Fixed consecutive memory access detection in Loop Vectorizer.

It did not handle correctly cases without GEP.

The following loop wasn't vectorized:

for (int i=0; i<len; i++)

  *to++ = *from++;

I use getPtrStride() to find Stride for memory access and return 0 is the Stride is not 1 or -1.

Re-commit rL273257 - revision: http://reviews.llvm.org/D20789



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@273864 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Elena Demikhovsky 2016-06-27 11:19:23 +00:00
parent c4cd97e86f
commit 1abadbff39
6 changed files with 93 additions and 90 deletions

View File

@ -679,9 +679,11 @@ const SCEV *replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
/// to \p PtrToStride and therefore add further predicates to \p PSE.
/// The \p Assume parameter indicates if we are allowed to make additional
/// run-time assumptions.
/// The \p ShouldCheckWrap indicates that we should ensure that address
/// calculation does not wrap.
int getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr, const Loop *Lp,
const ValueToValueMap &StridesMap = ValueToValueMap(),
bool Assume = false);
bool Assume = false, bool ShouldCheckWrap = true);
/// \brief Returns true if the memory operations \p A and \p B are consecutive.
/// This is a simple API that does not depend on the analysis pass.

View File

@ -866,7 +866,7 @@ static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
/// \brief Check whether the access through \p Ptr has a constant stride.
int llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr,
const Loop *Lp, const ValueToValueMap &StridesMap,
bool Assume) {
bool Assume, bool ShouldCheckWrap) {
Type *Ty = Ptr->getType();
assert(Ty->isPointerTy() && "Unexpected non-ptr");
@ -905,9 +905,9 @@ int llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr,
// to access the pointer value "0" which is undefined behavior in address
// space 0, therefore we can also vectorize this case.
bool IsInBoundsGEP = isInBoundsGep(Ptr);
bool IsNoWrapAddRec =
PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
isNoWrapAddRec(Ptr, AR, PSE, Lp);
bool IsNoWrapAddRec = !ShouldCheckWrap ||
PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
isNoWrapAddRec(Ptr, AR, PSE, Lp);
bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
if (Assume) {

View File

@ -2242,87 +2242,13 @@ Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx,
}
int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr");
auto *SE = PSE.getSE();
// Make sure that the pointer does not point to structs.
if (Ptr->getType()->getPointerElementType()->isAggregateType())
return 0;
// If this value is a pointer induction variable, we know it is consecutive.
PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
if (Phi && Inductions.count(Phi)) {
InductionDescriptor II = Inductions[Phi];
return II.getConsecutiveDirection();
}
GetElementPtrInst *Gep = getGEPInstruction(Ptr);
if (!Gep)
return 0;
unsigned NumOperands = Gep->getNumOperands();
Value *GpPtr = Gep->getPointerOperand();
// If this GEP value is a consecutive pointer induction variable and all of
// the indices are constant, then we know it is consecutive.
Phi = dyn_cast<PHINode>(GpPtr);
if (Phi && Inductions.count(Phi)) {
// Make sure that the pointer does not point to structs.
PointerType *GepPtrType = cast<PointerType>(GpPtr->getType());
if (GepPtrType->getElementType()->isAggregateType())
return 0;
// Make sure that all of the index operands are loop invariant.
for (unsigned i = 1; i < NumOperands; ++i)
if (!SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop))
return 0;
InductionDescriptor II = Inductions[Phi];
return II.getConsecutiveDirection();
}
unsigned InductionOperand = getGEPInductionOperand(Gep);
// Check that all of the gep indices are uniform except for our induction
// operand.
for (unsigned i = 0; i != NumOperands; ++i)
if (i != InductionOperand &&
!SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop))
return 0;
// We can emit wide load/stores only if the last non-zero index is the
// induction variable.
const SCEV *Last = nullptr;
if (!getSymbolicStrides() || !getSymbolicStrides()->count(Gep))
Last = PSE.getSCEV(Gep->getOperand(InductionOperand));
else {
// Because of the multiplication by a stride we can have a s/zext cast.
// We are going to replace this stride by 1 so the cast is safe to ignore.
//
// %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
// %0 = trunc i64 %indvars.iv to i32
// %mul = mul i32 %0, %Stride1
// %idxprom = zext i32 %mul to i64 << Safe cast.
// %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom
//
Last = replaceSymbolicStrideSCEV(PSE, *getSymbolicStrides(),
Gep->getOperand(InductionOperand), Gep);
if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last))
Last =
(C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend)
? C->getOperand()
: Last;
}
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
const SCEV *Step = AR->getStepRecurrence(*SE);
// The memory is consecutive because the last index is consecutive
// and all other indices are loop invariant.
if (Step->isOne())
return 1;
if (Step->isAllOnesValue())
return -1;
}
const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() :
ValueToValueMap();
int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false);
if (Stride == 1 || Stride == -1)
return Stride;
return 0;
}
@ -2658,7 +2584,9 @@ void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
// Handle consecutive loads/stores.
GetElementPtrInst *Gep = getGEPInstruction(Ptr);
if (ConsecutiveStride) {
if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) {
if (Gep &&
!PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getPointerOperand()),
OrigLoop)) {
setDebugLocFromInst(Builder, Gep);
Value *PtrOperand = Gep->getPointerOperand();
Value *FirstBasePtr = getVectorValue(PtrOperand)[0];
@ -2671,9 +2599,6 @@ void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
Ptr = Builder.Insert(Gep2);
} else if (Gep) {
setDebugLocFromInst(Builder, Gep);
assert(PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getPointerOperand()),
OrigLoop) &&
"Base ptr must be invariant");
// The last index does not have to be the induction. It can be
// consecutive and be a function of the index. For example A[I+1];
unsigned NumOperands = Gep->getNumOperands();
@ -2702,8 +2627,6 @@ void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
}
Ptr = Builder.Insert(Gep2);
} else { // No GEP
// Use the induction element ptr.
assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
setDebugLocFromInst(Builder, Ptr);
VectorParts &PtrVal = getVectorValue(Ptr);
Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);

