mirror of
https://github.com/RPCSX/llvm.git
synced 2024-11-28 06:00:28 +00:00
Revert r296474 - [globalisel] Change LLT constructor string into an LLT subclass that knows how to generate it.
There's a circular dependency that's only revealed when LLVM_ENABLE_MODULES=1. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296478 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
bfdb3f2a5a
commit
1e598cbf73
@ -1,4 +1,4 @@
|
||||
//== llvm/CodeGen/LowLevelType.h ------------------------------- -*- C++ -*-==//
|
||||
//== llvm/CodeGen/GlobalISel/LowLevelType.h -------------------- -*- C++ -*-==//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
@ -10,23 +10,197 @@
|
||||
/// Implement a low-level type suitable for MachineInstr level instruction
|
||||
/// selection.
|
||||
///
|
||||
/// This provides the CodeGen aspects of LowLevelType, such as Type conversion.
|
||||
/// For a type attached to a MachineInstr, we only care about 2 details: total
|
||||
/// size and the number of vector lanes (if any). Accordingly, there are 4
|
||||
/// possible valid type-kinds:
|
||||
///
|
||||
/// * `sN` for scalars and aggregates
|
||||
/// * `<N x sM>` for vectors, which must have at least 2 elements.
|
||||
/// * `pN` for pointers
|
||||
///
|
||||
/// Other information required for correct selection is expected to be carried
|
||||
/// by the opcode, or non-type flags. For example the distinction between G_ADD
|
||||
/// and G_FADD for int/float or fast-math flags.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_CODEGEN_LOWLEVELTYPE_H
|
||||
#define LLVM_CODEGEN_LOWLEVELTYPE_H
|
||||
#ifndef LLVM_CODEGEN_GLOBALISEL_LOWLEVELTYPE_H
|
||||
#define LLVM_CODEGEN_GLOBALISEL_LOWLEVELTYPE_H
|
||||
|
||||
#include "llvm/Support/LowLevelTypeImpl.h"
|
||||
#include <cassert>
|
||||
#include "llvm/ADT/DenseMapInfo.h"
|
||||
#include "llvm/CodeGen/ValueTypes.h"
|
||||
|
||||
namespace llvm {
|
||||
|
||||
class DataLayout;
|
||||
class LLVMContext;
|
||||
class Type;
|
||||
class raw_ostream;
|
||||
|
||||
/// Construct a low-level type based on an LLVM type.
|
||||
LLT getLLTForType(Type &Ty, const DataLayout &DL);
|
||||
class LLT {
|
||||
public:
|
||||
enum TypeKind : uint16_t {
|
||||
Invalid,
|
||||
Scalar,
|
||||
Pointer,
|
||||
Vector,
|
||||
};
|
||||
|
||||
/// Get a low-level scalar or aggregate "bag of bits".
|
||||
static LLT scalar(unsigned SizeInBits) {
|
||||
assert(SizeInBits > 0 && "invalid scalar size");
|
||||
return LLT{Scalar, 1, SizeInBits};
|
||||
}
|
||||
|
||||
/// Get a low-level pointer in the given address space (defaulting to 0).
|
||||
static LLT pointer(uint16_t AddressSpace, unsigned SizeInBits) {
|
||||
return LLT{Pointer, AddressSpace, SizeInBits};
|
||||
}
|
||||
|
||||
/// Get a low-level vector of some number of elements and element width.
|
||||
/// \p NumElements must be at least 2.
|
||||
static LLT vector(uint16_t NumElements, unsigned ScalarSizeInBits) {
|
||||
assert(NumElements > 1 && "invalid number of vector elements");
|
||||
return LLT{Vector, NumElements, ScalarSizeInBits};
|
||||
}
|
||||
|
||||
/// Get a low-level vector of some number of elements and element type.
|
||||
static LLT vector(uint16_t NumElements, LLT ScalarTy) {
|
||||
assert(NumElements > 1 && "invalid number of vector elements");
|
||||
assert(ScalarTy.isScalar() && "invalid vector element type");
|
||||
return LLT{Vector, NumElements, ScalarTy.getSizeInBits()};
|
||||
}
|
||||
|
||||
explicit LLT(TypeKind Kind, uint16_t NumElements, unsigned SizeInBits)
|
||||
: SizeInBits(SizeInBits), ElementsOrAddrSpace(NumElements), Kind(Kind) {
|
||||
assert((Kind != Vector || ElementsOrAddrSpace > 1) &&
|
||||
"invalid number of vector elements");
|
||||
}
|
||||
|
||||
explicit LLT() : SizeInBits(0), ElementsOrAddrSpace(0), Kind(Invalid) {}
|
||||
|
||||
/// Construct a low-level type based on an LLVM type.
