Teach spiller to unfold instructions which modref spill slot when a scratch

register is available and when it's profitable.

e.g.
     xorq  %r12<kill>, %r13
     addq  %rax, -184(%rbp)
     addq  %r13, -184(%rbp)
==>
     xorq  %r12<kill>, %r13
     movq  -184(%rbp), %r12
     addq  %rax, %r12
     addq  %r13, %r12
     movq  %r12, -184(%rbp)

Two more instructions, but fewer memory accesses. It can also open up
opportunities for more optimizations.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@69341 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Evan Cheng 2009-04-17 01:29:40 +00:00
parent d10a4ce582
commit 276b77e66c
3 changed files with 366 additions and 11 deletions

View File

@ -29,6 +29,7 @@ STATISTIC(NumLoads , "Number of loads added");
STATISTIC(NumReused , "Number of values reused"); STATISTIC(NumReused , "Number of values reused");
STATISTIC(NumDCE , "Number of copies elided"); STATISTIC(NumDCE , "Number of copies elided");
STATISTIC(NumSUnfold , "Number of stores unfolded"); STATISTIC(NumSUnfold , "Number of stores unfolded");
STATISTIC(NumModRefUnfold, "Number of modref unfolded");
namespace { namespace {
enum SpillerName { simple, local }; enum SpillerName { simple, local };
@ -524,6 +525,7 @@ bool LocalSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
RegInfo = &MF.getRegInfo(); RegInfo = &MF.getRegInfo();
TRI = MF.getTarget().getRegisterInfo(); TRI = MF.getTarget().getRegisterInfo();
TII = MF.getTarget().getInstrInfo(); TII = MF.getTarget().getInstrInfo();
AllocatableRegs = TRI->getAllocatableSet(MF);
DOUT << "\n**** Local spiller rewriting function '" DOUT << "\n**** Local spiller rewriting function '"
<< MF.getFunction()->getName() << "':\n"; << MF.getFunction()->getName() << "':\n";
DOUT << "**** Machine Instrs (NOTE! Does not include spills and reloads!)" DOUT << "**** Machine Instrs (NOTE! Does not include spills and reloads!)"
@ -595,7 +597,201 @@ bool LocalSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
} }
/// PrepForUnfoldOpti - Turn a store folding instruction into a load folding /// FoldsStackSlotModRef - Return true if the specified MI folds the specified
/// stack slot mod/ref. It also checks if it's possible to unfold the
/// instruction by having it define a specified physical register instead.
static bool FoldsStackSlotModRef(MachineInstr &MI, int SS, unsigned PhysReg,
const TargetInstrInfo *TII,
const TargetRegisterInfo *TRI,
VirtRegMap &VRM) {
if (VRM.hasEmergencySpills(&MI) || VRM.isSpillPt(&MI))
return false;
bool Found = false;
VirtRegMap::MI2VirtMapTy::const_iterator I, End;
for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
unsigned VirtReg = I->second.first;
VirtRegMap::ModRef MR = I->second.second;
if (MR & VirtRegMap::isModRef)
if (VRM.getStackSlot(VirtReg) == SS) {
Found= TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), true, true) != 0;
break;
}
}
if (!Found)
return false;
// Does the instruction uses a register that overlaps the scratch register?
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI.getOperand(i);
if (!MO.isReg() || MO.getReg() == 0)
continue;
unsigned Reg = MO.getReg();
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
if (!VRM.hasPhys(Reg))
continue;
Reg = VRM.getPhys(Reg);
}
if (TRI->regsOverlap(PhysReg, Reg))
return false;
}
return true;
}
/// FindFreeRegister - Find a free register of a given register class by looking
/// at (at most) the last two machine instructions.
static unsigned FindFreeRegister(MachineBasicBlock::iterator MII,
MachineBasicBlock &MBB,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI,
BitVector &AllocatableRegs) {
BitVector Defs(TRI->getNumRegs());
BitVector Uses(TRI->getNumRegs());
SmallVector<unsigned, 4> LocalUses;
SmallVector<unsigned, 4> Kills;
// Take a look at 2 instructions at most.