View File

@ -0,0 +1,43 @@
; RUN: opt < %s -loop-vectorize -force-vector-width=4 -force-vector-interleave=1 -instcombine -S | FileCheck %s
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-linux-gnu"
;; Check consecutive memory access without preceding GEP instruction
; for (int i=0; i<len; i++) {
; *to++ = *from++;
; }
; CHECK-LABEL: @consecutive_no_gep(
; CHECK: vector.body
; CHECK: %[[index:.*]] = phi i64 [ 0, %vector.ph ]
; CHECK: getelementptr float, float* %{{.*}}, i64 %[[index]]
; CHECK: load <4 x float>
define void @consecutive_no_gep(float* noalias nocapture readonly %from, float* noalias nocapture %to, i32 %len) #0 {
entry:
%cmp2 = icmp sgt i32 %len, 0
br i1 %cmp2, label %for.body.preheader, label %for.end
for.body.preheader: ; preds = %entry
br label %for.body
for.body: ; preds = %for.body.preheader, %for.body
%i.05 = phi i32 [ %inc, %for.body ], [ 0, %for.body.preheader ]
%from.addr.04 = phi float* [ %incdec.ptr, %for.body ], [ %from, %for.body.preheader ]
%to.addr.03 = phi float* [ %incdec.ptr1, %for.body ], [ %to, %for.body.preheader ]
%incdec.ptr = getelementptr inbounds float, float* %from.addr.04, i64 1
%val = load float, float* %from.addr.04, align 4
%incdec.ptr1 = getelementptr inbounds float, float* %to.addr.03, i64 1
store float %val, float* %to.addr.03, align 4
%inc = add nsw i32 %i.05, 1
%cmp = icmp slt i32 %inc, %len
br i1 %cmp, label %for.body, label %for.end.loopexit
for.end.loopexit: ; preds = %for.body
br label %for.end
for.end: ; preds = %for.end.loopexit, %entry
ret void
}

View File

@ -0,0 +1,34 @@
; RUN: opt < %s -loop-vectorize -S | FileCheck %s
target datalayout = "E-m:e-i64:64-n32:64"
target triple = "powerpc64-unknown-linux-gnu"
; CHECK-LABEL: @img2buf
; CHECK: store <4 x i32>
; Function Attrs: nounwind
define void @img2buf(i64 %val, i8* nocapture %buf, i32 %N) local_unnamed_addr #0 {
entry:
br label %l2
l2:
br label %for.body57.us
for.body57.us:
%indvars.iv24 = phi i64 [ %val, %l2 ], [ %indvars.iv.next25, %for.body57.us ]
%0 = trunc i64 %indvars.iv24 to i32
%add77.us = add i32 5, %0
%mul78.us = shl nsw i32 %add77.us, 2
%idx.ext79.us = sext i32 %mul78.us to i64
%add.ptr80.us = getelementptr inbounds i8, i8* %buf, i64 %idx.ext79.us
%ui32.0.add.ptr80.sroa_cast.us = bitcast i8* %add.ptr80.us to i32*
store i32 0, i32* %ui32.0.add.ptr80.sroa_cast.us, align 1
%indvars.iv.next25 = add nsw i64 %indvars.iv24, 1
%lftr.wideiv26 = trunc i64 %indvars.iv.next25 to i32
%exitcond27 = icmp eq i32 %lftr.wideiv26, %N
br i1 %exitcond27, label %l3, label %for.body57.us
l3:
ret void
}
attributes #0 = { nounwind "disable-tail-calls"="false" "less-precise-fpmad"="false" "no-frame-pointer-elim"="false" "no-infs-fp-math"="false" "no-jump-tables"="false" "no-nans-fp-math"="false" "stack-protector-buffer-size"="8" "target-cpu"="ppc64" "target-features"="+altivec,-bpermd,-crypto,-direct-move,-extdiv,-power8-vector,-qpx,-vsx" "unsafe-fp-math"="false" "use-soft-float"="false" }

View File

@ -18,6 +18,7 @@ while.body.preheader: ; preds = %entry
while.body: ; preds = %while.body.preheader, %while.body
%a.pn = phi i32* [ %incdec.ptr8, %while.body ], [ %a, %while.body.preheader ]
%acc.07 = phi i32 [ %add, %while.body ], [ 0, %while.body.preheader ]
%a1.pn = getelementptr inbounds i32, i32* %a.pn, i64 0
%incdec.ptr8 = getelementptr inbounds i32, i32* %a.pn, i64 1
%0 = load i32, i32* %incdec.ptr8, align 1
%add = add nuw nsw i32 %0, %acc.07