mirror of
https://github.com/RPCSX/llvm.git
synced 2025-01-24 05:09:34 +00:00
[Hexagon] Check for underflow/wrap in hardware loop pass
If the loop trip count may underflow or wrap, the compiler should not generate a hardware loop since the trip count will be incorrect. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237365 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
7c7cbd2669
commit
23b0065f29
@ -95,6 +95,7 @@ namespace {
|
||||
}
|
||||
|
||||
private:
|
||||
typedef std::map<unsigned, MachineInstr *> LoopFeederMap;
|
||||
|
||||
/// Kinds of comparisons in the compare instructions.
|
||||
struct Comparison {
|
||||
@ -203,14 +204,44 @@ namespace {
|
||||
/// defined. If the instructions are out of order, try to reorder them.
|
||||
bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI);
|
||||
|
||||
/// \brief Get the instruction that loads an immediate value into \p R,
|
||||
/// or 0 if such an instruction does not exist.
|
||||
MachineInstr *defWithImmediate(unsigned R);
|
||||
/// \brief Return true if MO and MI pair is visited only once. If visited
|
||||
/// more than once, this indicates there is recursion. In such a case,
|
||||
/// return false.
|
||||
bool isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, MachineInstr *MI,
|
||||
const MachineOperand *MO,
|
||||
LoopFeederMap &LoopFeederPhi) const;
|
||||
|
||||
/// \brief Get the immediate value referenced to by \p MO, either for
|
||||
/// immediate operands, or for register operands, where the register
|
||||
/// was defined with an immediate value.
|
||||
int64_t getImmediate(MachineOperand &MO);
|
||||
/// \brief Return true if the Phi may generate a value that may underflow,
|
||||
/// or may wrap.
|
||||
bool phiMayWrapOrUnderflow(MachineInstr *Phi, const MachineOperand *EndVal,
|
||||
MachineBasicBlock *MBB, MachineLoop *L,
|
||||
LoopFeederMap &LoopFeederPhi) const;
|
||||
|
||||
/// \brief Return true if the induction variable may underflow an unsigned
|
||||
/// value in the first iteration.
|
||||
bool loopCountMayWrapOrUnderFlow(const MachineOperand *InitVal,
|
||||
const MachineOperand *EndVal,
|
||||
MachineBasicBlock *MBB, MachineLoop *L,
|
||||
LoopFeederMap &LoopFeederPhi) const;
|
||||
|
||||
/// \brief Check if the given operand has a compile-time known constant
|
||||
/// value. Return true if yes, and false otherwise. When returning true, set
|
||||
/// Val to the corresponding constant value.
|
||||
bool checkForImmediate(const MachineOperand &MO, int64_t &Val) const;
|
||||
|
||||
/// \brief Check if the operand has a compile-time known constant value.
|
||||
bool isImmediate(const MachineOperand &MO) const {
|
||||
int64_t V;
|
||||
return checkForImmediate(MO, V);
|
||||
}
|
||||
|
||||
/// \brief Return the immediate for the specified operand.
|
||||
int64_t getImmediate(const MachineOperand &MO) const {
|
||||
int64_t V;
|
||||
if (!checkForImmediate(MO, V))
|
||||
llvm_unreachable("Invalid operand");
|
||||
return V;
|
||||
}
|
||||
|
||||
/// \brief Reset the given machine operand to now refer to a new immediate
|
||||
/// value. Assumes that the operand was already referencing an immediate
|
||||
@ -384,15 +415,16 @@ bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L,
|
||||
unsigned PhiOpReg = Phi->getOperand(i).getReg();
|
||||
MachineInstr *DI = MRI->getVRegDef(PhiOpReg);
|
||||
unsigned UpdOpc = DI->getOpcode();
|
||||
bool isAdd = (UpdOpc == Hexagon::A2_addi);
|
||||
bool isAdd = (UpdOpc == Hexagon::A2_addi || UpdOpc == Hexagon::A2_addp);
|
||||
|
||||
if (isAdd) {
|
||||
// If the register operand to the add is the PHI we're
|
||||
// looking at, this meets the induction pattern.
|
||||
// If the register operand to the add is the PHI we're looking at, this
|
||||
// meets the induction pattern.