for (unsigned Count = 0; Count < 2; ++Count) {
if (MII == MBB.begin())
break;
MachineInstr *PrevMI = prior(MII);
for (unsigned i = 0, e = PrevMI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = PrevMI->getOperand(i);
if (!MO.isReg() || MO.getReg() == 0)
continue;
unsigned Reg = MO.getReg();
if (MO.isDef()) {
Defs.set(Reg);
for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
Defs.set(*AS);
} else {
LocalUses.push_back(Reg);
if (MO.isKill() && AllocatableRegs[Reg])
Kills.push_back(Reg);
}
}
for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
unsigned Kill = Kills[i];
if (!Defs[Kill] && !Uses[Kill] &&
TRI->getPhysicalRegisterRegClass(Kill) == RC)
return Kill;
}
for (unsigned i = 0, e = LocalUses.size(); i != e; ++i) {
unsigned Reg = LocalUses[i];
Uses.set(Reg);
for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
Uses.set(*AS);
}
MII = PrevMI;
}
return 0;
}
static
void AssignPhysToVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned PhysReg) {
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (MO.isReg() && MO.getReg() == VirtReg)
MO.setReg(PhysReg);
}
}
/// OptimizeByUnfold2 - Unfold a series of load / store folding instructions if
/// a scratch register is available.
/// xorq %r12<kill>, %r13
/// addq %rax, -184(%rbp)
/// addq %r13, -184(%rbp)
/// ==>
/// xorq %r12<kill>, %r13
/// movq -184(%rbp), %r12
/// addq %rax, %r12
/// addq %r13, %r12
/// movq %r12, -184(%rbp)
bool LocalSpiller::OptimizeByUnfold2(unsigned VirtReg, int SS,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MII,
std::vector<MachineInstr*> &MaybeDeadStores,
AvailableSpills &Spills,
BitVector &RegKills,
std::vector<MachineOperand*> &KillOps,
VirtRegMap &VRM) {
MachineBasicBlock::iterator NextMII = next(MII);
if (NextMII == MBB.end())
return false;
if (TII->getOpcodeAfterMemoryUnfold(MII->getOpcode(), true, true) == 0)
return false;
// Now let's see if the last couple of instructions happens to have freed up
// a register.
const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
unsigned PhysReg = FindFreeRegister(MII, MBB, RC, TRI, AllocatableRegs);
if (!PhysReg)
return false;
MachineFunction &MF = *MBB.getParent();
TRI = MF.getTarget().getRegisterInfo();
MachineInstr &MI = *MII;
if (!FoldsStackSlotModRef(MI, SS, PhysReg, TII, TRI, VRM))
return false;
// If the next instruction also folds the same SS modref and can be unfoled,
// then it's worthwhile to issue a load from SS into the free register and
// then unfold these instructions.
if (!FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM))
return false;
// Load from SS to the spare physical register.
TII->loadRegFromStackSlot(MBB, MII, PhysReg, SS, RC);
// This invalidates Phys.
Spills.ClobberPhysReg(PhysReg);
// Remember it's available.
Spills.addAvailable(SS, PhysReg);
MaybeDeadStores[SS] = NULL;
// Unfold current MI.
SmallVector<MachineInstr*, 4> NewMIs;
if (!TII->unfoldMemoryOperand(MF, &MI, VirtReg, false, false, NewMIs))
assert(0 && "Unable unfold the load / store folding instruction!");
assert(NewMIs.size() == 1);
AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg);
VRM.transferRestorePts(&MI, NewMIs[0]);
MII = MBB.insert(MII, NewMIs[0]);
InvalidateKills(MI, RegKills, KillOps);
VRM.RemoveMachineInstrFromMaps(&MI);
MBB.erase(&MI);
++NumModRefUnfold;
// Unfold next instructions that fold the same SS.