|
||||
explicit LLT(Type &Ty, const DataLayout &DL);
|
||||
|
||||
explicit LLT(MVT VT);
|
||||
|
||||
bool isValid() const { return Kind != Invalid; }
|
||||
|
||||
bool isScalar() const { return Kind == Scalar; }
|
||||
|
||||
bool isPointer() const { return Kind == Pointer; }
|
||||
|
||||
bool isVector() const { return Kind == Vector; }
|
||||
|
||||
/// Returns the number of elements in a vector LLT. Must only be called on
|
||||
/// vector types.
|
||||
uint16_t getNumElements() const {
|
||||
assert(isVector() && "cannot get number of elements on scalar/aggregate");
|
||||
return ElementsOrAddrSpace;
|
||||
}
|
||||
|
||||
/// Returns the total size of the type. Must only be called on sized types.
|
||||
unsigned getSizeInBits() const {
|
||||
if (isPointer() || isScalar())
|
||||
return SizeInBits;
|
||||
return SizeInBits * ElementsOrAddrSpace;
|
||||
}
|
||||
|
||||
unsigned getScalarSizeInBits() const {
|
||||
return SizeInBits;
|
||||
}
|
||||
|
||||
unsigned getAddressSpace() const {
|
||||
assert(isPointer() && "cannot get address space of non-pointer type");
|
||||
return ElementsOrAddrSpace;
|
||||
}
|
||||
|
||||
/// Returns the vector's element type. Only valid for vector types.
|
||||
LLT getElementType() const {
|
||||
assert(isVector() && "cannot get element type of scalar/aggregate");
|
||||
return scalar(SizeInBits);
|
||||
}
|
||||
|
||||
/// Get a low-level type with half the size of the original, by halving the
|
||||
/// size of the scalar type involved. For example `s32` will become `s16`,
|
||||
/// `<2 x s32>` will become `<2 x s16>`.
|
||||
LLT halfScalarSize() const {
|
||||
assert(!isPointer() && getScalarSizeInBits() > 1 &&
|
||||
getScalarSizeInBits() % 2 == 0 && "cannot half size of this type");
|
||||
return LLT{Kind, ElementsOrAddrSpace, SizeInBits / 2};
|
||||
}
|
||||
|
||||
/// Get a low-level type with twice the size of the original, by doubling the
|
||||
/// size of the scalar type involved. For example `s32` will become `s64`,
|
||||
/// `<2 x s32>` will become `<2 x s64>`.
|
||||
LLT doubleScalarSize() const {
|
||||
assert(!isPointer() && "cannot change size of this type");
|
||||
return LLT{Kind, ElementsOrAddrSpace, SizeInBits * 2};
|
||||
}
|
||||
|
||||
/// Get a low-level type with half the size of the original, by halving the
|
||||
/// number of vector elements of the scalar type involved. The source must be
|
||||
/// a vector type with an even number of elements. For example `<4 x s32>`
|
||||
/// will become `<2 x s32>`, `<2 x s32>` will become `s32`.
|
||||
LLT halfElements() const {
|
||||
assert(isVector() && ElementsOrAddrSpace % 2 == 0 &&
|
||||
"cannot half odd vector");
|
||||
if (ElementsOrAddrSpace == 2)
|
||||
return scalar(SizeInBits);
|
||||
|
||||
return LLT{Vector, static_cast<uint16_t>(ElementsOrAddrSpace / 2),
|
||||
SizeInBits};
|
||||
}
|
||||
|
||||
/// Get a low-level type with twice the size of the original, by doubling the
|
||||
/// number of vector elements of the scalar type involved. The source must be
|
||||
/// a vector type. For example `<2 x s32>` will become `<4 x s32>`. Doubling
|
||||
/// the number of elements in sN produces <2 x sN>.