|
||||
unsigned IndReg = DI->getOperand(1).getReg();
|
||||
if (MRI->getVRegDef(IndReg) == Phi) {
|
||||
MachineOperand &Opnd2 = DI->getOperand(2);
|
||||
int64_t V;
|
||||
if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) {
|
||||
unsigned UpdReg = DI->getOperand(0).getReg();
|
||||
int64_t V = DI->getOperand(2).getImm();
|
||||
IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
|
||||
}
|
||||
}
|
||||
@ -670,8 +702,10 @@ CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop,
|
||||
End = &EndValInstr->getOperand(1);
|
||||
}
|
||||
|
||||
assert (Start->isReg() || Start->isImm());
|
||||
assert (End->isReg() || End->isImm());
|
||||
if (!Start->isReg() && !Start->isImm())
|
||||
return nullptr;
|
||||
if (!End->isReg() && !End->isImm())
|
||||
return nullptr;
|
||||
|
||||
bool CmpLess = Cmp & Comparison::L;
|
||||
bool CmpGreater = Cmp & Comparison::G;
|
||||
@ -682,12 +716,20 @@ CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop,
|
||||
// Loop going while iv is "less" with the iv value going down. Must wrap.
|
||||
return nullptr;
|
||||
|
||||
// If loop executes while iv is "greater" with the iv value going up, then
|
||||
// the iv must wrap.
|
||||
if (CmpGreater && IVBump > 0)
|
||||
// Loop going while iv is "greater" with the iv value going up. Must wrap.
|
||||
return nullptr;
|
||||
|
||||
// Phis that may feed into the loop.
|
||||
LoopFeederMap LoopFeederPhi;
|
||||
|
||||
// Check if the inital value may be zero and can be decremented in the first
|
||||
// iteration. If the value is zero, the endloop instruction will not decrement
|
||||
// the loop counter, so we shoudn't generate a hardware loop in this case.
|
||||
if (loopCountMayWrapOrUnderFlow(Start, End, Loop->getLoopPreheader(), Loop,
|
||||
LoopFeederPhi))
|
||||
return nullptr;
|
||||
|
||||
if (Start->isImm() && End->isImm()) {
|
||||
// Both, start and end are immediates.
|
||||
int64_t StartV = Start->getImm();
|
||||
@ -710,14 +752,16 @@ CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop,
|
||||
if (CmpHasEqual)
|
||||
Dist = Dist > 0 ? Dist+1 : Dist-1;
|
||||
|
||||
// assert (CmpLess => Dist > 0);
|
||||
assert ((!CmpLess || Dist > 0) && "Loop should never iterate!");
|
||||
// assert (CmpGreater => Dist < 0);
|
||||
assert ((!CmpGreater || Dist < 0) && "Loop should never iterate!");
|
||||
// For the loop to iterate, CmpLess should imply Dist > 0. Similarly,
|
||||
// CmpGreater should imply Dist < 0. These conditions could actually
|
||||
// fail, for example, in unreachable code (which may still appear to be
|
||||
// reachable in the CFG).
|
||||
if ((CmpLess && Dist < 0) || (CmpGreater && Dist > 0))
|
||||
return nullptr;
|
||||
|
||||
// "Normalized" distance, i.e. with the bump set to +-1.
|
||||
int64_t Dist1 = (IVBump > 0) ? (Dist + (IVBump-1)) / IVBump
|
||||
: (-Dist + (-IVBump-1)) / (-IVBump);
|
||||
int64_t Dist1 = (IVBump > 0) ? (Dist + (IVBump - 1)) / IVBump
|
||||
: (-Dist + (-IVBump - 1)) / (-IVBump);
|
||||
assert (Dist1 > 0 && "Fishy thing. Both operands have the same sign.");
|
||||
|
||||
uint64_t Count = Dist1;
|
||||
@ -979,7 +1023,7 @@ bool HexagonHardwareLoops::isDead(const MachineInstr *MI,
|
||||
MachineOperand &Use = *J;
|
||||
MachineInstr *UseMI = Use.getParent();
|
||||
|
||||
// If the phi node has a user that is not MI, bail...
|
||||
// If the phi node has a user that is not MI, bail.
|
||||
if (MI != UseMI)
|
||||
return false;
|
||||
}
|
||||
@ -1230,7 +1274,6 @@ bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L,
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI,
|
||||
MachineInstr *CmpI) {
|
||||
assert (BumpI != CmpI && "Bump and compare in the same instruction?");
|
||||
@ -1271,35 +1314,226 @@ bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI,
|
||||
return FoundBump;
|
||||
}
|
||||
|
||||
/// This function is required to break recursion. Visiting phis in a loop may
|
||||
/// result in recursion during compilation. We break the recursion by making
|
||||
/// sure that we visit a MachineOperand and its definition in a
|
||||
/// MachineInstruction only once. If we attempt to visit more than once, then
|
||||
/// there is recursion, and will return false.
