predecessors. Also, it requires checking
// whether constructing the necessary self-referential PHI node doesn't
// introduce any conflicts; this isn't too difficult, but the previous code
// for doing this was incorrect.
//
// Note that if this check finds a live use, BB dominates Succ, so BB is
// something like a loop pre-header (or rarely, a part of an irreducible
// CFG);
// folding the branch isn't profitable in that case anyway.
if (!Succ->getSinglePredecessor()) {
BasicBlock::iterator BBI = BB->begin();
while (isa<PHINode>(*BBI)) {
for (Use &U : BBI->uses()) {
if (PHINode *PN = dyn_cast<PHINode>(U.getUser())) {
if (PN->getIncomingBlock(U) != BB)
return false;
} else {
// Check for cases where Succ has multiple predecessors and a PHI node in BB
// has uses which will not disappear when the PHI nodes are merged. It is
// possible to handle such cases, but difficult: it requires checking whether
// BB dominates Succ, which is non-trivial to calculate in the case where
// Succ has multiple predecessors. Also, it requires checking whether
// constructing the necessary self-referential PHI node doesn't introduce any
// conflicts; this isn't too difficult, but the previous code for doing this
// was incorrect.
//
// Note that if this check finds a live use, BB dominates Succ, so BB is
// something like a loop pre-header (or rarely, a part of an irreducible CFG);
// folding the branch isn't profitable in that case anyway.
if (!Succ->getSinglePredecessor()) {
BasicBlock::iterator BBI = BB->begin();
while (isa<PHINode>(*BBI)) {
for (Use &U : BBI->uses()) {
if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
if (PN->getIncomingBlock(U) != BB)
return false;
}
} else {
return false;
}
++BBI;
}
++BBI;
}
DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
if (isa<PHINode>(Succ->begin())) {
// If there is more than one pred of succ, and there are PHI nodes in
// the successor, then we need to add incoming edges for the PHI nodes
//
const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
// Loop over all of the PHI nodes in the successor of BB.
for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
PHINode *PN = cast<PHINode>(I);
redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
}
}
if (Succ->getSinglePredecessor()) {
// BB is the only predecessor of Succ, so Succ will end up with exactly
// the same predecessors BB had.
// Copy over any phi, debug or lifetime instruction.
BB->getTerminator()->eraseFromParent();
Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
BB->getInstList());
} else {
while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
// We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
assert(PN->use_empty() && "There shouldn't be any uses here!");
PN->eraseFromParent();
}
}
// Everything that jumped to BB now goes to Succ.
BB->replaceAllUsesWith(Succ);
if (!Succ->hasName())
Succ->takeName(BB);
BB->eraseFromParent(); // Delete the old basic block.
return true;
}
DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
if (isa<PHINode>(Succ->begin())) {
// If there is more than one pred of succ, and there are PHI nodes in
// the successor, then we need to add incoming edges for the PHI nodes
//
const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
// Loop over all of the PHI nodes in the successor of BB.
for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
PHINode *PN = cast<PHINode>(I);
redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
}
}
if (Succ->getSinglePredecessor()) {
// BB is the only predecessor of Succ, so Succ will end up with exactly
// the same predecessors BB had.
// Copy over any phi, debug or lifetime instruction.
BB->getTerminator()->eraseFromParent();
Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
BB->getInstList());
} else {
while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
// We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
assert(PN->use_empty() && "There shouldn't be any uses here!");
PN->eraseFromParent();
}
}
// Everything that jumped to BB now goes to Succ.
BB->replaceAllUsesWith(Succ);
if (!Succ->hasName()) Succ->takeName(BB);
BB->eraseFromParent(); // Delete the old basic block.
return true;
}
/// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI

View File

@ -5056,15 +5056,14 @@ bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
if (SinkCommon && SinkThenElseCodeToEnd(BI))
return true;
// If the Terminator is the only non-phi instruction except for bitcast
// instruction coupled with the following lifetime intrinsic, simplify the
// block. If LoopHeader is provided, check if the block is a loop header
// If the Terminator is the only non-phi instruction, simplify the block.