|
||||
LLT doubleElements() const {
|
||||
assert(!isPointer() && "cannot double elements in pointer");
|
||||
return LLT{Vector, static_cast<uint16_t>(ElementsOrAddrSpace * 2),
|
||||
SizeInBits};
|
||||
}
|
||||
|
||||
void print(raw_ostream &OS) const;
|
||||
|
||||
bool operator==(const LLT &RHS) const {
|
||||
return Kind == RHS.Kind && SizeInBits == RHS.SizeInBits &&
|
||||
ElementsOrAddrSpace == RHS.ElementsOrAddrSpace;
|
||||
}
|
||||
|
||||
bool operator!=(const LLT &RHS) const { return !(*this == RHS); }
|
||||
|
||||
friend struct DenseMapInfo<LLT>;
|
||||
private:
|
||||
unsigned SizeInBits;
|
||||
uint16_t ElementsOrAddrSpace;
|
||||
TypeKind Kind;
|
||||
};
|
||||
|
||||
inline raw_ostream& operator<<(raw_ostream &OS, const LLT &Ty) {
|
||||
Ty.print(OS);
|
||||
return OS;
|
||||
}
|
||||
|
||||
template<> struct DenseMapInfo<LLT> {
|
||||
static inline LLT getEmptyKey() {
|
||||
return LLT{LLT::Invalid, 0, -1u};
|
||||
}
|
||||
static inline LLT getTombstoneKey() {
|
||||
return LLT{LLT::Invalid, 0, -2u};
|
||||
}
|
||||
static inline unsigned getHashValue(const LLT &Ty) {
|
||||
uint64_t Val = ((uint64_t)Ty.SizeInBits << 32) |
|
||||
((uint64_t)Ty.ElementsOrAddrSpace << 16) | (uint64_t)Ty.Kind;
|
||||
return DenseMapInfo<uint64_t>::getHashValue(Val);
|
||||
}
|
||||
static bool isEqual(const LLT &LHS, const LLT &RHS) {
|
||||
return LHS == RHS;
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif // LLVM_CODEGEN_LOWLEVELTYPE_H
|
||||
#endif
|
||||
|
@ -1,202 +0,0 @@
|
||||
//== llvm/Support/LowLevelTypeImpl.h --------------------------- -*- C++ -*-==//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
/// Implement a low-level type suitable for MachineInstr level instruction
|
||||
/// selection.
|
||||
///
|
||||
/// For a type attached to a MachineInstr, we only care about 2 details: total
|
||||
/// size and the number of vector lanes (if any). Accordingly, there are 4
|
||||
/// possible valid type-kinds:
|
||||
///
|
||||
/// * `sN` for scalars and aggregates
|
||||
/// * `<N x sM>` for vectors, which must have at least 2 elements.
|
||||
/// * `pN` for pointers
|
||||
///
|
||||
/// Other information required for correct selection is expected to be carried
|
||||
/// by the opcode, or non-type flags. For example the distinction between G_ADD
|
||||
/// and G_FADD for int/float or fast-math flags.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_SUPPORT_LOWLEVELTYPEIMPL_H
|
||||
#define LLVM_SUPPORT_LOWLEVELTYPEIMPL_H
|
||||
|
||||
#include <cassert>
|
||||
#include "llvm/ADT/DenseMapInfo.h"
|
||||
#include "llvm/CodeGen/MachineValueType.h"
|
||||
|
||||
namespace llvm {
|
||||
|
||||
class DataLayout;
|
||||
class Type;
|
||||
class raw_ostream;
|
||||
|
||||
class LLT {
|
||||
public:
|
||||
enum TypeKind : uint16_t {
|
||||
Invalid,
|
||||
Scalar,
|
||||
Pointer,
|
||||
Vector,
|
||||
};
|
||||
|
||||
/// Get a low-level scalar or aggregate "bag of bits".
|
||||
static LLT scalar(unsigned SizeInBits) {
|
||||
assert(SizeInBits > 0 && "invalid scalar size");
|
||||
return LLT{Scalar, 1, SizeInBits};
|
||||
}
|
||||
|
||||
/// Get a low-level pointer in the given address space (defaulting to 0).
|
||||
static LLT pointer(uint16_t AddressSpace, unsigned SizeInBits) {
|
||||
return LLT{Pointer, AddressSpace, SizeInBits};
|
||||
}
|
||||
|
||||
/// Get a low-level vector of some number of elements and element width.
|
||||
/// \p NumElements must be at least 2.
|
||||
static LLT vector(uint16_t NumElements, unsigned ScalarSizeInBits) {
|
||||
assert(NumElements > 1 && "invalid number of vector elements");
|
||||
return LLT{Vector, NumElements, ScalarSizeInBits};
|
||||
}
|
||||
|
||||
/// Get a low-level vector of some number of elements and element type.