|
||||
bool HexagonHardwareLoops::isLoopFeeder(MachineLoop *L, MachineBasicBlock *A,
|
||||
MachineInstr *MI,
|
||||
const MachineOperand *MO,
|
||||
LoopFeederMap &LoopFeederPhi) const {
|
||||
if (LoopFeederPhi.find(MO->getReg()) == LoopFeederPhi.end()) {
|
||||
const std::vector<MachineBasicBlock *> &Blocks = L->getBlocks();
|
||||
DEBUG(dbgs() << "\nhw_loop head, BB#" << Blocks[0]->getNumber(););
|
||||
// Ignore all BBs that form Loop.
|
||||
for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
|
||||
MachineBasicBlock *MBB = Blocks[i];
|
||||
if (A == MBB)
|
||||
return false;
|
||||
}
|
||||
MachineInstr *Def = MRI->getVRegDef(MO->getReg());
|
||||
LoopFeederPhi.insert(std::make_pair(MO->getReg(), Def));
|
||||
return true;
|
||||
} else
|
||||
// Already visited node.
|
||||
return false;
|
||||
}
|
||||
|
||||
MachineInstr *HexagonHardwareLoops::defWithImmediate(unsigned R) {
|
||||
/// Return true if a Phi may generate a value that can underflow.
|
||||
/// This function calls loopCountMayWrapOrUnderFlow for each Phi operand.
|
||||
bool HexagonHardwareLoops::phiMayWrapOrUnderflow(
|
||||
MachineInstr *Phi, const MachineOperand *EndVal, MachineBasicBlock *MBB,
|
||||
MachineLoop *L, LoopFeederMap &LoopFeederPhi) const {
|
||||
assert(Phi->isPHI() && "Expecting a Phi.");
|
||||
// Walk through each Phi, and its used operands. Make sure that
|
||||
// if there is recursion in Phi, we won't generate hardware loops.
|
||||
for (int i = 1, n = Phi->getNumOperands(); i < n; i += 2)
|
||||
if (isLoopFeeder(L, MBB, Phi, &(Phi->getOperand(i)), LoopFeederPhi))
|
||||
if (loopCountMayWrapOrUnderFlow(&(Phi->getOperand(i)), EndVal,
|
||||
Phi->getParent(), L, LoopFeederPhi))
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
/// Return true if the induction variable can underflow in the first iteration.
|
||||
/// An example, is an initial unsigned value that is 0 and is decrement in the
|
||||
/// first itertion of a do-while loop. In this case, we cannot generate a
|
||||
/// hardware loop because the endloop instruction does not decrement the loop
|
||||
/// counter if it is <= 1. We only need to perform this analysis if the
|
||||
/// initial value is a register.
|
||||
///
|
||||
/// This function assumes the initial value may underfow unless proven
|
||||
/// otherwise. If the type is signed, then we don't care because signed
|
||||
/// underflow is undefined. We attempt to prove the initial value is not
|
||||
/// zero by perfoming a crude analysis of the loop counter. This function
|
||||
/// checks if the initial value is used in any comparison prior to the loop
|
||||
/// and, if so, assumes the comparison is a range check. This is inexact,
|
||||
/// but will catch the simple cases.
|
||||
bool HexagonHardwareLoops::loopCountMayWrapOrUnderFlow(
|
||||
const MachineOperand *InitVal, const MachineOperand *EndVal,
|
||||
MachineBasicBlock *MBB, MachineLoop *L,
|
||||
LoopFeederMap &LoopFeederPhi) const {
|
||||
// Only check register values since they are unknown.
|
||||
if (!InitVal->isReg())
|
||||
return false;
|
||||
|
||||
if (!EndVal->isImm())
|
||||
return false;
|
||||
|
||||
// A register value that is assigned an immediate is a known value, and it
|
||||
// won't underflow in the first iteration.
|
||||
int64_t Imm;
|
||||
if (checkForImmediate(*InitVal, Imm))
|
||||
return (EndVal->getImm() == Imm);
|
||||
|
||||
unsigned Reg = InitVal->getReg();
|
||||
|
||||
// We don't know the value of a physical register.
|
||||
if (!TargetRegisterInfo::isVirtualRegister(Reg))
|
||||
return true;
|
||||
|
||||
MachineInstr *Def = MRI->getVRegDef(Reg);
|
||||
if (!Def)
|
||||
return true;
|
||||
|
||||
// If the initial value is a Phi or copy and the operands may not underflow,
|
||||
// then the definition cannot be underflow either.
