start adding MRMDestMem, which requires memory form mod/rm encoding

to start limping.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@95350 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2010-02-05 02:18:40 +00:00
parent 28249d98e1
commit 1ac23b1038

View File

@ -25,9 +25,12 @@ class X86MCCodeEmitter : public MCCodeEmitter {
void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
const TargetMachine &TM;
const TargetInstrInfo &TII;
bool Is64BitMode;
public:
X86MCCodeEmitter(TargetMachine &tm)
: TM(tm), TII(*TM.getInstrInfo()) {
// FIXME: Get this from the right place.
Is64BitMode = false;
}
~X86MCCodeEmitter() {}
@ -59,6 +62,9 @@ public:
EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), OS);
}
void EmitMemModRMByte(const MCInst &MI, unsigned Op,
unsigned RegOpcodeField, intptr_t PCAdj,
raw_ostream &OS) const;
void EncodeInstruction(const MCInst &MI, raw_ostream &OS) const;
@ -73,6 +79,143 @@ MCCodeEmitter *llvm::createX86MCCodeEmitter(const Target &,
}
/// isDisp8 - Return true if this signed displacement fits in a 8-bit
/// sign-extended field.
static bool isDisp8(int Value) {
return Value == (signed char)Value;
}
void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
unsigned RegOpcodeField,
intptr_t PCAdj,
raw_ostream &OS) const {
const MCOperand &Op3 = MI.getOperand(Op+3);
int DispVal = 0;
const MCOperand *DispForReloc = 0;
// Figure out what sort of displacement we have to handle here.
if (Op3.isImm()) {
DispVal = Op3.getImm();
} else {
#if 0
if (Op3.isGlobal()) {
DispForReloc = &Op3;
} else if (Op3.isSymbol()) {
DispForReloc = &Op3;
} else if (Op3.isCPI()) {
if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
DispForReloc = &Op3;
} else {
DispVal += MCE.getConstantPoolEntryAddress(Op3.getIndex());
DispVal += Op3.getOffset();
}
} else {
assert(Op3.isJTI());
if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
DispForReloc = &Op3;
} else {
DispVal += MCE.getJumpTableEntryAddress(Op3.getIndex());
}
#endif
}
const MCOperand &Base = MI.getOperand(Op);
//const MCOperand &Scale = MI.getOperand(Op+1);
const MCOperand &IndexReg = MI.getOperand(Op+2);
unsigned BaseReg = Base.getReg();
// Is a SIB byte needed?
// If no BaseReg, issue a RIP relative instruction only if the MCE can
// resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
// 2-7) and absolute references.
if ((!Is64BitMode || DispForReloc || BaseReg != 0) &&
IndexReg.getReg() == 0 &&
(BaseReg == X86::RIP || (BaseReg != 0 && BaseReg != X86::ESP))) {
if (BaseReg == 0 || BaseReg == X86::RIP) { // Just a displacement?
// Emit special case [disp32] encoding
EmitByte(ModRMByte(0, RegOpcodeField, 5), OS);
#if 0
emitDisplacementField(DispForReloc, DispVal, PCAdj, true);
#endif
} else {
unsigned BaseRegNo = GetX86RegNum(Base);
if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
// Emit simple indirect register encoding... [EAX] f.e.
EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), OS);
} else if (!DispForReloc && isDisp8(DispVal)) {
// Emit the disp8 encoding... [REG+disp8]
EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), OS);
EmitConstant(DispVal, 1, OS);
} else {
// Emit the most general non-SIB encoding: [REG+disp32]
EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), OS);
#if 0
emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
#endif
}
}
} else { // We need a SIB byte, so start by outputting the ModR/M byte first
assert(IndexReg.getReg() != X86::ESP &&
IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
bool ForceDisp32 = false;
bool ForceDisp8 = false;
if (BaseReg == 0) {
// If there is no base register, we emit the special case SIB byte with
// MOD=0, BASE=5, to JUST get the index, scale, and displacement.
EmitByte(ModRMByte(0, RegOpcodeField, 4), OS);
ForceDisp32 = true;
} else if (DispForReloc) {
// Emit the normal disp32 encoding.
EmitByte(ModRMByte(2, RegOpcodeField, 4), OS);
ForceDisp32 = true;
} else if (DispVal == 0 && BaseReg != X86::EBP) {
// Emit no displacement ModR/M byte
EmitByte(ModRMByte(0, RegOpcodeField, 4), OS);
} else if (isDisp8(DispVal)) {
// Emit the disp8 encoding.
EmitByte(ModRMByte(1, RegOpcodeField, 4), OS);
ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
} else {
// Emit the normal disp32 encoding.
EmitByte(ModRMByte(2, RegOpcodeField, 4), OS);
}
#if 0
// Calculate what the SS field value should be...
static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
unsigned SS = SSTable[Scale.getImm()];
if (BaseReg == 0) {
// Handle the SIB byte for the case where there is no base, see Intel
// Manual 2A, table 2-7. The displacement has already been output.
unsigned IndexRegNo;
if (IndexReg.getReg())
IndexRegNo = getX86RegNum(IndexReg.getReg());
else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
IndexRegNo = 4;
emitSIBByte(SS, IndexRegNo, 5);
} else {
unsigned BaseRegNo = getX86RegNum(BaseReg);
unsigned IndexRegNo;
if (IndexReg.getReg())
IndexRegNo = getX86RegNum(IndexReg.getReg());
else
IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
emitSIBByte(SS, IndexRegNo, BaseRegNo);
}
// Do we need to output a displacement?
if (ForceDisp8) {
emitConstant(DispVal, 1);
} else if (DispVal != 0 || ForceDisp32) {
emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
}
#endif
}
}
void X86MCCodeEmitter::
EncodeInstruction(const MCInst &MI, raw_ostream &OS) const {
@ -175,9 +318,12 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS) const {
// Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
--NumOps;
// FIXME: Can we kill off MRMInitReg??
unsigned char BaseOpcode = X86InstrInfo::getBaseOpcodeFor(Desc);
switch (TSFlags & X86II::FormMask) {
default: assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
case X86II::RawFrm: {
EmitByte(BaseOpcode, OS);
@ -213,6 +359,17 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS) const {
EmitConstant(MI.getOperand(CurOp++).getImm(),
X86InstrInfo::sizeOfImm(&Desc), OS);
break;
case X86II::MRMDestMem:
EmitByte(BaseOpcode, OS);
EmitMemModRMByte(MI, CurOp,
GetX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)),
0, OS);
CurOp += X86AddrNumOperands + 1;
if (CurOp != NumOps)
EmitConstant(MI.getOperand(CurOp++).getImm(),
X86InstrInfo::sizeOfImm(&Desc), OS);
break;
}
#ifndef NDEBUG