|
||||
static LLT vector(uint16_t NumElements, LLT ScalarTy) {
|
||||
assert(NumElements > 1 && "invalid number of vector elements");
|
||||
assert(ScalarTy.isScalar() && "invalid vector element type");
|
||||
return LLT{Vector, NumElements, ScalarTy.getSizeInBits()};
|
||||
}
|
||||
|
||||
explicit LLT(TypeKind Kind, uint16_t NumElements, unsigned SizeInBits)
|
||||
: SizeInBits(SizeInBits), ElementsOrAddrSpace(NumElements), Kind(Kind) {
|
||||
assert((Kind != Vector || ElementsOrAddrSpace > 1) &&
|
||||
"invalid number of vector elements");
|
||||
}
|
||||
|
||||
explicit LLT() : SizeInBits(0), ElementsOrAddrSpace(0), Kind(Invalid) {}
|
||||
|
||||
explicit LLT(MVT VT);
|
||||
|
||||
bool isValid() const { return Kind != Invalid; }
|
||||
|
||||
bool isScalar() const { return Kind == Scalar; }
|
||||
|
||||
bool isPointer() const { return Kind == Pointer; }
|
||||
|
||||
bool isVector() const { return Kind == Vector; }
|
||||
|
||||
/// Returns the number of elements in a vector LLT. Must only be called on
|
||||
/// vector types.
|
||||
uint16_t getNumElements() const {
|
||||
assert(isVector() && "cannot get number of elements on scalar/aggregate");
|
||||
return ElementsOrAddrSpace;
|
||||
}
|
||||
|
||||
/// Returns the total size of the type. Must only be called on sized types.
|
||||
unsigned getSizeInBits() const {
|
||||
if (isPointer() || isScalar())
|
||||
return SizeInBits;
|
||||
return SizeInBits * ElementsOrAddrSpace;
|
||||
}
|
||||
|
||||
unsigned getScalarSizeInBits() const {
|
||||
return SizeInBits;
|
||||
}
|
||||
|
||||
unsigned getAddressSpace() const {
|
||||
assert(isPointer() && "cannot get address space of non-pointer type");
|
||||
return ElementsOrAddrSpace;
|
||||
}
|
||||
|
||||
/// Returns the vector's element type. Only valid for vector types.
|
||||
LLT getElementType() const {
|
||||
assert(isVector() && "cannot get element type of scalar/aggregate");
|
||||
return scalar(SizeInBits);
|
||||
}
|
||||
|
||||
/// Get a low-level type with half the size of the original, by halving the
|
||||
/// size of the scalar type involved. For example `s32` will become `s16`,
|
||||
/// `<2 x s32>` will become `<2 x s16>`.
|
||||
LLT halfScalarSize() const {
|
||||
assert(!isPointer() && getScalarSizeInBits() > 1 &&
|
||||
getScalarSizeInBits() % 2 == 0 && "cannot half size of this type");
|
||||
return LLT{Kind, ElementsOrAddrSpace, SizeInBits / 2};
|
||||
}
|
||||
|
||||
/// Get a low-level type with twice the size of the original, by doubling the
|
||||
/// size of the scalar type involved. For example `s32` will become `s64`,
|
||||
/// `<2 x s32>` will become `<2 x s64>`.
|
||||
LLT doubleScalarSize() const {
|
||||
assert(!isPointer() && "cannot change size of this type");
|
||||
return LLT{Kind, ElementsOrAddrSpace, SizeInBits * 2};
|
||||
}
|
||||
|
||||
/// Get a low-level type with half the size of the original, by halving the
|
||||
/// number of vector elements of the scalar type involved. The source must be
|
||||
/// a vector type with an even number of elements. For example `<4 x s32>`
|
||||
/// will become `<2 x s32>`, `<2 x s32>` will become `s32`.
|
||||
LLT halfElements() const {
|
||||
assert(isVector() && ElementsOrAddrSpace % 2 == 0 &&
|
||||
"cannot half odd vector");
|
||||
if (ElementsOrAddrSpace == 2)
|
||||
return scalar(SizeInBits);
|
||||
|
||||
return LLT{Vector, static_cast<uint16_t>(ElementsOrAddrSpace / 2),
|
||||
SizeInBits};
|
||||
}
|
||||
|
||||
/// Get a low-level type with twice the size of the original, by doubling the
|
||||
/// number of vector elements of the scalar type involved. The source must be
|
||||
/// a vector type. For example `<2 x s32>` will become `<4 x s32>`. Doubling
|
||||
/// the number of elements in sN produces <2 x sN>.