|
||||
if (Def->isPHI() && !phiMayWrapOrUnderflow(Def, EndVal, Def->getParent(),
|
||||
L, LoopFeederPhi))
|
||||
return false;
|
||||
if (Def->isCopy() && !loopCountMayWrapOrUnderFlow(&(Def->getOperand(1)),
|
||||
EndVal, Def->getParent(),
|
||||
L, LoopFeederPhi))
|
||||
return false;
|
||||
|
||||
// Iterate over the uses of the initial value. If the initial value is used
|
||||
// in a compare, then we assume this is a range check that ensures the loop
|
||||
// doesn't underflow. This is not an exact test and should be improved.
|
||||
for (MachineRegisterInfo::use_instr_nodbg_iterator I = MRI->use_instr_nodbg_begin(Reg),
|
||||
E = MRI->use_instr_nodbg_end(); I != E; ++I) {
|
||||
MachineInstr *MI = &*I;
|
||||
unsigned CmpReg1 = 0, CmpReg2 = 0;
|
||||
int CmpMask = 0, CmpValue = 0;
|
||||
|
||||
if (!TII->analyzeCompare(MI, CmpReg1, CmpReg2, CmpMask, CmpValue))
|
||||
continue;
|
||||
|
||||
MachineBasicBlock *TBB = 0, *FBB = 0;
|
||||
SmallVector<MachineOperand, 2> Cond;
|
||||
if (TII->AnalyzeBranch(*MI->getParent(), TBB, FBB, Cond, false))
|
||||
continue;
|
||||
|
||||
Comparison::Kind Cmp = getComparisonKind(MI->getOpcode(), 0, 0, 0);
|
||||
if (Cmp == 0)
|
||||
continue;
|
||||
if (TII->predOpcodeHasNot(Cond) ^ (TBB != MBB))
|
||||
Cmp = Comparison::getNegatedComparison(Cmp);
|
||||
if (CmpReg2 != 0 && CmpReg2 == Reg)
|
||||
Cmp = Comparison::getSwappedComparison(Cmp);
|
||||
|
||||
// Signed underflow is undefined.
|
||||
if (Comparison::isSigned(Cmp))
|
||||
return false;
|
||||
|
||||
// Check if there is a comparison of the inital value. If the initial value
|
||||
// is greater than or not equal to another value, then assume this is a
|
||||
// range check.
|
||||
if ((Cmp & Comparison::G) || Cmp == Comparison::NE)
|
||||
return false;
|
||||
}
|
||||
|
||||
// OK - this is a hack that needs to be improved. We really need to analyze
|
||||
// the instructions performed on the initial value. This works on the simplest
|
||||
// cases only.
|
||||
if (!Def->isCopy() && !Def->isPHI())
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool HexagonHardwareLoops::checkForImmediate(const MachineOperand &MO,
|
||||
int64_t &Val) const {
|
||||
if (MO.isImm()) {
|
||||
Val = MO.getImm();
|
||||
return true;
|
||||
}
|
||||
if (!MO.isReg())
|
||||
return false;
|
||||
|
||||
// MO is a register. Check whether it is defined as an immediate value,
|
||||
// and if so, get the value of it in TV. That value will then need to be
|
||||
// processed to handle potential subregisters in MO.
|
||||
int64_t TV;
|
||||
|
||||
unsigned R = MO.getReg();
|
||||
if (!TargetRegisterInfo::isVirtualRegister(R))
|
||||
return false;
|
||||
MachineInstr *DI = MRI->getVRegDef(R);
|
||||
unsigned DOpc = DI->getOpcode();
|
||||
switch (DOpc) {
|
||||
case TargetOpcode::COPY:
|
||||
case Hexagon::A2_tfrsi:
|
||||
case Hexagon::A2_tfrpi:
|
||||
case Hexagon::CONST32_Int_Real:
|
||||
case Hexagon::CONST64_Int_Real:
|
||||
return DI;
|
||||
case Hexagon::CONST64_Int_Real: {
|
||||
// Call recursively to avoid an extra check whether operand(1) is
|
||||
// indeed an immediate (it could be a global address, for example),
|
||||
// plus we can handle COPY at the same time.