do {
MachineInstr &NextMI = *NextMII;
NextMII = next(NextMII);
NewMIs.clear();
if (!TII->unfoldMemoryOperand(MF, &NextMI, VirtReg, false, false, NewMIs))
assert(0 && "Unable unfold the load / store folding instruction!");
assert(NewMIs.size() == 1);
AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg);
VRM.transferRestorePts(&NextMI, NewMIs[0]);
MBB.insert(NextMII, NewMIs[0]);
InvalidateKills(NextMI, RegKills, KillOps);
VRM.RemoveMachineInstrFromMaps(&NextMI);
MBB.erase(&NextMI);
++NumModRefUnfold;
} while (FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM));
// Store the value back into SS.
TII->storeRegToStackSlot(MBB, NextMII, PhysReg, true, SS, RC);
MachineInstr *StoreMI = prior(NextMII);
VRM.addSpillSlotUse(SS, StoreMI);
VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
return true;
}
/// OptimizeByUnfold - Turn a store folding instruction into a load folding
/// instruction. e.g. /// instruction. e.g.
/// xorl %edi, %eax /// xorl %edi, %eax
/// movl %eax, -32(%ebp) /// movl %eax, -32(%ebp)
@ -607,7 +803,7 @@ bool LocalSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
/// mov %eax, -32(%ebp) /// mov %eax, -32(%ebp)
/// This enables unfolding optimization for a subsequent instruction which will /// This enables unfolding optimization for a subsequent instruction which will
/// also eliminate the newly introduced store instruction. /// also eliminate the newly introduced store instruction.
bool LocalSpiller::PrepForUnfoldOpti(MachineBasicBlock &MBB, bool LocalSpiller::OptimizeByUnfold(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MII, MachineBasicBlock::iterator &MII,
std::vector<MachineInstr*> &MaybeDeadStores, std::vector<MachineInstr*> &MaybeDeadStores,
AvailableSpills &Spills, AvailableSpills &Spills,
@ -646,8 +842,14 @@ bool LocalSpiller::PrepForUnfoldOpti(MachineBasicBlock &MBB,
} }
} }
if (!UnfoldedOpc) if (!UnfoldedOpc) {
return false; if (!UnfoldVR)
return false;
// Look for other unfolding opportunities.
return OptimizeByUnfold2(UnfoldVR, FoldedSS, MBB, MII,
MaybeDeadStores, Spills, RegKills, KillOps, VRM);
}
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI.getOperand(i); MachineOperand &MO = MI.getOperand(i);
@ -705,6 +907,7 @@ bool LocalSpiller::PrepForUnfoldOpti(MachineBasicBlock &MBB,
MF.DeleteMachineInstr(NewMI); MF.DeleteMachineInstr(NewMI);
} }
} }
return false; return false;
} }
@ -770,7 +973,7 @@ bool LocalSpiller::CommuteToFoldReload(MachineBasicBlock &MBB,
VRM.addSpillSlotUse(SS, FoldedMI); VRM.addSpillSlotUse(SS, FoldedMI);
VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef); VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
// Insert new def MI and spill MI. // Insert new def MI and spill MI.
const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg); const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
TII->storeRegToStackSlot(MBB, &MI, NewReg, true, SS, RC); TII->storeRegToStackSlot(MBB, &MI, NewReg, true, SS, RC);
MII = prior(MII); MII = prior(MII);
MachineInstr *StoreMI = MII; MachineInstr *StoreMI = MII;
@ -935,13 +1138,13 @@ void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
DistanceMap.clear(); DistanceMap.clear();
for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end(); for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
MII != E; ) { MII != E; ) {
MachineBasicBlock::iterator NextMII = MII; ++NextMII; MachineBasicBlock::iterator NextMII = next(MII);
VirtRegMap::MI2VirtMapTy::const_iterator I, End; VirtRegMap::MI2VirtMapTy::const_iterator I, End;
bool Erased = false; bool Erased = false;
bool BackTracked = false; bool BackTracked = false;
if (PrepForUnfoldOpti(MBB, MII, if (OptimizeByUnfold(MBB, MII,
MaybeDeadStores, Spills, RegKills, KillOps, VRM)) MaybeDeadStores, Spills, RegKills, KillOps, VRM))
NextMII = next(MII); NextMII = next(MII);
MachineInstr &MI = *MII; MachineInstr &MI = *MII;

View File

@ -97,7 +97,7 @@ namespace llvm {
const TargetRegisterInfo *getRegInfo() const { return TRI; } const TargetRegisterInfo *getRegInfo() const { return TRI; }
/// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
/// available in a physical register, return that PhysReg, otherwise /// available in a physical register, return that PhysReg, otherwise
/// return 0. /// return 0.
