Removed class RegStackOffsets and used class MachineCodeForMethod

directly to manage stack frame.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@1186 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Vikram S. Adve 2001-11-08 04:48:50 +00:00
parent be49526193
commit 12af164c87
4 changed files with 78 additions and 588 deletions

View File

@ -1,7 +1,23 @@
#include "llvm/CodeGen/PhyRegAlloc.h"
// $Id$
//***************************************************************************
// File:
// PhyRegAlloc.cpp
//
// Purpose:
// Register allocation for LLVM.
//
// History:
// 9/10/01 - Ruchira Sasanka - created.
//**************************************************************************/
//***TODO: There are several places we add instructions. Validate the order
// of adding these instructions.
#include "llvm/CodeGen/PhyRegAlloc.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/MachineFrameInfo.h"
// ***TODO: There are several places we add instructions. Validate the order
// of adding these instructions.
@ -15,15 +31,18 @@ cl::Enum<RegAllocDebugLevel_t> DEBUG_RA("dregalloc", cl::NoFlags,
//----------------------------------------------------------------------------
// Constructor: Init local composite objects and create register classes.
//----------------------------------------------------------------------------
PhyRegAlloc::PhyRegAlloc(const Method *const M,
PhyRegAlloc::PhyRegAlloc(Method *M,
const TargetMachine& tm,
MethodLiveVarInfo *const Lvi)
: RegClassList(),
Meth(M), TM(tm), LVI(Lvi), LRI(M, tm, RegClassList),
TM(tm),
Meth(M),
mcInfo(MachineCodeForMethod::get(M)),
LVI(Lvi), LRI(M, tm, RegClassList),
MRI( tm.getRegInfo() ),
NumOfRegClasses(MRI.getNumOfRegClasses()),
AddedInstrMap(), StackOffsets() /*, PhiInstList()*/
AddedInstrMap()
/*, PhiInstList()*/
{
// **TODO: use an actual reserved color list
ReservedColorListType *RCL = new ReservedColorListType();
@ -31,10 +50,6 @@ PhyRegAlloc::PhyRegAlloc(const Method *const M,
// create each RegisterClass and put in RegClassList
for( unsigned int rc=0; rc < NumOfRegClasses; rc++)
RegClassList.push_back( new RegClass(M, MRI.getMachineRegClass(rc), RCL) );
// **TODO: Init to the correct value. Also reset this to the correct
// value at the start of each instruction. Need a way to track max used
int curOffset4TmpSpills =0 ;
}
//----------------------------------------------------------------------------
@ -318,125 +333,6 @@ void PhyRegAlloc::addInterferencesForArgs()
}
#if 0
//----------------------------------------------------------------------------
// This method inserts caller saving/restoring instructons before/after
// a call machine instruction.
//----------------------------------------------------------------------------
void PhyRegAlloc::insertCallerSavingCode(const MachineInstr *MInst,
const BasicBlock *BB )
{
// assert( (TM.getInstrInfo()).isCall( MInst->getOpCode() ) );
StackOffsets.resetTmpPos();
hash_set<unsigned> PushedRegSet;
// Now find the LR of the return value of the call
// The last *implicit operand* is the return value of a call
// Insert it to to he PushedRegSet since we must not save that register
// and restore it after the call.
// We do this because, we look at the LV set *after* the instruction
// to determine, which LRs must be saved across calls. The return value
// of the call is live in this set - but we must not save/restore it.
const Value *RetVal = MRI.getCallInstRetVal( MInst );
if( RetVal ) {
LiveRange *RetValLR = LRI.getLiveRangeForValue( RetVal );
assert( RetValLR && "No LR for RetValue of call");
PushedRegSet.insert(
MRI.getUnifiedRegNum((RetValLR->getRegClass())->getID(),
RetValLR->getColor() ) );
}
const LiveVarSet *LVSetAft = LVI->getLiveVarSetAfterMInst(MInst, BB);
LiveVarSet::const_iterator LIt = LVSetAft->begin();
// for each live var in live variable set after machine inst
for( ; LIt != LVSetAft->end(); ++LIt) {
// get the live range corresponding to live var
LiveRange *const LR = LRI.getLiveRangeForValue(*LIt );
// LR can be null if it is a const since a const
// doesn't have a dominating def - see Assumptions above
if( LR ) {
if( LR->hasColor() ) {
unsigned RCID = (LR->getRegClass())->getID();
unsigned Color = LR->getColor();
if ( MRI.isRegVolatile(RCID, Color) ) {
// if the value is in both LV sets (i.e., live before and after
// the call machine instruction)
unsigned Reg = MRI.getUnifiedRegNum(RCID, Color);
if( PushedRegSet.find(Reg) == PushedRegSet.end() ) {
// if we haven't already pushed that register
unsigned RegType = MRI.getRegType( LR );
// Now get two instructions - to push on stack and pop from stack
// and add them to InstrnsBefore and InstrnsAfter of the
// call instruction
int StackOff = StackOffsets.getNewTmpPosOffFromSP();
/**** TODO
if( RegType == SaveViaIntReg) {
int FreeIntReg = getFreedIntReg(......)