|
||||
if (!checkForImmediate(DI->getOperand(1), TV))
|
||||
return false;
|
||||
break;
|
||||
}
|
||||
case Hexagon::A2_combineii:
|
||||
case Hexagon::A4_combineir:
|
||||
case Hexagon::A4_combineii:
|
||||
case Hexagon::A4_combineri:
|
||||
case Hexagon::A2_combinew: {
|
||||
const MachineOperand &S1 = DI->getOperand(1);
|
||||
const MachineOperand &S2 = DI->getOperand(2);
|
||||
int64_t V1, V2;
|
||||
if (!checkForImmediate(S1, V1) || !checkForImmediate(S2, V2))
|
||||
return false;
|
||||
TV = V2 | (V1 << 32);
|
||||
break;
|
||||
}
|
||||
case TargetOpcode::REG_SEQUENCE: {
|
||||
const MachineOperand &S1 = DI->getOperand(1);
|
||||
const MachineOperand &S3 = DI->getOperand(3);
|
||||
int64_t V1, V3;
|
||||
if (!checkForImmediate(S1, V1) || !checkForImmediate(S3, V3))
|
||||
return false;
|
||||
unsigned Sub2 = DI->getOperand(2).getImm();
|
||||
unsigned Sub4 = DI->getOperand(4).getImm();
|
||||
if (Sub2 == Hexagon::subreg_loreg && Sub4 == Hexagon::subreg_hireg)
|
||||
TV = V1 | (V3 << 32);
|
||||
else if (Sub2 == Hexagon::subreg_hireg && Sub4 == Hexagon::subreg_loreg)
|
||||
TV = V3 | (V1 << 32);
|
||||
else
|
||||
llvm_unreachable("Unexpected form of REG_SEQUENCE");
|
||||
break;
|
||||
}
|
||||
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
return nullptr;
|
||||
|
||||
// By now, we should have successfuly obtained the immediate value defining
|
||||
// the register referenced in MO. Handle a potential use of a subregister.
|
||||
switch (MO.getSubReg()) {
|
||||
case Hexagon::subreg_loreg:
|
||||
Val = TV & 0xFFFFFFFFULL;
|
||||
break;
|
||||
case Hexagon::subreg_hireg:
|
||||
Val = (TV >> 32) & 0xFFFFFFFFULL;
|
||||
break;
|
||||
default:
|
||||
Val = TV;
|
||||
break;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
int64_t HexagonHardwareLoops::getImmediate(MachineOperand &MO) {
|
||||
if (MO.isImm())
|
||||
return MO.getImm();
|
||||
assert(MO.isReg());
|
||||
unsigned R = MO.getReg();
|
||||
MachineInstr *DI = defWithImmediate(R);
|
||||
assert(DI && "Need an immediate operand");
|
||||
// All currently supported "define-with-immediate" instructions have the
|
||||
// actual immediate value in the operand(1).
|
||||
int64_t v = DI->getOperand(1).getImm();
|
||||
return v;
|
||||
}
|
||||
|
||||
|
||||
void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) {
|
||||
if (MO.isImm()) {
|
||||
MO.setImm(Val);
|
||||
@ -1314,11 +1548,19 @@ void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) {
|
||||
unsigned NewR = MRI->createVirtualRegister(RC);
|
||||
MachineBasicBlock &B = *DI->getParent();
|
||||
DebugLoc DL = DI->getDebugLoc();
|
||||
BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR)
|
||||
.addImm(Val);
|
||||
BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR).addImm(Val);
|
||||
MO.setReg(NewR);
|
||||
}
|
||||
|
||||
static bool isImmValidForOpcode(unsigned CmpOpc, int64_t Imm) {
|
||||
// These two instructions are not extendable.
|
||||
if (CmpOpc == Hexagon::A4_cmpbeqi)
|
||||
return isUInt<8>(Imm);
|
||||
if (CmpOpc == Hexagon::A4_cmpbgti)
|
||||
return isInt<8>(Imm);
|
||||
// The rest of the comparison-with-immediate instructions are extendable.
|
||||
return true;
|
||||
}
|
||||
|
||||
bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) {
|
||||
MachineBasicBlock *Header = L->getHeader();
|
||||
@ -1359,9 +1601,10 @@ bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) {
|
||||
// If the register operand to the add/sub is the PHI we are looking
|
||||
// at, this meets the induction pattern.
|
||||
unsigned IndReg = DI->getOperand(1).getReg();
|
||||
if (MRI->getVRegDef(IndReg) == Phi) {
|
||||
MachineOperand &Opnd2 = DI->getOperand(2);
|
||||
int64_t V;
|
||||
if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) {
|
||||
unsigned UpdReg = DI->getOperand(0).getReg();
|
||||
int64_t V = DI->getOperand(2).getImm();
|
||||
IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
|
||||
}
|
||||
}
|
||||
@ -1440,8 +1683,7 @@ bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) {
|
||||
if (MO.isImplicit())
|
||||
continue;
|
||||
if (MO.isUse()) {
|
||||
unsigned R = MO.getReg();
|
||||
if (!defWithImmediate(R)) {
|
||||
if (!isImmediate(MO)) {
|
||||
CmpRegs.insert(MO.getReg());
|
||||
continue;
|
||||
}
|
||||
@ -1477,16 +1719,27 @@ bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) {
|
||||
if (!CmpImmOp)
|
||||
return false;
|
||||
|
||||
// If the register is being compared against an immediate, try changing
|
||||
// the compare instruction to use induction register and adjust the
|
||||
// immediate operand.
