[LV] Remove constant restriction for vector phi creation

We previously only created a vector phi node for an induction variable if its
step had a constant integer type. However, the step actually only needs to be
loop-invariant. We only handle inductions having loop-invariant steps, so this
patch should enable vector phi node creation for all integer induction
variables that will be vectorized.

Differential Revision: https://reviews.llvm.org/D29956

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@295456 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Matthew Simpson 2017-02-17 16:09:07 +00:00
parent c00b7d61ca
commit 132a62ceff
2 changed files with 126 additions and 56 deletions

View File

@ -539,13 +539,12 @@ protected:
/// can be a truncate instruction).
void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal);
/// Create a vector induction phi node based on an existing scalar one. This
/// currently only works for integer induction variables with a constant
/// step. \p EntryVal is the value from the original loop that maps to the
/// vector phi node. If \p EntryVal is a truncate instruction, instead of
/// widening the original IV, we widen a version of the IV truncated to \p
/// EntryVal's type.
void createVectorIntInductionPHI(const InductionDescriptor &II,
/// Create a vector induction phi node based on an existing scalar one. \p
/// EntryVal is the value from the original loop that maps to the vector phi
/// node, and \p Step is the loop-invariant step. If \p EntryVal is a
/// truncate instruction, instead of widening the original IV, we widen a
/// version of the IV truncated to \p EntryVal's type.
void createVectorIntInductionPHI(const InductionDescriptor &II, Value *Step,
Instruction *EntryVal);
/// Widen an integer induction variable \p IV. If \p Trunc is provided, the
@ -2038,16 +2037,7 @@ public:
return false;
// If the truncated value is not an induction variable, return false.
if (!Legal->isInductionVariable(Op))
return false;
// Lastly, we only consider an induction variable truncate to be
// optimizable if it has a constant step.
//
// TODO: Expand optimizable truncates to include truncations of induction
// variables having loop-invariant steps.
auto ID = Legal->getInductionVars()->lookup(cast<PHINode>(Op));
return ID.getConstIntStepValue();
return Legal->isInductionVariable(Op);
}
private:
@ -2366,26 +2356,34 @@ Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
}
void InnerLoopVectorizer::createVectorIntInductionPHI(
const InductionDescriptor &II, Instruction *EntryVal) {
const InductionDescriptor &II, Value *Step, Instruction *EntryVal) {
Value *Start = II.getStartValue();
ConstantInt *Step = II.getConstIntStepValue();
assert(Step && "Can not widen an IV with a non-constant step");
assert(Step->getType()->isIntegerTy() &&
"Cannot widen an IV having a step with a non-integer type");
// Construct the initial value of the vector IV in the vector loop preheader
auto CurrIP = Builder.saveIP();
Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
if (isa<TruncInst>(EntryVal)) {
auto *TruncType = cast<IntegerType>(EntryVal->getType());
Step = ConstantInt::getSigned(TruncType, Step->getSExtValue());
Step = Builder.CreateTrunc(Step, TruncType);
Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
}
Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
Value *SteppedStart = getStepVector(SplatStart, 0, Step);
// Create a vector splat to use in the induction update.
//
// FIXME: If the step is non-constant, we create the vector splat with
// IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
// handle a constant vector splat.
auto *ConstVF = ConstantInt::getSigned(Step->getType(), VF);
auto *Mul = Builder.CreateMul(Step, ConstVF);
Value *SplatVF = isa<Constant>(Mul)
? ConstantVector::getSplat(VF, cast<Constant>(Mul))
: Builder.CreateVectorSplat(VF, Mul);
Builder.restoreIP(CurrIP);
Value *SplatVF =
ConstantVector::getSplat(VF, ConstantInt::getSigned(Start->getType(),
VF * Step->getSExtValue()));
// We may need to add the step a number of times, depending on the unroll
// factor. The last of those goes into the PHI.
PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
@ -2440,9 +2438,6 @@ void InnerLoopVectorizer::widenIntInduction(PHINode *IV, TruncInst *Trunc) {
// induction variable.
Value *ScalarIV = nullptr;
// The step of the induction.
Value *Step = nullptr;
// The value from the original loop to which we are mapping the new induction
// variable.
Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
@ -2455,44 +2450,42 @@ void InnerLoopVectorizer::widenIntInduction(PHINode *IV, TruncInst *Trunc) {
// least one user in the loop that is not widened.
auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal);
// If the induction variable has a constant integer step value, go ahead and
// get it now.
if (ID.getConstIntStepValue())
Step = ID.getConstIntStepValue();
// Generate code for the induction step. Note that induction steps are
// required to be loop-invariant
assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) &&
"Induction step should be loop invariant");
auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
SCEVExpander Exp(*PSE.getSE(), DL, "induction");
Value *Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(),
LoopVectorPreHeader->getTerminator());
// Try to create a new independent vector induction variable. If we can't
// create the phi node, we will splat the scalar induction variable in each
// loop iteration.
if (VF > 1 && Step && !shouldScalarizeInstruction(EntryVal)) {
createVectorIntInductionPHI(ID, EntryVal);
if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) {
createVectorIntInductionPHI(ID, Step, EntryVal);
VectorizedIV = true;
}
// If we haven't yet vectorized the induction variable, or if we will create
// a scalar one, we need to define the scalar induction variable and step
// values. If we were given a truncation type, truncate the canonical
// induction variable and constant step. Otherwise, derive these values from
// the induction descriptor.
// induction variable and step. Otherwise, derive these values from the
// induction descriptor.
if (!VectorizedIV || NeedsScalarIV) {
if (Trunc) {
auto *TruncType = cast<IntegerType>(Trunc->getType());
assert(Step && "Truncation requires constant integer step");
auto StepInt = cast<ConstantInt>(Step)->getSExtValue();
assert(Step->getType()->isIntegerTy() &&
"Truncation requires an integer step");
ScalarIV = Builder.CreateCast(Instruction::Trunc, Induction, TruncType);
Step = ConstantInt::getSigned(TruncType, StepInt);
Step = Builder.CreateTrunc(Step, TruncType);
} else {
ScalarIV = Induction;
auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
if (IV != OldInduction) {
ScalarIV = Builder.CreateSExtOrTrunc(ScalarIV, IV->getType());
ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL);
ScalarIV->setName("offset.idx");
}
if (!Step) {
SCEVExpander Exp(*PSE.getSE(), DL, "induction");
Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(),
&*Builder.GetInsertPoint());
}
}
}