}
*/
MachineInstr *AdIBef =
MRI.cpReg2MemMI(Reg, MRI.getStackPointer(), StackOff, RegType );
MachineInstr *AdIAft =
MRI.cpMem2RegMI(MRI.getStackPointer(), StackOff, Reg, RegType );
((AddedInstrMap[MInst])->InstrnsBefore).push_front(AdIBef);
((AddedInstrMap[MInst])->InstrnsAfter).push_back(AdIAft);
PushedRegSet.insert( Reg );
if(DEBUG_RA) {
cerr << "\nFor callee save call inst:" << *MInst;
cerr << "\n -inserted caller saving instrs:\n\t ";
cerr << *AdIBef << "\n\t" << *AdIAft ;
}
} // if not already pushed
} // if LR has a volatile color
} // if LR has color
} // if there is a LR for Var
} // for each value in the LV set after instruction
}
#endif
//----------------------------------------------------------------------------
// This method is called after register allocation is complete to set the
// allocated reisters in the machine code. This code will add register numbers
@ -490,8 +386,8 @@ void PhyRegAlloc::updateMachineCode()
// reset the stack offset for temporary variables since we may
// need that to spill
StackOffsets.resetTmpPos();
mcInfo.popAllTempValues(TM);
//for(MachineInstr::val_op_const_iterator OpI(MInst);!OpI.done();++OpI) {
for(unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum) {
@ -607,82 +503,6 @@ void PhyRegAlloc::updateMachineCode()
}
#if 0
//----------------------------------------------------------------------------
// This method inserts spill code for AN operand whose LR was spilled.
// This method may be called several times for a single machine instruction
// if it contains many spilled operands. Each time it is called, it finds
// a register which is not live at that instruction and also which is not
// used by other spilled operands of the same instruction. Then it uses
// this register temporarily to accomodate the spilled value.
//----------------------------------------------------------------------------
void PhyRegAlloc::insertCode4SpilledLR(const LiveRange *LR,
const MachineInstr *MInst,
const BasisBlock *BB,
const unsigned OpNum) {
MachineOperand& Op = MInst->getOperand(OpNum);
bool isDef = MInst->operandIsDefined(OpNum);
unsigned RegType = MRI.getRegType( LR );
int SpillOff = LR->getSpillOffFromFP();
RegClass *RC = LR->getRegClass();
const LiveVarSet *LVSetBef = LVI->getLiveVarSetBeforeMInst(MInst, BB);
int TmpOff = StackOffsets.getNewTmpPosOffFromSP();
MachineInstr *MIBef, *AdIMid, *MIAft;
int TmpReg;
TmpReg = getUsableRegAtMI(RC, RegType, MInst,LVSetBef, MIBef, MIAft);
TmpReg = getUnifiedRegNum( RC->getID(), TmpReg );
if( !isDef ) {
// for a USE, we have to load the value of LR from stack to a TmpReg
// and use the TmpReg as one operand of instruction
// actual loading instruction
AdIMid = MRI.cpMem2RegMI(MRI.getFramePointer(), SpillOff, TmpReg, RegType);
if( MIBef )
((AddedInstrMap[MInst])->InstrnsBefore).push_back(MIBef);
((AddedInstrMap[MInst])->InstrnsBefore).push_back(AdiMid);
if( MIAft)
((AddedInstrMap[MInst])->InstrnsAfter).push_front(MIAft);
}
else { // if this is a Def
// for a DEF, we have to store the value produced by this instruction
// on the stack position allocated for this LR
// actual storing instruction
AdIMid = MRI.cpReg2MemMI(TmpReg, MRI.getFramePointer(), SpillOff, RegType);
if( MIBef )
((AddedInstrMap[MInst])->InstrnsBefore).push_back(MIBef);
((AddedInstrMap[MInst])->InstrnsBefore).push_back(AdiMid);
if( MIAft)