|
||||
int64_t CmpImm = getImmediate(*CmpImmOp);
|
||||
int64_t V = RB.second;
|
||||
if (V > 0 && CmpImm+V < CmpImm) // Overflow (64-bit).
|
||||
return false;
|
||||
if (V < 0 && CmpImm+V > CmpImm) // Overflow (64-bit).
|
||||
// Handle Overflow (64-bit).
|
||||
if (((V > 0) && (CmpImm > INT64_MAX - V)) ||
|
||||
((V < 0) && (CmpImm < INT64_MIN - V)))
|
||||
return false;
|
||||
CmpImm += V;
|
||||
// Some forms of cmp-immediate allow u9 and s10. Assume the worst case
|
||||
// scenario, i.e. an 8-bit value.
|
||||
if (CmpImmOp->isImm() && !isInt<8>(CmpImm))
|
||||
// Most comparisons of register against an immediate value allow
|
||||
// the immediate to be constant-extended. There are some exceptions
|
||||
// though. Make sure the new combination will work.
|
||||
if (CmpImmOp->isImm())
|
||||
if (!isImmValidForOpcode(PredDef->getOpcode(), CmpImm))
|
||||
return false;
|
||||
|
||||
// It is not valid to do this transformation on an unsigned comparison
|
||||
// because it may underflow.
|
||||
Comparison::Kind Cmp = getComparisonKind(PredDef->getOpcode(), 0, 0, 0);
|
||||
if (!Cmp || Comparison::isUnsigned(Cmp))
|
||||
return false;
|
||||
|
||||
// Make sure that the compare happens after the bump. Otherwise,
|
||||
@ -1511,7 +1764,6 @@ bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) {
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
/// \brief Create a preheader for a given loop.
|
||||
MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop(
|
||||
MachineLoop *L) {
|
||||
|
45
test/CodeGen/Hexagon/hwloop-pos-ivbump1.ll
Normal file
45
test/CodeGen/Hexagon/hwloop-pos-ivbump1.ll
Normal file
@ -0,0 +1,45 @@
|
||||
;RUN: llc -march=hexagon < %s | FileCheck %s
|
||||
|
||||
; Test that a hardware loop is not generaetd due to a potential
|
||||
; underflow.
|
||||
|
||||
; CHECK-NOT: loop0
|
||||
|
||||
define i32 @main() #0 {
|
||||
entry:
|
||||
br label %while.cond.outer
|
||||
|
||||
while.cond.outer.loopexit:
|
||||
%.lcssa = phi i32 [ %0, %for.body.preheader ]
|
||||
br label %while.cond.outer
|
||||
|
||||
while.cond.outer:
|
||||
%i.0.ph = phi i32 [ 0, %entry ], [ 3, %while.cond.outer.loopexit ]
|
||||
%j.0.ph = phi i32 [ 0, %entry ], [ %.lcssa, %while.cond.outer.loopexit ]
|
||||
%k.0.ph = phi i32 [ 0, %entry ], [ 1, %while.cond.outer.loopexit ]
|
||||
br label %while.cond
|
||||
|
||||
while.cond:
|
||||
%i.0 = phi i32 [ %i.0.ph, %while.cond.outer ], [ %inc, %for.body.preheader ]
|
||||
%j.0 = phi i32 [ %j.0.ph, %while.cond.outer ], [ %0, %for.body.preheader ]
|
||||
%inc = add nsw i32 %i.0, 1
|
||||
%cmp = icmp slt i32 %i.0, 4
|
||||
br i1 %cmp, label %for.body.preheader, label %while.end
|
||||
|
||||
for.body.preheader:
|
||||
%0 = add i32 %j.0, 3
|
||||
%cmp5 = icmp eq i32 %inc, 3
|
||||
br i1 %cmp5, label %while.cond.outer.loopexit, label %while.cond
|
||||
|
||||
while.end:
|
||||
%k.0.ph.lcssa = phi i32 [ %k.0.ph, %while.cond ]
|
||||
%inc.lcssa = phi i32 [ %inc, %while.cond ]
|
||||
%j.0.lcssa = phi i32 [ %j.0, %while.cond ]
|
||||
%cmp6 = icmp ne i32 %inc.lcssa, 5
|
||||
%cmp7 = icmp ne i32 %j.0.lcssa, 12
|
||||
%or.cond = or i1 %cmp6, %cmp7
|
||||
%cmp9 = icmp ne i32 %k.0.ph.lcssa, 1
|
||||
%or.cond12 = or i1 %or.cond, %cmp9
|
||||
%locflg.0 = zext i1 %or.cond12 to i32
|
||||
ret i32 %locflg.0
|
||||
}
|
64
test/CodeGen/Hexagon/hwloop-recursion.ll
Normal file
64
test/CodeGen/Hexagon/hwloop-recursion.ll
Normal file
@ -0,0 +1,64 @@
|
||||
; RUN: llc -O2 -march=hexagon -mcpu=hexagonv5 < %s
|
||||
; REQUIRES: asserts
|
||||
; Check for successful compilation.
