mirror of
https://github.com/RPCSX/llvm.git
synced 2024-11-23 19:59:57 +00:00
[DAG] Teach computeKnownBits and ComputeNumSignBits in SelectionDAG to look through EXTRACT_VECTOR_ELT.
Summary: Both computeKnownBits and ComputeNumSignBits can now do a simple look-through of EXTRACT_VECTOR_ELT. It will compute the result based on the known bits (or known sign bits) for the vector that the element is extracted from. Reviewers: bogner, tstellarAMD, mkuper Subscribers: wdng, RKSimon, jyknight, llvm-commits, nhaehnle Differential Revision: https://reviews.llvm.org/D25007 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283347 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
54f81efe2c
commit
17676e0feb
@ -2448,6 +2448,26 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
|
||||
KnownOne = KnownOne.trunc(BitWidth);
|
||||
break;
|
||||
}
|
||||
case ISD::EXTRACT_VECTOR_ELT: {
|
||||
// At the moment we keep this simple and skip tracking the specific
|
||||
// element. This way we get the lowest common denominator for all elements
|
||||
// of the vector.
|
||||
// TODO: get information for given vector element
|
||||
const unsigned BitWidth = Op.getValueSizeInBits();
|
||||
const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
|
||||
// If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
|
||||
// anything about the extended bits.
|
||||
if (BitWidth > EltBitWidth) {
|
||||
KnownZero = KnownZero.trunc(EltBitWidth);
|
||||
KnownOne = KnownOne.trunc(EltBitWidth);
|
||||
}
|
||||
computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
|
||||
if (BitWidth > EltBitWidth) {
|
||||
KnownZero = KnownZero.zext(BitWidth);
|
||||
KnownOne = KnownOne.zext(BitWidth);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case ISD::BSWAP: {
|
||||
computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
|
||||
KnownZero = KnownZero2.byteSwap();
|
||||
@ -2715,6 +2735,20 @@ unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
|
||||
// result. Otherwise it gives either negative or > bitwidth result
|
||||
return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
|
||||
}
|
||||
case ISD::EXTRACT_VECTOR_ELT: {
|
||||
// At the moment we keep this simple and skip tracking the specific
|
||||
// element. This way we get the lowest common denominator for all elements
|
||||
// of the vector.
|
||||
// TODO: get information for given vector element
|
||||
const unsigned BitWidth = Op.getValueSizeInBits();
|
||||
const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
|
||||
// If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
|
||||
// anything about sign bits. But if the sizes match we can derive knowledge
|
||||
// about sign bits from the vector operand.
|
||||
if (BitWidth == EltBitWidth)
|
||||
return ComputeNumSignBits(Op.getOperand(0), Depth+1);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// If we are looking at the loaded value of the SDNode.
|
||||
|
@ -229,7 +229,8 @@ for.end:
|
||||
|
||||
; SI-PROMOTE-DAG: buffer_store_short v{{[0-9]+}}, v{{[0-9]+}}, s[{{[0-9]+:[0-9]+}}], s{{[0-9]+}} offen ; encoding: [0x00,0x10,0x68,0xe0
|
||||
; SI-PROMOTE-DAG: buffer_store_short v{{[0-9]+}}, v{{[0-9]+}}, s[{{[0-9]+:[0-9]+}}], s{{[0-9]+}} offen offset:2 ; encoding: [0x02,0x10,0x68,0xe0
|
||||
; SI-PROMOTE: buffer_load_sshort v{{[0-9]+}}, v{{[0-9]+}}, s[{{[0-9]+:[0-9]+}}], s{{[0-9]+}}
|
||||
; Loaded value is 0 or 1, so sext will become zext, so we get buffer_load_ushort instead of buffer_load_sshort.
|
||||
; SI-PROMOTE: buffer_load_ushort v{{[0-9]+}}, v{{[0-9]+}}, s[{{[0-9]+:[0-9]+}}], s{{[0-9]+}}
|
||||
define void @short_array(i32 addrspace(1)* %out, i32 %index) #0 {
|
||||
entry:
|
||||
%0 = alloca [2 x i16]
|
||||
|
19
test/CodeGen/SPARC/vector-extract-elt.ll
Normal file
19
test/CodeGen/SPARC/vector-extract-elt.ll
Normal file
@ -0,0 +1,19 @@
|
||||
; RUN: llc -march=sparc < %s | FileCheck %s
|
||||
|
||||
|
||||
; If computeKnownSignBits (in SelectionDAG) can do a simple
|
||||
; look-thru for extractelement then we we know that the add will yield a
|
||||
; non-negative result.
|
||||
define i1 @test1(<4 x i16>* %in) {
|
||||
; CHECK-LABEL: ! BB#0:
|
||||
; CHECK-NEXT: retl
|
||||
; CHECK-NEXT: sethi 0, %o0
|
||||
%vec2 = load <4 x i16>, <4 x i16>* %in, align 1
|
||||
%vec3 = lshr <4 x i16> %vec2, <i16 2, i16 2, i16 2, i16 2>
|
||||
%vec4 = sext <4 x i16> %vec3 to <4 x i32>
|
||||
%elt0 = extractelement <4 x i32> %vec4, i32 0
|
||||
%elt1 = extractelement <4 x i32> %vec4, i32 1
|
||||
%sum = add i32 %elt0, %elt1
|
||||
%bool = icmp slt i32 %sum, 0
|
||||
ret i1 %bool
|
||||
}
|
@ -34,8 +34,8 @@ entry:
|
||||
; CHECK-LABEL: func:
|
||||
; CHECK: pextrq $1, %xmm0,
|
||||
; CHECK-NEXT: movd %xmm0, %r[[AX:..]]
|
||||
; CHECK-NEXT: movslq %e[[AX]],
|
||||
; CHECK-NEXT: sarq $32, %r[[AX]]
|
||||
; CHECK-NEXT: movq %r[[AX]],
|
||||
; CHECK-NEXT: shrq $32, %r9
|
||||
}
|
||||
|
||||
declare void @toto(double*, double*, double*, double*, double*, double*)
|
||||
|
Loading…
Reference in New Issue
Block a user