unsigned getSpillSlotOrReMatPhysReg(int Slot) const { unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
std::map<int, unsigned>::const_iterator I = std::map<int, unsigned>::const_iterator I =
@ -284,6 +284,7 @@ namespace llvm {
MachineRegisterInfo *RegInfo; MachineRegisterInfo *RegInfo;
const TargetRegisterInfo *TRI; const TargetRegisterInfo *TRI;
const TargetInstrInfo *TII; const TargetInstrInfo *TII;
BitVector AllocatableRegs;
DenseMap<MachineInstr*, unsigned> DistanceMap; DenseMap<MachineInstr*, unsigned> DistanceMap;
public: public:
bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM); bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM);
@ -291,12 +292,22 @@ namespace llvm {
void TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist, void TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist,
unsigned Reg, BitVector &RegKills, unsigned Reg, BitVector &RegKills,
std::vector<MachineOperand*> &KillOps); std::vector<MachineOperand*> &KillOps);
bool PrepForUnfoldOpti(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MII, bool OptimizeByUnfold(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MII,
std::vector<MachineInstr*> &MaybeDeadStores,
AvailableSpills &Spills, BitVector &RegKills,
std::vector<MachineOperand*> &KillOps,
VirtRegMap &VRM);
bool OptimizeByUnfold2(unsigned VirtReg, int SS,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MII,
std::vector<MachineInstr*> &MaybeDeadStores, std::vector<MachineInstr*> &MaybeDeadStores,
AvailableSpills &Spills, BitVector &RegKills, AvailableSpills &Spills, BitVector &RegKills,
std::vector<MachineOperand*> &KillOps, std::vector<MachineOperand*> &KillOps,
VirtRegMap &VRM); VirtRegMap &VRM);
bool CommuteToFoldReload(MachineBasicBlock &MBB, bool CommuteToFoldReload(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MII, MachineBasicBlock::iterator &MII,
unsigned VirtReg, unsigned SrcReg, int SS, unsigned VirtReg, unsigned SrcReg, int SS,
@ -305,6 +316,7 @@ namespace llvm {
std::vector<MachineOperand*> &KillOps, std::vector<MachineOperand*> &KillOps,
const TargetRegisterInfo *TRI, const TargetRegisterInfo *TRI,
VirtRegMap &VRM); VirtRegMap &VRM);
void SpillRegToStackSlot(MachineBasicBlock &MBB, void SpillRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MII, MachineBasicBlock::iterator &MII,
int Idx, unsigned PhysReg, int StackSlot, int Idx, unsigned PhysReg, int StackSlot,
@ -315,6 +327,7 @@ namespace llvm {
BitVector &RegKills, BitVector &RegKills,