|
||||
|
||||
@c = common global i32 0, align 4
|
||||
@e = common global i32 0, align 4
|
||||
@g = common global i32* null, align 4
|
||||
@a = common global i32 0, align 4
|
||||
@b = common global i32 0, align 4
|
||||
@h = common global i32* null, align 4
|
||||
@d = common global i32 0, align 4
|
||||
@f = common global i32 0, align 4
|
||||
|
||||
define i32 @fn1([0 x i32]* nocapture readnone %p1) #0 {
|
||||
entry:
|
||||
%0 = load i32*, i32** @h, align 4
|
||||
%1 = load i32*, i32** @g, align 4
|
||||
%.pre = load i32, i32* @c, align 4
|
||||
br label %for.cond
|
||||
|
||||
for.cond:
|
||||
%2 = phi i32 [ %10, %if.end ], [ %.pre, %entry ]
|
||||
store i32 %2, i32* @e, align 4
|
||||
%tobool5 = icmp eq i32 %2, 0
|
||||
br i1 %tobool5, label %for.end, label %for.body.lr.ph
|
||||
|
||||
for.body.lr.ph:
|
||||
%3 = sub i32 -5, %2
|
||||
%4 = urem i32 %3, 5
|
||||
%5 = sub i32 %3, %4
|
||||
br label %for.body
|
||||
|
||||
for.body:
|
||||
%add6 = phi i32 [ %2, %for.body.lr.ph ], [ %add, %for.body ]
|
||||
%6 = load i32, i32* %1, align 4
|
||||
store i32 %6, i32* @a, align 4
|
||||
%add = add nsw i32 %add6, 5
|
||||
%tobool = icmp eq i32 %add, 0
|
||||
br i1 %tobool, label %for.cond1.for.end_crit_edge, label %for.body
|
||||
|
||||
for.cond1.for.end_crit_edge:
|
||||
%7 = add i32 %2, 5
|
||||
%8 = add i32 %7, %5
|
||||
store i32 %8, i32* @e, align 4
|
||||
br label %for.end
|
||||
|
||||
for.end:
|
||||
%9 = load i32, i32* @b, align 4
|
||||
%tobool2 = icmp eq i32 %9, 0
|
||||
br i1 %tobool2, label %if.end, label %if.then
|
||||
|
||||
if.then:
|
||||
store i32 0, i32* %0, align 4
|
||||
%.pre7 = load i32, i32* @c, align 4
|
||||
br label %if.end
|
||||
|
||||
if.end:
|
||||
%10 = phi i32 [ %2, %for.end ], [ %.pre7, %if.then ]
|
||||
store i32 %10, i32* @d, align 4
|
||||
%11 = load i32, i32* @f, align 4
|
||||
%inc = add nsw i32 %11, 1
|
||||
store i32 %inc, i32* @f, align 4
|
||||
br label %for.cond
|
||||
}
|
22
test/CodeGen/Hexagon/hwloop-wrap.ll
Normal file
22
test/CodeGen/Hexagon/hwloop-wrap.ll
Normal file
@ -0,0 +1,22 @@
|
||||
; RUN: llc -march=hexagon -mcpu=hexagonv5 < %s | FileCheck %s
|
||||
|
||||
; We shouldn't generate a hardware loop in this case because the initial
|
||||
; value may be zero, which means the endloop instruction will not decrement
|
||||
; the loop counter, and the loop will execute only once.