View File

@ -12,11 +12,30 @@
;}
; CHECK-LABEL: @induction_with_global(
; CHECK: %[[INT_INC:.*]] = load i32, i32* @int_inc, align 4
; CHECK: vector.body:
; CHECK: %[[VAR1:.*]] = insertelement <8 x i32> undef, i32 %[[INT_INC]], i32 0
; CHECK: %[[VAR2:.*]] = shufflevector <8 x i32> %[[VAR1]], <8 x i32> undef, <8 x i32> zeroinitializer
; CHECK: mul <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>, %[[VAR2]]
; CHECK: for.body.lr.ph:
; CHECK-NEXT: [[TMP0:%.*]] = load i32, i32* @int_inc, align 4
; CHECK: vector.ph:
; CHECK-NEXT: [[DOTSPLATINSERT:%.*]] = insertelement <8 x i32> undef, i32 %init, i32 0
; CHECK-NEXT: [[DOTSPLAT:%.*]] = shufflevector <8 x i32> [[DOTSPLATINSERT]], <8 x i32> undef, <8 x i32> zeroinitializer
; CHECK-NEXT: [[DOTSPLATINSERT2:%.*]] = insertelement <8 x i32> undef, i32 [[TMP0]], i32 0
; CHECK-NEXT: [[DOTSPLAT3:%.*]] = shufflevector <8 x i32> [[DOTSPLATINSERT2]], <8 x i32> undef, <8 x i32> zeroinitializer
; CHECK-NEXT: [[TMP6:%.*]] = mul <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>, [[DOTSPLAT3]]
; CHECK-NEXT: [[INDUCTION4:%.*]] = add <8 x i32> [[DOTSPLAT]], [[TMP6]]
; CHECK-NEXT: [[TMP7:%.*]] = mul i32 [[TMP0]], 8
; CHECK-NEXT: [[DOTSPLATINSERT5:%.*]] = insertelement <8 x i32> undef, i32 [[TMP7]], i32 0
; CHECK-NEXT: [[DOTSPLAT6:%.*]] = shufflevector <8 x i32> [[DOTSPLATINSERT5]], <8 x i32> undef, <8 x i32> zeroinitializer
; CHECK-NEXT: br label %vector.body
; CHECK: vector.body:
; CHECK-NEXT: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
; CHECK-NEXT: %vec.ind = phi <8 x i32> [ [[INDUCTION4]], %vector.ph ], [ %vec.ind.next, %vector.body ]
; CHECK: [[TMP8:%.*]] = add i64 %index, 0
; CHECK-NEXT: [[TMP9:%.*]] = getelementptr inbounds i32, i32* [[A:%.*]], i64 [[TMP8]]
; CHECK-NEXT: [[TMP10:%.*]] = getelementptr i32, i32* [[TMP9]], i32 0
; CHECK-NEXT: [[TMP11:%.*]] = bitcast i32* [[TMP10]] to <8 x i32>*
; CHECK-NEXT: store <8 x i32> %vec.ind, <8 x i32>* [[TMP11]], align 4
; CHECK: %index.next = add i64 %index, 8
; CHECK-NEXT: %vec.ind.next = add <8 x i32> %vec.ind, [[DOTSPLAT6]]
; CHECK: br i1 {{.*}}, label %middle.block, label %vector.body
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
@ -66,13 +85,28 @@ for.end: ; preds = %for.end.loopexit, %
;}
; CHECK-LABEL: @induction_with_loop_inv(
; CHECK: for.cond1.preheader:
; CHECK: %[[INDVAR0:.*]] = phi i32 [ 0,
; CHECK: %[[INDVAR1:.*]] = phi i32 [ 0,
; CHECK: vector.body:
; CHECK: %[[VAR1:.*]] = insertelement <8 x i32> undef, i32 %[[INDVAR1]], i32 0
; CHECK: %[[VAR2:.*]] = shufflevector <8 x i32> %[[VAR1]], <8 x i32> undef, <8 x i32> zeroinitializer
; CHECK: mul <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>, %[[VAR2]]
; CHECK: vector.ph:
; CHECK-NEXT: [[DOTSPLATINSERT:%.*]] = insertelement <8 x i32> undef, i32 %x.011, i32 0
; CHECK-NEXT: [[DOTSPLAT:%.*]] = shufflevector <8 x i32> [[DOTSPLATINSERT]], <8 x i32> undef, <8 x i32> zeroinitializer
; CHECK-NEXT: [[DOTSPLATINSERT2:%.*]] = insertelement <8 x i32> undef, i32 %j.012, i32 0
; CHECK-NEXT: [[DOTSPLAT3:%.*]] = shufflevector <8 x i32> [[DOTSPLATINSERT2]], <8 x i32> undef, <8 x i32> zeroinitializer
; CHECK-NEXT: [[TMP4:%.*]] = mul <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>, [[DOTSPLAT3]]
; CHECK-NEXT: [[INDUCTION4:%.*]] = add <8 x i32> [[DOTSPLAT]], [[TMP4]]