|
||||
LLT doubleElements() const {
|
||||
assert(!isPointer() && "cannot double elements in pointer");
|
||||
return LLT{Vector, static_cast<uint16_t>(ElementsOrAddrSpace * 2),
|
||||
SizeInBits};
|
||||
}
|
||||
|
||||
void print(raw_ostream &OS) const;
|
||||
|
||||
bool operator==(const LLT &RHS) const {
|
||||
return Kind == RHS.Kind && SizeInBits == RHS.SizeInBits &&
|
||||
ElementsOrAddrSpace == RHS.ElementsOrAddrSpace;
|
||||
}
|
||||
|
||||
bool operator!=(const LLT &RHS) const { return !(*this == RHS); }
|
||||
|
||||
friend struct DenseMapInfo<LLT>;
|
||||
private:
|
||||
unsigned SizeInBits;
|
||||
uint16_t ElementsOrAddrSpace;
|
||||
TypeKind Kind;
|
||||
};
|
||||
|
||||
inline raw_ostream& operator<<(raw_ostream &OS, const LLT &Ty) {
|
||||
Ty.print(OS);
|
||||
return OS;
|
||||
}
|
||||
|
||||
template<> struct DenseMapInfo<LLT> {
|
||||
static inline LLT getEmptyKey() {
|
||||
return LLT{LLT::Invalid, 0, -1u};
|
||||
}
|
||||
static inline LLT getTombstoneKey() {
|
||||
return LLT{LLT::Invalid, 0, -2u};
|
||||
}
|
||||
static inline unsigned getHashValue(const LLT &Ty) {
|
||||
uint64_t Val = ((uint64_t)Ty.SizeInBits << 32) |
|
||||
((uint64_t)Ty.ElementsOrAddrSpace << 16) | (uint64_t)Ty.Kind;
|
||||
return DenseMapInfo<uint64_t>::getHashValue(Val);
|
||||
}
|
||||
static bool isEqual(const LLT &LHS, const LLT &RHS) {
|
||||
return LHS == RHS;
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif // LLVM_SUPPORT_LOWLEVELTYPEIMPL_H
|
@ -82,8 +82,7 @@ unsigned IRTranslator::getOrCreateVReg(const Value &Val) {
|
||||
// we need to concat together to produce the value.
|
||||
assert(Val.getType()->isSized() &&
|
||||
"Don't know how to create an empty vreg");
|
||||
unsigned VReg =
|
||||
MRI->createGenericVirtualRegister(getLLTForType(*Val.getType(), *DL));
|
||||
unsigned VReg = MRI->createGenericVirtualRegister(LLT{*Val.getType(), *DL});
|
||||
ValReg = VReg;
|
||||
|
||||
if (auto CV = dyn_cast<Constant>(&Val)) {
|
||||
@ -234,7 +233,7 @@ bool IRTranslator::translateSwitch(const User &U,
|
||||
const unsigned SwCondValue = getOrCreateVReg(*SwInst.getCondition());
|
||||
const BasicBlock *OrigBB = SwInst.getParent();
|
||||
|
||||
LLT LLTi1 = getLLTForType(*Type::getInt1Ty(U.getContext()), *DL);
|
||||
LLT LLTi1 = LLT(*Type::getInt1Ty(U.getContext()), *DL);
|
||||
for (auto &CaseIt : SwInst.cases()) {
|
||||
const unsigned CaseValueReg = getOrCreateVReg(*CaseIt.getCaseValue());
|
||||
const unsigned Tst = MRI->createGenericVirtualRegister(LLTi1);
|
||||
@ -290,7 +289,7 @@ bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
|
||||
|
||||
unsigned Res = getOrCreateVReg(LI);
|
||||
unsigned Addr = getOrCreateVReg(*LI.getPointerOperand());
|
||||
|
||||
LLT VTy{*LI.getType(), *DL}, PTy{*LI.getPointerOperand()->getType(), *DL};
|
||||
MIRBuilder.buildLoad(
|
||||
Res, Addr,
|
||||
*MF->getMachineMemOperand(MachinePointerInfo(LI.getPointerOperand()),
|
||||
@ -308,6 +307,8 @@ bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
|
||||
|
||||
unsigned Val = getOrCreateVReg(*SI.getValueOperand());
|
||||
unsigned Addr = getOrCreateVReg(*SI.getPointerOperand());
|
||||
LLT VTy{*SI.getValueOperand()->getType(), *DL},
|
||||
PTy{*SI.getPointerOperand()->getType(), *DL};
|
||||
|
||||
MIRBuilder.buildStore(
|
||||
Val, Addr,
|
||||
@ -383,8 +384,7 @@ bool IRTranslator::translateSelect(const User &U,
|
||||
|
||||
bool IRTranslator::translateBitCast(const User &U,
|
||||
MachineIRBuilder &MIRBuilder) {
|
||||
if (getLLTForType(*U.getOperand(0)->getType(), *DL) ==
|
||||
getLLTForType(*U.getType(), *DL)) {
|
||||
if (LLT{*U.getOperand(0)->getType(), *DL} == LLT{*U.getType(), *DL}) {
|
||||
unsigned &Reg = ValToVReg[&U];
|
||||
if (Reg)
|
||||
MIRBuilder.buildCopy(Reg, getOrCreateVReg(*U.getOperand(0)));
|
||||
@ -411,7 +411,7 @@ bool IRTranslator::translateGetElementPtr(const User &U,