((AddedInstrMap[MInst])->InstrnsAfter).push_front(MIAft);
} // if !DEF
Op.setRegForValue( TmpReg ); // set the opearnd
}
#endif
//----------------------------------------------------------------------------
// We can use the following method to get a temporary register to be used
// BEFORE any given machine instruction. If there is a register available,
@ -710,8 +530,9 @@ int PhyRegAlloc::getUsableRegAtMI(RegClass *RC,
// we couldn't find an unused register. Generate code to free up a reg by
// saving it on stack and restoring after the instruction
int TmpOff = StackOffsets.getNewTmpPosOffFromFP();
/**** NOTE: THIS SHOULD USE THE RIGHT SIZE FOR THE REG BEING PUSHED ****/
int TmpOff = mcInfo.pushTempValue(TM, /*size*/ 8);
Reg = getRegNotUsedByThisInst(RC, MInst);
MIBef = MRI.cpReg2MemMI(Reg, MRI.getFramePointer(), TmpOff, RegType );
MIAft = MRI.cpMem2RegMI(MRI.getFramePointer(), TmpOff, Reg, RegType );
@ -1011,8 +832,8 @@ void PhyRegAlloc::colorCallRetArgs()
// Tmp stack poistions are needed by some calls that have spilled args
// So reset it before we call each such method
StackOffsets.resetTmpPos();
mcInfo.popAllTempValues(TM);
if( (TM.getInstrInfo()).isCall( OpCode ) )
MRI.colorCallArgs( CRMI, LRI, AI, *this );
@ -1112,17 +933,13 @@ void PhyRegAlloc::allocateStackSpace4SpilledLRs()
LiveRangeMapType::const_iterator HMIEnd = (LRI.getLiveRangeMap())->end();
for( ; HMI != HMIEnd ; ++HMI ) {
if( (*HMI).first ) {
LiveRange *L = (*HMI).second; // get the LiveRange
if(L)
if( ! L->hasColor() )
L->setSpillOffFromFP( StackOffsets.getNewSpillOffFromFP() );
L->setSpillOffFromFP(mcInfo.allocateSpilledValue(TM,L->getType()));
}
} // for all LR's in hash map
StackOffsets.setEndOfSpillRegion();
}
@ -1195,7 +1012,7 @@ void PhyRegAlloc::allocateRegisters()
updateMachineCode();
if (DEBUG_RA) {
Meth->getMachineCode().dump();
MachineCodeForMethod::get(Meth).dump();
printMachineCode(); // only for DEBUGGING
}
}

View File

@ -62,73 +62,6 @@ typedef hash_map<const MachineInstr *, AddedInstrns *> AddedInstrMapType;
//----------------------------------------------------------------------------
// Class RegStackOffsets:
// This class is responsible for managing stack frame of the method for
// register allocation.
//
//----------------------------------------------------------------------------
class RegStackOffsets {
private:
int curSpilledVarOff; // cur pos of spilled LRs
int curNewTmpPosOffset; // cur pos of tmp values on stack
bool isTmpRegionUsable; // can we call getNewTmpPosOffFromFP
const int SizeOfStackItem; // size of an item on stack
const int StackSpillStartFromFP; // start position of spill region
int StartOfTmpRegion; // start of the tmp var region
public:
// constructor
RegStackOffsets(int SEnSize=8, int StartSpill=176 ) :
SizeOfStackItem(SEnSize), StackSpillStartFromFP(StartSpill) {
curSpilledVarOff = StartSpill;
isTmpRegionUsable = false;
};
int getNewSpillOffFromFP() {
int tmp = curSpilledVarOff;
curSpilledVarOff += SizeOfStackItem;
return tmp; // **TODO: Is sending un-incremented value correct?
};
// The following method must be called only after allocating space
// for spilled LRs and calling setEndOfSpillRegion()
int getNewTmpPosOffFromFP() {
assert( isTmpRegionUsable && "Spill region still open");
int tmp = curNewTmpPosOffset;
curNewTmpPosOffset += SizeOfStackItem;
return tmp; //**TODO: Is sending un-incremented val correct?