; CHECK-NEXT: [[TMP5:%.*]] = mul i32 %j.012, 8
; CHECK-NEXT: [[DOTSPLATINSERT5:%.*]] = insertelement <8 x i32> undef, i32 [[TMP5]], i32 0
; CHECK-NEXT: [[DOTSPLAT6:%.*]] = shufflevector <8 x i32> [[DOTSPLATINSERT5]], <8 x i32> undef, <8 x i32> zeroinitializer
; CHECK-NEXT: br label %vector.body
; CHECK: vector.body:
; CHECK-NEXT: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
; CHECK-NEXT: %vec.ind = phi <8 x i32> [ [[INDUCTION4]], %vector.ph ], [ %vec.ind.next, %vector.body ]
; CHECK: [[TMP6:%.*]] = add i64 %index, 0
; CHECK-NEXT: [[TMP7:%.*]] = getelementptr inbounds i32, i32* [[A:%.*]], i64 [[TMP6]]
; CHECK-NEXT: [[TMP8:%.*]] = getelementptr i32, i32* [[TMP7]], i32 0
; CHECK-NEXT: [[TMP9:%.*]] = bitcast i32* [[TMP8]] to <8 x i32>*
; CHECK-NEXT: store <8 x i32> %vec.ind, <8 x i32>* [[TMP9]], align 4
; CHECK: %index.next = add i64 %index, 8
; CHECK-NEXT: %vec.ind.next = add <8 x i32> %vec.ind, [[DOTSPLAT6]]
; CHECK: br i1 {{.*}}, label %middle.block, label %vector.body
define i32 @induction_with_loop_inv(i32 %init, i32* noalias nocapture %A, i32 %N, i32 %M) {
entry:
@ -122,3 +156,46 @@ for.end6: ; preds = %for.end6.loopexit,
%x.0.lcssa = phi i32 [ %init, %entry ], [ %x.1.lcssa.lcssa, %for.end6.loopexit ]
ret i32 %x.0.lcssa
}
; CHECK-LABEL: @non_primary_iv_loop_inv_trunc(
; CHECK: vector.ph:
; CHECK: [[TMP3:%.*]] = trunc i64 %step to i32
; CHECK-NEXT: [[DOTSPLATINSERT5:%.*]] = insertelement <8 x i32> undef, i32 [[TMP3]], i32 0
; CHECK-NEXT: [[DOTSPLAT6:%.*]] = shufflevector <8 x i32> [[DOTSPLATINSERT5]], <8 x i32> undef, <8 x i32> zeroinitializer
; CHECK-NEXT: [[TMP4:%.*]] = mul <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>, [[DOTSPLAT6]]
; CHECK-NEXT: [[INDUCTION7:%.*]] = add <8 x i32> zeroinitializer, [[TMP4]]
; CHECK-NEXT: [[TMP5:%.*]] = mul i32 [[TMP3]], 8
; CHECK-NEXT: [[DOTSPLATINSERT8:%.*]] = insertelement <8 x i32> undef, i32 [[TMP5]], i32 0
; CHECK-NEXT: [[DOTSPLAT9:%.*]] = shufflevector <8 x i32> [[DOTSPLATINSERT8]], <8 x i32> undef, <8 x i32> zeroinitializer
; CHECK-NEXT: br label %vector.body
; CHECK: vector.body:
; CHECK-NEXT: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
; CHECK: [[VEC_IND10:%.*]] = phi <8 x i32> [ [[INDUCTION7]], %vector.ph ], [ [[VEC_IND_NEXT11:%.*]], %vector.body ]
; CHECK: [[TMP6:%.*]] = add i64 %index, 0
; CHECK-NEXT: [[TMP7:%.*]] = getelementptr inbounds i32, i32* [[A:%.*]], i64 [[TMP6]]
; CHECK-NEXT: [[TMP8:%.*]] = getelementptr i32, i32* [[TMP7]], i32 0
; CHECK-NEXT: [[TMP9:%.*]] = bitcast i32* [[TMP8]] to <8 x i32>*
; CHECK-NEXT: store <8 x i32> [[VEC_IND10]], <8 x i32>* [[TMP9]], align 4
; CHECK-NEXT: %index.next = add i64 %index, 8
; CHECK: [[VEC_IND_NEXT11]] = add <8 x i32> [[VEC_IND10]], [[DOTSPLAT9]]
; CHECK: br i1 {{.*}}, label %middle.block, label %vector.body
define void @non_primary_iv_loop_inv_trunc(i32* %a, i64 %n, i64 %step) {
entry:
br label %for.body
for.body:
%i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
%j = phi i64 [ %j.next, %for.body ], [ 0, %entry ]
%tmp0 = getelementptr inbounds i32, i32* %a, i64 %i
%tmp1 = trunc i64 %j to i32
store i32 %tmp1, i32* %tmp0, align 4
%i.next = add nuw nsw i64 %i, 1
%j.next = add nuw nsw i64 %j, %step
%cond = icmp slt i64 %i.next, %n
br i1 %cond, label %for.body, label %for.end
for.end:
ret void
}