|
||||
|
||||
Value &Op0 = *U.getOperand(0);
|
||||
unsigned BaseReg = getOrCreateVReg(Op0);
|
||||
LLT PtrTy = getLLTForType(*Op0.getType(), *DL);
|
||||
LLT PtrTy{*Op0.getType(), *DL};
|
||||
unsigned PtrSize = DL->getPointerSizeInBits(PtrTy.getAddressSpace());
|
||||
LLT OffsetTy = LLT::scalar(PtrSize);
|
||||
|
||||
@ -477,7 +477,7 @@ bool IRTranslator::translateGetElementPtr(const User &U,
|
||||
bool IRTranslator::translateMemfunc(const CallInst &CI,
|
||||
MachineIRBuilder &MIRBuilder,
|
||||
unsigned ID) {
|
||||
LLT SizeTy = getLLTForType(*CI.getArgOperand(2)->getType(), *DL);
|
||||
LLT SizeTy{*CI.getArgOperand(2)->getType(), *DL};
|
||||
Type *DstTy = CI.getArgOperand(0)->getType();
|
||||
if (cast<PointerType>(DstTy)->getAddressSpace() != 0 ||
|
||||
SizeTy.getSizeInBits() != DL->getPointerSizeInBits(0))
|
||||
@ -534,7 +534,7 @@ void IRTranslator::getStackGuard(unsigned DstReg,
|
||||
|
||||
bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
|
||||
MachineIRBuilder &MIRBuilder) {
|
||||
LLT Ty = getLLTForType(*CI.getOperand(0)->getType(), *DL);
|
||||
LLT Ty{*CI.getOperand(0)->getType(), *DL};
|
||||
LLT s1 = LLT::scalar(1);
|
||||
unsigned Width = Ty.getSizeInBits();
|
||||
unsigned Res = MRI->createGenericVirtualRegister(Ty);
|
||||
@ -677,7 +677,7 @@ bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
|
||||
getStackGuard(getOrCreateVReg(CI), MIRBuilder);
|
||||
return true;
|
||||
case Intrinsic::stackprotector: {
|
||||
LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
|
||||
LLT PtrTy{*CI.getArgOperand(0)->getType(), *DL};
|
||||
unsigned GuardVal = MRI->createGenericVirtualRegister(PtrTy);
|
||||
getStackGuard(GuardVal, MIRBuilder);
|
||||
|
||||
@ -820,7 +820,7 @@ bool IRTranslator::translateLandingPad(const User &U,
|
||||
|
||||
SmallVector<LLT, 2> Tys;
|
||||
for (Type *Ty : cast<StructType>(LP.getType())->elements())
|
||||
Tys.push_back(getLLTForType(*Ty, *DL));
|
||||
Tys.push_back(LLT{*Ty, *DL});
|
||||
assert(Tys.size() == 2 && "Only two-valued landingpads are supported");
|
||||
|
||||
// Mark exception register as live in.
|
||||
@ -885,7 +885,7 @@ bool IRTranslator::translateAlloca(const User &U,
|
||||
MIRBuilder.buildConstant(TySize, -DL->getTypeAllocSize(Ty));
|
||||
MIRBuilder.buildMul(AllocSize, NumElts, TySize);
|
||||
|
||||
LLT PtrTy = getLLTForType(*AI.getType(), *DL);
|
||||
LLT PtrTy = LLT{*AI.getType(), *DL};
|
||||
auto &TLI = *MF->getSubtarget().getTargetLowering();
|
||||
unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
//===-- llvm/CodeGen/LowLevelType.cpp -------------------------------------===//
|
||||
//===-- llvm/CodeGen/GlobalISel/LowLevelType.cpp --------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
@ -18,21 +18,54 @@
|
||||
#include "llvm/Support/raw_ostream.h"
|
||||
using namespace llvm;
|
||||
|
||||
LLT llvm::getLLTForType(Type &Ty, const DataLayout &DL) {
|
||||
LLT::LLT(Type &Ty, const DataLayout &DL) {
|
||||
if (auto VTy = dyn_cast<VectorType>(&Ty)) {
|
||||
auto NumElements = VTy->getNumElements();
|
||||
auto ScalarSizeInBits = VTy->getElementType()->getPrimitiveSizeInBits();
|
||||
if (NumElements == 1)
|
||||
return LLT::scalar(ScalarSizeInBits);
|
||||
return LLT::vector(NumElements, ScalarSizeInBits);
|
||||
SizeInBits = VTy->getElementType()->getPrimitiveSizeInBits();
|
||||
ElementsOrAddrSpace = VTy->getNumElements();
|
||||
Kind = ElementsOrAddrSpace == 1 ? Scalar : Vector;
|
||||
} else if (auto PTy = dyn_cast<PointerType>(&Ty)) {
|
||||
return LLT::pointer(PTy->getAddressSpace(), DL.getTypeSizeInBits(&Ty));
|
||||
Kind = Pointer;
|
||||
SizeInBits = DL.getTypeSizeInBits(&Ty);
|
||||
ElementsOrAddrSpace = PTy->getAddressSpace();
|
||||
} else if (Ty.isSized()) {
|
||||
// Aggregates are no different from real scalars as far as GlobalISel is
|
||||
// concerned.