};
// This method is called when we have allocated space for all spilled
// LRs. The tmp region can be used only after a call to this method.
void setEndOfSpillRegion() {
assert(( ! isTmpRegionUsable) && "setEndOfSpillRegion called again");
isTmpRegionUsable = true;
StartOfTmpRegion = curSpilledVarOff;
}
// called when temporary values allocated on stack are no longer needed
void resetTmpPos() {
curNewTmpPosOffset = StartOfTmpRegion;
}
};
//----------------------------------------------------------------------------
// class PhyRegAlloc:
// Main class the register allocator. Call allocateRegisters() to allocate
@ -136,12 +69,13 @@ class RegStackOffsets {
//----------------------------------------------------------------------------
class PhyRegAlloc
class PhyRegAlloc: public NonCopyable
{
vector<RegClass *> RegClassList ; // vector of register classes
const Method *const Meth; // name of the method we work on
const TargetMachine &TM; // target machine
const Method* Meth; // name of the method we work on
MachineCodeForMethod& mcInfo; // descriptor for method's native code
MethodLiveVarInfo *const LVI; // LV information for this method
// (already computed for BBs)
LiveRangeInfo LRI; // LR info (will be computed)
@ -154,8 +88,6 @@ class PhyRegAlloc
AddedInstrMapType AddedInstrMap; // to store instrns added in this phase
RegStackOffsets StackOffsets;
//vector<const MachineInstr *> PhiInstList; // a list of all phi instrs
//------- private methods ---------------------------------------------------
@ -178,10 +110,6 @@ class PhyRegAlloc
void markUnusableSugColors();
void allocateStackSpace4SpilledLRs();
RegStackOffsets & getStackOffsets() {
return StackOffsets;
}
inline void constructLiveRanges()
{ LRI.constructLiveRanges(); }
@ -212,7 +140,7 @@ class PhyRegAlloc
public:
PhyRegAlloc(const Method *const M, const TargetMachine& TM,
PhyRegAlloc(Method *const M, const TargetMachine& TM,
MethodLiveVarInfo *const Lvi);
void allocateRegisters(); // main method called for allocatin

View File

@ -1,7 +1,23 @@
#include "llvm/CodeGen/PhyRegAlloc.h"
// $Id$
//***************************************************************************
// File:
// PhyRegAlloc.cpp
//
// Purpose:
// Register allocation for LLVM.
//
// History:
// 9/10/01 - Ruchira Sasanka - created.
//**************************************************************************/
//***TODO: There are several places we add instructions. Validate the order
// of adding these instructions.
#include "llvm/CodeGen/PhyRegAlloc.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/MachineFrameInfo.h"
// ***TODO: There are several places we add instructions. Validate the order
// of adding these instructions.
@ -15,15 +31,18 @@ cl::Enum<RegAllocDebugLevel_t> DEBUG_RA("dregalloc", cl::NoFlags,
//----------------------------------------------------------------------------
// Constructor: Init local composite objects and create register classes.
//----------------------------------------------------------------------------
PhyRegAlloc::PhyRegAlloc(const Method *const M,
PhyRegAlloc::PhyRegAlloc(Method *M,
const TargetMachine& tm,
MethodLiveVarInfo *const Lvi)
: RegClassList(),
Meth(M), TM(tm), LVI(Lvi), LRI(M, tm, RegClassList),
TM(tm),
Meth(M),
mcInfo(MachineCodeForMethod::get(M)),
LVI(Lvi), LRI(M, tm, RegClassList),
MRI( tm.getRegInfo() ),
NumOfRegClasses(MRI.getNumOfRegClasses()),
AddedInstrMap(), StackOffsets() /*, PhiInstList()*/
AddedInstrMap()
/*, PhiInstList()*/
{
// **TODO: use an actual reserved color list
ReservedColorListType *RCL = new ReservedColorListType();
@ -31,10 +50,6 @@ PhyRegAlloc::PhyRegAlloc(const Method *const M,
// create each RegisterClass and put in RegClassList
for( unsigned int rc=0; rc < NumOfRegClasses; rc++)
RegClassList.push_back( new RegClass(M, MRI.getMachineRegClass(rc), RCL) );
// **TODO: Init to the correct value. Also reset this to the correct
// value at the start of each instruction. Need a way to track max used
int curOffset4TmpSpills =0 ;
}
//----------------------------------------------------------------------------
@ -318,125 +333,6 @@ void PhyRegAlloc::addInterferencesForArgs()
}
#if 0
//----------------------------------------------------------------------------
// This method inserts caller saving/restoring instructons before/after
// a call machine instruction.