|
||||
|
||||
; CHECK-NOT: loop0
|
||||
|
||||
define void @foo(i32 %count, i32 %v) #0 {
|
||||
entry:
|
||||
br label %do.body
|
||||
|
||||
do.body:
|
||||
%count.addr.0 = phi i32 [ %count, %entry ], [ %dec, %do.body ]
|
||||
tail call void asm sideeffect "nop", ""() #1
|
||||
%dec = add i32 %count.addr.0, -1
|
||||
%cmp = icmp eq i32 %dec, 0
|
||||
br i1 %cmp, label %do.end, label %do.body
|
||||
|
||||
do.end:
|
||||
ret void
|
||||
}
|
67
test/CodeGen/Hexagon/hwloop-wrap2.ll
Normal file
67
test/CodeGen/Hexagon/hwloop-wrap2.ll
Normal file
@ -0,0 +1,67 @@
|
||||
; RUN: llc -march=hexagon -mcpu=hexagonv5 -O3 < %s | FileCheck %s
|
||||
|
||||
; Test that we do not generate a hardware loop due to a potential underflow.
|
||||
|
||||
; CHECK-NOT: loop0
|
||||
|
||||
%struct.3 = type { i8*, i8, i8, i32, i32, i16, i16, i16, i16, i16, i16, i16, %struct.2* }
|
||||
%struct.2 = type { i16, i16, i16, i16, %struct.1* }
|
||||
%struct.1 = type { %struct.1*, %struct.0*, i32, i32, i16, [2 x i16], [2 x i16], i16 }
|
||||
%struct.0 = type { %struct.0*, i32, i32, i32, i32, i32, i32, i16, i16, i16, i8, i8, i8, i8 }
|
||||
|
||||
@pairArray = external global i32**
|
||||
@carray = external global %struct.3**
|
||||
|
||||
define void @test() #0 {
|
||||
entry:
|
||||
%0 = load i32**, i32*** @pairArray, align 4
|
||||
%1 = load %struct.3**, %struct.3*** @carray, align 4
|
||||
br i1 undef, label %for.end110, label %for.body
|
||||
|
||||
for.body:
|
||||
%row.0199 = phi i32 [ %inc109, %for.inc108 ], [ 1, %entry ]
|
||||
%arrayidx = getelementptr inbounds i32*, i32** %0, i32 %row.0199
|
||||
%2 = load i32*, i32** %arrayidx, align 4
|
||||
br i1 undef, label %for.body48, label %for.inc108
|
||||
|
||||
for.cond45:
|
||||
%cmp46 = icmp sgt i32 %dec58, 0
|
||||
br i1 %cmp46, label %for.body48, label %for.inc108
|
||||
|
||||
for.body48:
|
||||
%i.1190 = phi i32 [ %dec58, %for.cond45 ], [ 0, %for.body ]
|
||||
%arrayidx50 = getelementptr inbounds i32, i32* %2, i32 %i.1190
|
||||
%3 = load i32, i32* %arrayidx50, align 4
|
||||
%cmp53 = icmp slt i32 %3, 0
|
||||
%dec58 = add nsw i32 %i.1190, -1
|
||||
br i1 %cmp53, label %for.end59, label %for.cond45
|
||||
|
||||
for.end59:
|
||||
%cmp60 = icmp slt i32 %i.1190, 0
|
||||
br i1 %cmp60, label %if.then65, label %for.inc108
|
||||
|
||||
if.then65:
|
||||
br label %for.body80
|
||||
|
||||
for.body80:
|
||||
%j.1196.in = phi i32 [ %j.1196, %for.body80 ], [ %i.1190, %if.then65 ]
|
||||
%j.1196 = add nsw i32 %j.1196.in, 1
|
||||
%arrayidx81 = getelementptr inbounds i32, i32* %2, i32 %j.1196
|
||||
%4 = load i32, i32* %arrayidx81, align 4
|
||||
%arrayidx82 = getelementptr inbounds %struct.3*, %struct.3** %1, i32 %4
|
||||
%5 = load %struct.3*, %struct.3** %arrayidx82, align 4
|
||||
%cxcenter83 = getelementptr inbounds %struct.3, %struct.3* %5, i32 0, i32 3
|
||||
store i32 0, i32* %cxcenter83, align 4
|
||||
%6 = load i32, i32* %arrayidx81, align 4
|
||||
%arrayidx87 = getelementptr inbounds i32, i32* %2, i32 %j.1196.in
|
||||
store i32 %6, i32* %arrayidx87, align 4
|
||||
%exitcond = icmp eq i32 %j.1196, 0
|
||||
br i1 %exitcond, label %for.inc108, label %for.body80
|
||||
|
||||
for.inc108:
|
||||
%inc109 = add nsw i32 %row.0199, 1
|
||||
br i1 undef, label %for.body, label %for.end110
|
||||
|
||||
for.end110:
|
||||
ret void
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user