|
||||
auto SizeInBits = DL.getTypeSizeInBits(&Ty);
|
||||
Kind = Scalar;
|
||||
SizeInBits = DL.getTypeSizeInBits(&Ty);
|
||||
ElementsOrAddrSpace = 1;
|
||||
assert(SizeInBits != 0 && "invalid zero-sized type");
|
||||
return LLT::scalar(SizeInBits);
|
||||
} else {
|
||||
Kind = Invalid;
|
||||
SizeInBits = ElementsOrAddrSpace = 0;
|
||||
}
|
||||
return LLT();
|
||||
}
|
||||
|
||||
LLT::LLT(MVT VT) {
|
||||
if (VT.isVector()) {
|
||||
SizeInBits = VT.getVectorElementType().getSizeInBits();
|
||||
ElementsOrAddrSpace = VT.getVectorNumElements();
|
||||
Kind = ElementsOrAddrSpace == 1 ? Scalar : Vector;
|
||||
} else if (VT.isValid()) {
|
||||
// Aggregates are no different from real scalars as far as GlobalISel is
|
||||
// concerned.
|
||||
Kind = Scalar;
|
||||
SizeInBits = VT.getSizeInBits();
|
||||
ElementsOrAddrSpace = 1;
|
||||
assert(SizeInBits != 0 && "invalid zero-sized type");
|
||||
} else {
|
||||
Kind = Invalid;
|
||||
SizeInBits = ElementsOrAddrSpace = 0;
|
||||
}
|
||||
}
|
||||
|
||||
void LLT::print(raw_ostream &OS) const {
|
||||
if (isVector())
|
||||
OS << "<" << ElementsOrAddrSpace << " x s" << SizeInBits << ">";
|
||||
else if (isPointer())
|
||||
OS << "p" << getAddressSpace();
|
||||
else if (isValid()) {
|
||||
assert(isScalar() && "unexpected type");
|
||||
OS << "s" << getScalarSizeInBits();
|
||||
} else
|
||||
llvm_unreachable("trying to print an invalid type");
|
||||
}
|
||||
|
@ -68,7 +68,6 @@ add_llvm_library(LLVMSupport
|
||||
LineIterator.cpp
|
||||
Locale.cpp
|
||||
LockFileManager.cpp
|
||||
LowLevelType.cpp
|
||||
ManagedStatic.cpp
|
||||
MathExtras.cpp
|
||||
MemoryBuffer.cpp
|
||||
|
@ -1,47 +0,0 @@
|
||||
//===-- llvm/Support/LowLevelType.cpp -------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
/// \file This file implements the more header-heavy bits of the LLT class to
|
||||
/// avoid polluting users' namespaces.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Support/LowLevelTypeImpl.h"
|
||||
#include "llvm/Support/raw_ostream.h"
|
||||
using namespace llvm;
|
||||
|
||||
LLT::LLT(MVT VT) {
|
||||
if (VT.isVector()) {
|
||||
SizeInBits = VT.getVectorElementType().getSizeInBits();
|
||||
ElementsOrAddrSpace = VT.getVectorNumElements();
|
||||
Kind = ElementsOrAddrSpace == 1 ? Scalar : Vector;
|
||||
} else if (VT.isValid()) {
|
||||
// Aggregates are no different from real scalars as far as GlobalISel is
|
||||
// concerned.