//----------------------------------------------------------------------------
void PhyRegAlloc::insertCallerSavingCode(const MachineInstr *MInst,
const BasicBlock *BB )
{
// assert( (TM.getInstrInfo()).isCall( MInst->getOpCode() ) );
StackOffsets.resetTmpPos();
hash_set<unsigned> PushedRegSet;
// Now find the LR of the return value of the call
// The last *implicit operand* is the return value of a call
// Insert it to to he PushedRegSet since we must not save that register
// and restore it after the call.
// We do this because, we look at the LV set *after* the instruction
// to determine, which LRs must be saved across calls. The return value
// of the call is live in this set - but we must not save/restore it.
const Value *RetVal = MRI.getCallInstRetVal( MInst );
if( RetVal ) {
LiveRange *RetValLR = LRI.getLiveRangeForValue( RetVal );
assert( RetValLR && "No LR for RetValue of call");
PushedRegSet.insert(
MRI.getUnifiedRegNum((RetValLR->getRegClass())->getID(),
RetValLR->getColor() ) );
}
const LiveVarSet *LVSetAft = LVI->getLiveVarSetAfterMInst(MInst, BB);
LiveVarSet::const_iterator LIt = LVSetAft->begin();
// for each live var in live variable set after machine inst
for( ; LIt != LVSetAft->end(); ++LIt) {
// get the live range corresponding to live var
LiveRange *const LR = LRI.getLiveRangeForValue(*LIt );
// LR can be null if it is a const since a const
// doesn't have a dominating def - see Assumptions above
if( LR ) {
if( LR->hasColor() ) {
unsigned RCID = (LR->getRegClass())->getID();
unsigned Color = LR->getColor();
if ( MRI.isRegVolatile(RCID, Color) ) {
// if the value is in both LV sets (i.e., live before and after
// the call machine instruction)
unsigned Reg = MRI.getUnifiedRegNum(RCID, Color);
if( PushedRegSet.find(Reg) == PushedRegSet.end() ) {
// if we haven't already pushed that register
unsigned RegType = MRI.getRegType( LR );
// Now get two instructions - to push on stack and pop from stack
// and add them to InstrnsBefore and InstrnsAfter of the
// call instruction
int StackOff = StackOffsets.getNewTmpPosOffFromSP();
/**** TODO
if( RegType == SaveViaIntReg) {
int FreeIntReg = getFreedIntReg(......)
}
*/
MachineInstr *AdIBef =
MRI.cpReg2MemMI(Reg, MRI.getStackPointer(), StackOff, RegType );
MachineInstr *AdIAft =
MRI.cpMem2RegMI(MRI.getStackPointer(), StackOff, Reg, RegType );
((AddedInstrMap[MInst])->InstrnsBefore).push_front(AdIBef);
((AddedInstrMap[MInst])->InstrnsAfter).push_back(AdIAft);
PushedRegSet.insert( Reg );
if(DEBUG_RA) {
cerr << "\nFor callee save call inst:" << *MInst;
cerr << "\n -inserted caller saving instrs:\n\t ";
cerr << *AdIBef << "\n\t" << *AdIAft ;
}
} // if not already pushed
} // if LR has a volatile color
} // if LR has color
} // if there is a LR for Var
} // for each value in the LV set after instruction
}
#endif
//----------------------------------------------------------------------------
// This method is called after register allocation is complete to set the
// allocated reisters in the machine code. This code will add register numbers
@ -490,8 +386,8 @@ void PhyRegAlloc::updateMachineCode()
// reset the stack offset for temporary variables since we may
// need that to spill
StackOffsets.resetTmpPos();
mcInfo.popAllTempValues(TM);
//for(MachineInstr::val_op_const_iterator OpI(MInst);!OpI.done();++OpI) {
for(unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum) {
@ -607,82 +503,6 @@ void PhyRegAlloc::updateMachineCode()
}
#if 0
//----------------------------------------------------------------------------
// This method inserts spill code for AN operand whose LR was spilled.