// if LoopHeader is provided, check if the block is a loop header
// (This is for early invocations before loop simplify and vectorization
// to keep canonical loop forms for nested loops.
// These blocks can be eliminated when the pass is invoked later
// in the back-end.)
BasicBlock::iterator I =
BB->getFirstNonPHIOrDbgOrLifetimeOrBitCast()->getIterator();
BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
(!LoopHeaders || !LoopHeaders->count(BB)) &&
TryToSimplifyUncondBranchFromEmptyBlock(BB))

View File

@ -1,9 +1,6 @@
; RUN: opt < %s -simplifycfg -S | FileCheck %s
; Test that a lifetime intrinsic isn't removed because that would change semantics
; This case is that predecessor(s) of the target empty block (bb0) has multiple
; successors (bb0 and bb1) and its successor has multiple predecessors (entry and
; bb0).
; CHECK: foo
; CHECK: entry:
@ -30,232 +27,3 @@ declare void @f()
declare void @llvm.lifetime.start(i64, i8* nocapture) nounwind
declare void @llvm.lifetime.end(i64, i8* nocapture) nounwind
; Test that empty block including lifetime intrinsic and not related bitcast
; instruction cannot be removed. It is because the block is not empty.
; CHECK-LABEL: coo
; CHECK-LABEL: entry:
; CHECK-LABEL: if.then:
; CHECK-LABEL: if.else:
; CHECK-LABEL: if.end:
; CHECK-LABEL: bb:
; CHECK: ret
define void @coo(i1 %x, i1 %y) {
entry:
%a = alloca i8, align 4
%b = alloca i32, align 4
br label %while.cond
while.cond: ; preds = %if.end, %entry
br i1 %y, label %while.body, label %bb
while.body: ; preds = %while.cond
call void @llvm.lifetime.start(i64 4, i8* %a)
%c = load i8, i8* %a, align 4
br i1 %x, label %if.then, label %if.else
if.then: ; preds = %while.body
%d = add i8 %c, 1
br label %if.end
if.else: ; preds = %while.body
%e = sub i8 %c, 1
br label %if.end
if.end: ; preds = %if.else, %if.then
%f = bitcast i32* %b to i8*
call void @llvm.lifetime.end(i64 4, i8* %a)
br label %while.cond
bb: ; preds = %while.cond
ret void
}
; Test that empty block including lifetime intrinsic can be removed.
; Lifetime.end intrinsic is moved to predecessors because successor has
; multiple predecessors.
; CHECK-LABEL: soo
; CHECK-LABEL: entry:
; CHECK-LABEL: if.then:
; CHECK-NEXT: %e
; CHECK-NEXT: call void @llvm.lifetime.end
; CHECK-LABEL: if.else:
; CHECK-NEXT: %g
; CHECK-NEXT: call void @llvm.lifetime.end
; CHECK-NEXT: br label %while.cond
; CHECK-NOT: if.end:
; CHECK: ret
define void @soo(i1 %x, i1 %y) {
entry:
%a = alloca i8, align 4
br label %while.cond
while.cond: ; preds = %if.end, %entry
br i1 %y, label %while.body, label %bb
while.body: ; preds = %while.cond
call void @llvm.lifetime.start(i64 4, i8* %a)
%d = load i8, i8* %a, align 4
br i1 %x, label %if.then, label %if.else
if.then: ; preds = %while.body
%e = add i8 %d, 1
br label %if.end
if.else: ; preds = %while.body
%g = sub i8 %d, 1
br label %if.end
if.end: ; preds = %if.else, %if.then
call void @llvm.lifetime.end(i64 4, i8* %a)
br label %while.cond
bb: ; preds = %while.cond
ret void
}
; Test that empty block including lifetime intrinsic and related bitcast
; instruction can be removed. Lifetime.end intrinsic and related bitcast
; instruction are moved to predecessors because successor has multiple
; predecessors.