|
||||
Kind = Scalar;
|
||||
SizeInBits = VT.getSizeInBits();
|
||||
ElementsOrAddrSpace = 1;
|
||||
assert(SizeInBits != 0 && "invalid zero-sized type");
|
||||
} else {
|
||||
Kind = Invalid;
|
||||
SizeInBits = ElementsOrAddrSpace = 0;
|
||||
}
|
||||
}
|
||||
|
||||
void LLT::print(raw_ostream &OS) const {
|
||||
if (isVector())
|
||||
OS << "<" << ElementsOrAddrSpace << " x s" << SizeInBits << ">";
|
||||
else if (isPointer())
|
||||
OS << "p" << getAddressSpace();
|
||||
else if (isValid()) {
|
||||
assert(isScalar() && "unexpected type");
|
||||
OS << "s" << getScalarSizeInBits();
|
||||
} else
|
||||
llvm_unreachable("trying to print an invalid type");
|
||||
}
|
@ -192,8 +192,8 @@ void AArch64CallLowering::splitToValueTypes(
|
||||
// FIXME: set split flags if they're actually used (e.g. i128 on AAPCS).
|
||||
Type *SplitTy = SplitVT.getTypeForEVT(Ctx);
|
||||
SplitArgs.push_back(
|
||||
ArgInfo{MRI.createGenericVirtualRegister(getLLTForType(*SplitTy, DL)),
|
||||
SplitTy, OrigArg.Flags, OrigArg.IsFixed});
|
||||
ArgInfo{MRI.createGenericVirtualRegister(LLT{*SplitTy, DL}), SplitTy,
|
||||
OrigArg.Flags, OrigArg.IsFixed});
|
||||
}
|
||||
|
||||
SmallVector<uint64_t, 4> BitOffsets;
|
||||
|
@ -50,7 +50,7 @@ unsigned AMDGPUCallLowering::lowerParameterPtr(MachineIRBuilder &MIRBuilder,
|
||||
const Function &F = *MF.getFunction();
|
||||
const DataLayout &DL = F.getParent()->getDataLayout();
|
||||
PointerType *PtrTy = PointerType::get(ParamTy, AMDGPUAS::CONSTANT_ADDRESS);
|
||||
LLT PtrType = getLLTForType(*PtrTy, DL);
|
||||
LLT PtrType(*PtrTy, DL);
|
||||
unsigned DstReg = MRI.createGenericVirtualRegister(PtrType);
|
||||
unsigned KernArgSegmentPtr =
|
||||
TRI->getPreloadedValue(MF, SIRegisterInfo::KERNARG_SEGMENT_PTR);
|
||||
|
@ -58,9 +58,8 @@ void X86CallLowering::splitToValueTypes(const ArgInfo &OrigArg,
|
||||
Type *PartTy = PartVT.getTypeForEVT(Context);
|
||||
|
||||
for (unsigned i = 0; i < NumParts; ++i) {
|
||||
ArgInfo Info =
|
||||
ArgInfo{MRI.createGenericVirtualRegister(getLLTForType(*PartTy, DL)),
|
||||
PartTy, OrigArg.Flags};
|
||||
ArgInfo Info = ArgInfo{MRI.createGenericVirtualRegister(LLT{*PartTy, DL}),
|
||||
PartTy, OrigArg.Flags};
|
||||
SplitArgs.push_back(Info);
|
||||
BitOffsets.push_back(PartVT.getSizeInBits() * i);
|
||||
SplitRegs.push_back(Info.Reg);
|
||||
|
@ -68,7 +68,7 @@ TEST(LowLevelTypeTest, Scalar) {
|
||||
|
||||
// Test Type->LLT conversion.
|
||||
Type *IRTy = IntegerType::get(C, S);
|
||||
EXPECT_EQ(Ty, getLLTForType(*IRTy, DL));
|
||||
EXPECT_EQ(Ty, LLT(*IRTy, DL));
|
||||
}
|
||||
}
|
||||
|
||||
@ -160,7 +160,7 @@ TEST(LowLevelTypeTest, Vector) {
|
||||
// Test Type->LLT conversion.
|
||||
Type *IRSTy = IntegerType::get(C, S);
|
||||
Type *IRTy = VectorType::get(IRSTy, Elts);
|
||||
EXPECT_EQ(VTy, getLLTForType(*IRTy, DL));
|
||||
EXPECT_EQ(VTy, LLT(*IRTy, DL));
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -188,7 +188,7 @@ TEST(LowLevelTypeTest, Pointer) {
|
||||
|
||||
// Test Type->LLT conversion.
|
||||
Type *IRTy = PointerType::get(IntegerType::get(C, 8), AS);
|
||||
EXPECT_EQ(Ty, getLLTForType(*IRTy, DL));
|
||||
EXPECT_EQ(Ty, LLT(*IRTy, DL));
|
||||
}
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user