// This method may be called several times for a single machine instruction
// if it contains many spilled operands. Each time it is called, it finds
// a register which is not live at that instruction and also which is not
// used by other spilled operands of the same instruction. Then it uses
// this register temporarily to accomodate the spilled value.
//----------------------------------------------------------------------------
void PhyRegAlloc::insertCode4SpilledLR(const LiveRange *LR,
const MachineInstr *MInst,
const BasisBlock *BB,
const unsigned OpNum) {
MachineOperand& Op = MInst->getOperand(OpNum);
bool isDef = MInst->operandIsDefined(OpNum);
unsigned RegType = MRI.getRegType( LR );
int SpillOff = LR->getSpillOffFromFP();
RegClass *RC = LR->getRegClass();
const LiveVarSet *LVSetBef = LVI->getLiveVarSetBeforeMInst(MInst, BB);
int TmpOff = StackOffsets.getNewTmpPosOffFromSP();
MachineInstr *MIBef, *AdIMid, *MIAft;
int TmpReg;
TmpReg = getUsableRegAtMI(RC, RegType, MInst,LVSetBef, MIBef, MIAft);
TmpReg = getUnifiedRegNum( RC->getID(), TmpReg );
if( !isDef ) {
// for a USE, we have to load the value of LR from stack to a TmpReg
// and use the TmpReg as one operand of instruction
// actual loading instruction
AdIMid = MRI.cpMem2RegMI(MRI.getFramePointer(), SpillOff, TmpReg, RegType);
if( MIBef )
((AddedInstrMap[MInst])->InstrnsBefore).push_back(MIBef);
((AddedInstrMap[MInst])->InstrnsBefore).push_back(AdiMid);
if( MIAft)
((AddedInstrMap[MInst])->InstrnsAfter).push_front(MIAft);
}
else { // if this is a Def
// for a DEF, we have to store the value produced by this instruction
// on the stack position allocated for this LR
// actual storing instruction
AdIMid = MRI.cpReg2MemMI(TmpReg, MRI.getFramePointer(), SpillOff, RegType);
if( MIBef )
((AddedInstrMap[MInst])->InstrnsBefore).push_back(MIBef);
((AddedInstrMap[MInst])->InstrnsBefore).push_back(AdiMid);
if( MIAft)
((AddedInstrMap[MInst])->InstrnsAfter).push_front(MIAft);
} // if !DEF
Op.setRegForValue( TmpReg ); // set the opearnd
}
#endif
//----------------------------------------------------------------------------
// We can use the following method to get a temporary register to be used
// BEFORE any given machine instruction. If there is a register available,
@ -710,8 +530,9 @@ int PhyRegAlloc::getUsableRegAtMI(RegClass *RC,
// we couldn't find an unused register. Generate code to free up a reg by
// saving it on stack and restoring after the instruction
int TmpOff = StackOffsets.getNewTmpPosOffFromFP();
/**** NOTE: THIS SHOULD USE THE RIGHT SIZE FOR THE REG BEING PUSHED ****/
int TmpOff = mcInfo.pushTempValue(TM, /*size*/ 8);
Reg = getRegNotUsedByThisInst(RC, MInst);
MIBef = MRI.cpReg2MemMI(Reg, MRI.getFramePointer(), TmpOff, RegType );
MIAft = MRI.cpMem2RegMI(MRI.getFramePointer(), TmpOff, Reg, RegType );
@ -1011,8 +832,8 @@ void PhyRegAlloc::colorCallRetArgs()
// Tmp stack poistions are needed by some calls that have spilled args
// So reset it before we call each such method
StackOffsets.resetTmpPos();
mcInfo.popAllTempValues(TM);
if( (TM.getInstrInfo()).isCall( OpCode ) )
MRI.colorCallArgs( CRMI, LRI, AI, *this );
@ -1112,17 +933,13 @@ void PhyRegAlloc::allocateStackSpace4SpilledLRs()
LiveRangeMapType::const_iterator HMIEnd = (LRI.getLiveRangeMap())->end();
for( ; HMI != HMIEnd ; ++HMI ) {
if( (*HMI).first ) {
LiveRange *L = (*HMI).second; // get the LiveRange
if(L)
if( ! L->hasColor() )
L->setSpillOffFromFP( StackOffsets.getNewSpillOffFromFP() );
L->setSpillOffFromFP(mcInfo.allocateSpilledValue(TM,L->getType()));
}
} // for all LR's in hash map
StackOffsets.setEndOfSpillRegion();
}
@ -1195,7 +1012,7 @@ void PhyRegAlloc::allocateRegisters()
updateMachineCode();
if (DEBUG_RA) {
Meth->getMachineCode().dump();
MachineCodeForMethod::get(Meth).dump();
printMachineCode(); // only for DEBUGGING
}
}

View File

@ -62,73 +62,6 @@ typedef hash_map<const MachineInstr *, AddedInstrns *> AddedInstrMapType;
//----------------------------------------------------------------------------
// Class RegStackOffsets:
// This class is responsible for managing stack frame of the method for
// register allocation.