std::vector<MachineOperand*> &KillOps, std::vector<MachineOperand*> &KillOps,
VirtRegMap &VRM); VirtRegMap &VRM);
void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM, void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
AvailableSpills &Spills, AvailableSpills &Spills,
BitVector &RegKills, std::vector<MachineOperand*> &KillOps); BitVector &RegKills, std::vector<MachineOperand*> &KillOps);

View File

@ -0,0 +1,139 @@
; RUN: llvm-as < %s | llc -mtriple=x86_64-apple-darwin10.0 -relocation-model=pic -disable-fp-elim -stats |& grep {Number of modref unfolded}
%struct.SHA512_CTX = type { [8 x i64], i64, i64, %struct.anon, i32, i32 }
%struct.anon = type { [16 x i64] }
@K512 = external constant [80 x i64], align 32 ; <[80 x i64]*> [#uses=2]
define fastcc void @sha512_block_data_order(%struct.SHA512_CTX* nocapture %ctx, i8* nocapture %in, i64 %num) nounwind ssp {
entry:
br label %bb349
bb349: ; preds = %bb349, %entry
%e.0489 = phi i64 [ 0, %entry ], [ %e.0, %bb349 ] ; <i64> [#uses=3]
%b.0472 = phi i64 [ 0, %entry ], [ %87, %bb349 ] ; <i64> [#uses=2]
%asmtmp356 = call i64 asm "rorq $1,$0", "=r,J,0,~{dirflag},~{fpsr},~{flags},~{cc}"(i32 41, i64 %e.0489) nounwind ; <i64> [#uses=1]
%0 = xor i64 0, %asmtmp356 ; <i64> [#uses=1]
%1 = add i64 0, %0 ; <i64> [#uses=1]
%2 = add i64 %1, 0 ; <i64> [#uses=1]
%3 = add i64 %2, 0 ; <i64> [#uses=1]
%4 = add i64 %3, 0 ; <i64> [#uses=5]
%asmtmp372 = call i64 asm "rorq $1,$0", "=r,J,0,~{dirflag},~{fpsr},~{flags},~{cc}"(i32 34, i64 %4) nounwind ; <i64> [#uses=1]
%asmtmp373 = call i64 asm "rorq $1,$0", "=r,J,0,~{dirflag},~{fpsr},~{flags},~{cc}"(i32 39, i64 %4) nounwind ; <i64> [#uses=0]
%5 = xor i64 %asmtmp372, 0 ; <i64> [#uses=0]
%6 = xor i64 0, %b.0472 ; <i64> [#uses=1]
%7 = and i64 %4, %6 ; <i64> [#uses=1]
%8 = xor i64 %7, 0 ; <i64> [#uses=1]
%9 = add i64 0, %8 ; <i64> [#uses=1]
%10 = add i64 %9, 0 ; <i64> [#uses=2]
%asmtmp377 = call i64 asm "rorq $1,$0", "=r,J,0,~{dirflag},~{fpsr},~{flags},~{cc}"(i32 61, i64 0) nounwind ; <i64> [#uses=1]
%11 = xor i64 0, %asmtmp377 ; <i64> [#uses=1]
%12 = add i64 0, %11 ; <i64> [#uses=1]
%13 = add i64 %12, 0 ; <i64> [#uses=1]
%not381 = xor i64 0, -1 ; <i64> [#uses=1]
%14 = and i64 %e.0489, %not381 ; <i64> [#uses=1]
%15 = xor i64 0, %14 ; <i64> [#uses=1]
%16 = add i64 %15, 0 ; <i64> [#uses=1]
%17 = add i64 %16, %13 ; <i64> [#uses=1]
%18 = add i64 %17, 0 ; <i64> [#uses=1]
%19 = add i64 %18, 0 ; <i64> [#uses=2]
%20 = add i64 %19, %b.0472 ; <i64> [#uses=3]
%21 = add i64 %19, 0 ; <i64> [#uses=1]