; CHECK-LABEL: boo
; CHECK-LABEL: entry:
; CHECK-LABEL: if.then:
; CHECK-NEXT: %e
; CHECK-NEXT: %[[T:[^ ]+]] = bitcast
; CHECK-NEXT: call void @llvm.lifetime.end(i64 4, i8* %[[T]])
; CHECK-LABEL: if.else:
; CHECK-NEXT: %g
; CHECK-NEXT: %[[B:[^ ]+]] = bitcast
; CHECK-NEXT: call void @llvm.lifetime.end(i64 4, i8* %[[B]])
; CHECK-NEXT: br label %while.cond
; CHECK-NOT: if.end:
; CHECK: ret
define void @boo(i1 %x, i1 %y) {
entry:
%a = alloca i32, align 4
br label %while.cond
while.cond: ; preds = %if.end, %entry
br i1 %y, label %while.body, label %bb
while.body: ; preds = %while.cond
%b = bitcast i32* %a to i8*
call void @llvm.lifetime.start(i64 4, i8* %b)
%d = load i32, i32* %a, align 4
br i1 %x, label %if.then, label %if.else
if.then: ; preds = %while.body
%e = add i32 %d, 1
br label %if.end
if.else: ; preds = %while.body
%g = sub i32 %d, 1
br label %if.end
if.end: ; preds = %if.else, %if.then
%c = bitcast i32* %a to i8*
call void @llvm.lifetime.end(i64 4, i8* %c)
br label %while.cond
bb: ; preds = %while.cond
ret void
}
; Test that empty block including lifetime intrinsic can be removed.
; Lifetime.start intrinsic is moved to predecessors because successor has
; multiple predecessors.
; CHECK-LABEL: koo
; CHECK-LABEL: entry:
; CHECK-LABEL: if.then:
; CHECK-NEXT: call void @f
; CHECK-NEXT: call void @llvm.lifetime.start
; CHECK-LABEL: if.else:
; CHECK-NEXT: call void @g
; CHECK-NEXT: call void @llvm.lifetime.start
; CHECK-NEXT: br label %bb
; CHECK-NOT: if.end:
; CHECK: ret
define void @koo(i1 %x, i1 %y, i1 %z) {
entry:
%a = alloca i8, align 4
br i1 %z, label %bb, label %bb0
bb0: ; preds = %entry
br i1 %x, label %if.then, label %if.else
if.then: ; preds = %bb0
call void @f()
br label %if.end
if.else: ; preds = %bb0
call void @g()
br label %if.end
if.end: ; preds = %if.else, %if.then
call void @llvm.lifetime.start(i64 4, i8* %a)
br label %bb
bb: ; preds = %if.end, %entry
%d = load i8, i8* %a, align 4
call void @llvm.lifetime.end(i64 4, i8* %a)
ret void
}
declare void @g()
; Test that empty block including lifetime intrinsic and related bitcast
; instruction can be removed. Lifetime.start intrinsic and related bitcast
; instruction are moved to predecessors because successor has multiple
; predecessors.
; CHECK-LABEL: goo
; CHECK-LABEL: entry:
; CHECK-LABEL: if.then:
; CHECK-NEXT: call void @f
; CHECK-NEXT: %[[T:[^ ]+]] = bitcast
; CHECK-NEXT: call void @llvm.lifetime.start(i64 4, i8* %[[T]])
; CHECK-LABEL: if.else:
; CHECK-NEXT: call void @g
; CHECK-NEXT: %[[B:[^ ]+]] = bitcast
; CHECK-NEXT: call void @llvm.lifetime.start(i64 4, i8* %[[B]])
; CHECK-NEXT: br label %bb
; CHECK-NOT: if.end:
; CHECK: ret
define void @goo(i1 %x, i1 %y, i1 %z) {
entry:
%a = alloca i32, align 4
br i1 %z, label %bb, label %bb0
bb0: ; preds = %entry
br i1 %x, label %if.then, label %if.else
if.then: ; preds = %bb0
call void @f()
br label %if.end
if.else: ; preds = %bb0
call void @g()
br label %if.end
if.end: ; preds = %if.else, %if.then
%b = bitcast i32* %a to i8*
call void @llvm.lifetime.start(i64 4, i8* %b)
br label %bb
bb: ; preds = %if.end, %entry
%d = load i32, i32* %a, align 4
%c = bitcast i32* %a to i8*
call void @llvm.lifetime.end(i64 4, i8* %c)
ret void
}