//
//----------------------------------------------------------------------------
class RegStackOffsets {
private:
int curSpilledVarOff; // cur pos of spilled LRs
int curNewTmpPosOffset; // cur pos of tmp values on stack
bool isTmpRegionUsable; // can we call getNewTmpPosOffFromFP
const int SizeOfStackItem; // size of an item on stack
const int StackSpillStartFromFP; // start position of spill region
int StartOfTmpRegion; // start of the tmp var region
public:
// constructor
RegStackOffsets(int SEnSize=8, int StartSpill=176 ) :
SizeOfStackItem(SEnSize), StackSpillStartFromFP(StartSpill) {
curSpilledVarOff = StartSpill;
isTmpRegionUsable = false;
};
int getNewSpillOffFromFP() {
int tmp = curSpilledVarOff;
curSpilledVarOff += SizeOfStackItem;
return tmp; // **TODO: Is sending un-incremented value correct?
};
// The following method must be called only after allocating space
// for spilled LRs and calling setEndOfSpillRegion()
int getNewTmpPosOffFromFP() {
assert( isTmpRegionUsable && "Spill region still open");
int tmp = curNewTmpPosOffset;
curNewTmpPosOffset += SizeOfStackItem;
return tmp; //**TODO: Is sending un-incremented val correct?
};
// This method is called when we have allocated space for all spilled
// LRs. The tmp region can be used only after a call to this method.
void setEndOfSpillRegion() {
assert(( ! isTmpRegionUsable) && "setEndOfSpillRegion called again");
isTmpRegionUsable = true;
StartOfTmpRegion = curSpilledVarOff;
}
// called when temporary values allocated on stack are no longer needed
void resetTmpPos() {
curNewTmpPosOffset = StartOfTmpRegion;
}
};
//----------------------------------------------------------------------------
// class PhyRegAlloc:
// Main class the register allocator. Call allocateRegisters() to allocate
@ -136,12 +69,13 @@ class RegStackOffsets {
//----------------------------------------------------------------------------
class PhyRegAlloc
class PhyRegAlloc: public NonCopyable
{
vector<RegClass *> RegClassList ; // vector of register classes
const Method *const Meth; // name of the method we work on
const TargetMachine &TM; // target machine
const Method* Meth; // name of the method we work on
MachineCodeForMethod& mcInfo; // descriptor for method's native code
MethodLiveVarInfo *const LVI; // LV information for this method
// (already computed for BBs)
LiveRangeInfo LRI; // LR info (will be computed)
@ -154,8 +88,6 @@ class PhyRegAlloc
AddedInstrMapType AddedInstrMap; // to store instrns added in this phase
RegStackOffsets StackOffsets;
//vector<const MachineInstr *> PhiInstList; // a list of all phi instrs
//------- private methods ---------------------------------------------------
@ -178,10 +110,6 @@ class PhyRegAlloc
void markUnusableSugColors();
void allocateStackSpace4SpilledLRs();
RegStackOffsets & getStackOffsets() {
return StackOffsets;
}
inline void constructLiveRanges()
{ LRI.constructLiveRanges(); }
@ -212,7 +140,7 @@ class PhyRegAlloc
public:
PhyRegAlloc(const Method *const M, const TargetMachine& TM,
PhyRegAlloc(Method *const M, const TargetMachine& TM,
MethodLiveVarInfo *const Lvi);
void allocateRegisters(); // main method called for allocatin