%22 = add i64 %21, 0 ; <i64> [#uses=1]
%23 = add i32 0, 12 ; <i32> [#uses=1]
%24 = and i32 %23, 12 ; <i32> [#uses=1]
%25 = zext i32 %24 to i64 ; <i64> [#uses=1]
%26 = getelementptr [16 x i64]* null, i64 0, i64 %25 ; <i64*> [#uses=0]
%27 = add i64 0, %e.0489 ; <i64> [#uses=1]
%28 = add i64 %27, 0 ; <i64> [#uses=1]
%29 = add i64 %28, 0 ; <i64> [#uses=1]
%30 = add i64 %29, 0 ; <i64> [#uses=2]
%31 = and i64 %10, %4 ; <i64> [#uses=1]
%32 = xor i64 0, %31 ; <i64> [#uses=1]
%33 = add i64 %30, 0 ; <i64> [#uses=3]
%34 = add i64 %30, %32 ; <i64> [#uses=1]
%35 = add i64 %34, 0 ; <i64> [#uses=1]
%36 = and i64 %33, %20 ; <i64> [#uses=1]
%37 = xor i64 %36, 0 ; <i64> [#uses=1]
%38 = add i64 %37, 0 ; <i64> [#uses=1]
%39 = add i64 %38, 0 ; <i64> [#uses=1]
%40 = add i64 %39, 0 ; <i64> [#uses=1]
%41 = add i64 %40, 0 ; <i64> [#uses=1]
%42 = add i64 %41, %4 ; <i64> [#uses=3]
%43 = or i32 0, 6 ; <i32> [#uses=1]
%44 = and i32 %43, 14 ; <i32> [#uses=1]
%45 = zext i32 %44 to i64 ; <i64> [#uses=1]
%46 = getelementptr [16 x i64]* null, i64 0, i64 %45 ; <i64*> [#uses=1]
%not417 = xor i64 %42, -1 ; <i64> [#uses=1]
%47 = and i64 %20, %not417 ; <i64> [#uses=1]
%48 = xor i64 0, %47 ; <i64> [#uses=1]
%49 = getelementptr [80 x i64]* @K512, i64 0, i64 0 ; <i64*> [#uses=1]
%50 = load i64* %49, align 8 ; <i64> [#uses=1]
%51 = add i64 %48, 0 ; <i64> [#uses=1]
%52 = add i64 %51, 0 ; <i64> [#uses=1]
%53 = add i64 %52, 0 ; <i64> [#uses=1]
%54 = add i64 %53, %50 ; <i64> [#uses=2]
%asmtmp420 = call i64 asm "rorq $1,$0", "=r,J,0,~{dirflag},~{fpsr},~{flags},~{cc}"(i32 34, i64 0) nounwind ; <i64> [#uses=1]
%asmtmp421 = call i64 asm "rorq $1,$0", "=r,J,0,~{dirflag},~{fpsr},~{flags},~{cc}"(i32 39, i64 0) nounwind ; <i64> [#uses=1]
%55 = xor i64 %asmtmp420, 0 ; <i64> [#uses=1]
%56 = xor i64 %55, %asmtmp421 ; <i64> [#uses=1]
%57 = add i64 %54, %10 ; <i64> [#uses=5]
%58 = add i64 %54, 0 ; <i64> [#uses=1]
%59 = add i64 %58, %56 ; <i64> [#uses=2]
%60 = or i32 0, 7 ; <i32> [#uses=1]
%61 = and i32 %60, 15 ; <i32> [#uses=1]
%62 = zext i32 %61 to i64 ; <i64> [#uses=1]
%63 = getelementptr [16 x i64]* null, i64 0, i64 %62 ; <i64*> [#uses=2]
%64 = load i64* null, align 8 ; <i64> [#uses=1]
%65 = lshr i64 %64, 6 ; <i64> [#uses=1]
%66 = xor i64 0, %65 ; <i64> [#uses=1]
%67 = xor i64 %66, 0 ; <i64> [#uses=1]
%68 = load i64* %46, align 8 ; <i64> [#uses=1]
%69 = load i64* null, align 8 ; <i64> [#uses=1]
%70 = add i64 %68, 0 ; <i64> [#uses=1]
%71 = add i64 %70, %67 ; <i64> [#uses=1]
%72 = add i64 %71, %69 ; <i64> [#uses=1]
%asmtmp427 = call i64 asm "rorq $1,$0", "=r,J,0,~{dirflag},~{fpsr},~{flags},~{cc}"(i32 18, i64 %57) nounwind ; <i64> [#uses=1]
%asmtmp428 = call i64 asm "rorq $1,$0", "=r,J,0,~{dirflag},~{fpsr},~{flags},~{cc}"(i32 41, i64 %57) nounwind ; <i64> [#uses=1]
%73 = xor i64 %asmtmp427, 0 ; <i64> [#uses=1]
%74 = xor i64 %73, %asmtmp428 ; <i64> [#uses=1]
%75 = and i64 %57, %42 ; <i64> [#uses=1]
%not429 = xor i64 %57, -1 ; <i64> [#uses=1]
%76 = and i64 %33, %not429 ; <i64> [#uses=1]
%77 = xor i64 %75, %76 ; <i64> [#uses=1]
%78 = getelementptr [80 x i64]* @K512, i64 0, i64 0 ; <i64*> [#uses=1]
%79 = load i64* %78, align 16 ; <i64> [#uses=1]
%80 = add i64 %77, %20 ; <i64> [#uses=1]
%81 = add i64 %80, %72 ; <i64> [#uses=1]
%82 = add i64 %81, %74 ; <i64> [#uses=1]
%83 = add i64 %82, %79 ; <i64> [#uses=1]
%asmtmp432 = call i64 asm "rorq $1,$0", "=r,J,0,~{dirflag},~{fpsr},~{flags},~{cc}"(i32 34, i64 %59) nounwind ; <i64> [#uses=1]
%asmtmp433 = call i64 asm "rorq $1,$0", "=r,J,0,~{dirflag},~{fpsr},~{flags},~{cc}"(i32 39, i64 %59) nounwind ; <i64> [#uses=1]
%84 = xor i64 %asmtmp432, 0 ; <i64> [#uses=1]
%85 = xor i64 %84, %asmtmp433 ; <i64> [#uses=1]
%86 = add i64 %83, %22 ; <i64> [#uses=2]
%87 = add i64 0, %85 ; <i64> [#uses=1]
%asmtmp435 = call i64 asm "rorq $1,$0", "=r,J,0,~{dirflag},~{fpsr},~{flags},~{cc}"(i32 8, i64 0) nounwind ; <i64> [#uses=1]
%88 = xor i64 0, %asmtmp435 ; <i64> [#uses=1]
%89 = load i64* null, align 8 ; <i64> [#uses=3]
%asmtmp436 = call i64 asm "rorq $1,$0", "=r,J,0,~{dirflag},~{fpsr},~{flags},~{cc}"(i32 19, i64 %89) nounwind ; <i64> [#uses=1]
%asmtmp437 = call i64 asm "rorq $1,$0", "=r,J,0,~{dirflag},~{fpsr},~{flags},~{cc}"(i32 61, i64 %89) nounwind ; <i64> [#uses=1]
%90 = lshr i64 %89, 6 ; <i64> [#uses=1]
%91 = xor i64 %asmtmp436, %90 ; <i64> [#uses=1]
%92 = xor i64 %91, %asmtmp437 ; <i64> [#uses=1]
%93 = load i64* %63, align 8 ; <i64> [#uses=1]
%94 = load i64* null, align 8 ; <i64> [#uses=1]
%95 = add i64 %93, %88 ; <i64> [#uses=1]
%96 = add i64 %95, %92 ; <i64> [#uses=1]
%97 = add i64 %96, %94 ; <i64> [#uses=2]
store i64 %97, i64* %63, align 8
%98 = and i64 %86, %57 ; <i64> [#uses=1]
%not441 = xor i64 %86, -1 ; <i64> [#uses=1]
%99 = and i64 %42, %not441 ; <i64> [#uses=1]
%100 = xor i64 %98, %99 ; <i64> [#uses=1]
%101 = add i64 %100, %33 ; <i64> [#uses=1]
%102 = add i64 %101, %97 ; <i64> [#uses=1]
%103 = add i64 %102, 0 ; <i64> [#uses=1]
%104 = add i64 %103, 0 ; <i64> [#uses=1]
%e.0 = add i64 %104, %35 ; <i64> [#uses=1]
br label %bb349
}