mirror of
https://github.com/RPCSX/llvm.git
synced 2025-02-21 21:41:43 +00:00
LowerBitSets: Use byte arrays instead of bit sets to represent in-memory bit sets.
By loading from indexed offsets into a byte array and applying a mask, a program can test bits from the bit set with a relatively short instruction sequence. For example, suppose we have 15 bit sets to lay out: A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits), F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits), L (4 bits), M (3 bits), N (2 bits), O (1 bit) These bits can be laid out in a 16-byte array like this: Byte Offset 0123456789ABCDEF Bit 7 HHHHHHHHHIIIIIII 6 GGGGGGGGGGJJJJJJ 5 FFFFFFFFFFFKKKKK 4 EEEEEEEEEEEELLLL 3 DDDDDDDDDDDDDMMM 2 CCCCCCCCCCCCCCNN 1 BBBBBBBBBBBBBBBO 0 AAAAAAAAAAAAAAAA For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done in 1-2 machine instructions on x86, or 4-6 instructions on ARM. This uses the LPT multiprocessor scheduling algorithm to lay out the bits efficiently. Saves ~450KB of instructions in a recent build of Chromium. Differential Revision: http://reviews.llvm.org/D7954 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231043 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
f89c6af16b
commit
27821d7200
@ -30,8 +30,8 @@ class GlobalVariable;
|
||||
class Value;
|
||||
|
||||
struct BitSetInfo {
|
||||
// The actual bitset.
|
||||
std::vector<uint8_t> Bits;
|
||||
// The indices of the set bits in the bitset.
|
||||
std::set<uint64_t> Bits;
|
||||
|
||||
// The byte offset into the combined global represented by the bitset.
|
||||
uint64_t ByteOffset;
|
||||
@ -45,18 +45,11 @@ struct BitSetInfo {
|
||||
unsigned AlignLog2;
|
||||
|
||||
bool isSingleOffset() const {
|
||||
return Bits.size() == 1 && Bits[0] == 1;
|
||||
return Bits.size() == 1;
|
||||
}
|
||||
|
||||
bool isAllOnes() const {
|
||||
for (unsigned I = 0; I != Bits.size() - 1; ++I)
|
||||
if (Bits[I] != 0xFF)
|
||||
return false;
|
||||
|
||||
if (BitSize % 8 == 0)
|
||||
return Bits[Bits.size() - 1] == 0xFF;
|
||||
|
||||
return Bits[Bits.size() - 1] == (1 << (BitSize % 8)) - 1;
|
||||
return Bits.size() == BitSize;
|
||||
}
|
||||
|
||||
bool containsGlobalOffset(uint64_t Offset) const;
|
||||
@ -64,7 +57,6 @@ struct BitSetInfo {
|
||||
bool containsValue(const DataLayout *DL,
|
||||
const DenseMap<GlobalVariable *, uint64_t> &GlobalLayout,
|
||||
Value *V, uint64_t COffset = 0) const;
|
||||
|
||||
};
|
||||
|
||||
struct BitSetBuilder {
|
||||
@ -148,6 +140,59 @@ struct GlobalLayoutBuilder {
|
||||
void addFragment(const std::set<uint64_t> &F);
|
||||
};
|
||||
|
||||
/// This class is used to build a byte array containing overlapping bit sets. By
|
||||
/// loading from indexed offsets into the byte array and applying a mask, a
|
||||
/// program can test bits from the bit set with a relatively short instruction
|
||||
/// sequence. For example, suppose we have 15 bit sets to lay out:
|
||||
///
|
||||
/// A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
|
||||
/// F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
|
||||
/// L (4 bits), M (3 bits), N (2 bits), O (1 bit)
|
||||
///
|
||||
/// These bits can be laid out in a 16-byte array like this:
|
||||
///
|
||||
/// Byte Offset
|
||||
/// 0123456789ABCDEF
|
||||
/// Bit
|
||||
/// 7 HHHHHHHHHIIIIIII
|
||||
/// 6 GGGGGGGGGGJJJJJJ
|
||||
/// 5 FFFFFFFFFFFKKKKK
|
||||
/// 4 EEEEEEEEEEEELLLL
|
||||
/// 3 DDDDDDDDDDDDDMMM
|
||||
/// 2 CCCCCCCCCCCCCCNN
|
||||
/// 1 BBBBBBBBBBBBBBBO
|
||||
/// 0 AAAAAAAAAAAAAAAA
|
||||
///
|
||||
/// For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
|
||||
/// test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
|
||||
/// in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
|
||||
///
|
||||
/// This is a byte array, rather than (say) a 2-byte array or a 4-byte array,
|
||||
/// because for one thing it gives us better packing (the more bins there are,
|
||||
/// the less evenly they will be filled), and for another, the instruction
|
||||
/// sequences can be slightly shorter, both on x86 and ARM.
|
||||
struct ByteArrayBuilder {
|
||||
/// The byte array built so far.
|
||||
std::vector<uint8_t> Bytes;
|
||||
|
||||
enum { BitsPerByte = 8 };
|
||||
|
||||
/// The number of bytes allocated so far for each of the bits.
|
||||
uint64_t BitAllocs[BitsPerByte];
|
||||
|
||||
ByteArrayBuilder() {
|
||||
memset(BitAllocs, 0, sizeof(BitAllocs));
|
||||
}
|
||||
|
||||
/// Allocate BitSize bits in the byte array where Bits contains the bits to
|
||||
/// set. AllocByteOffset is set to the offset within the byte array and
|
||||
/// AllocMask is set to the bitmask for those bits. This uses the LPT (Longest
|
||||
/// Processing Time) multiprocessor scheduling algorithm to lay out the bits
|
||||
/// efficiently; the pass allocates bit sets in decreasing size order.
|
||||
void allocate(const std::set<uint64_t> &Bits, uint64_t BitSize,
|
||||
uint64_t &AllocByteOffset, uint8_t &AllocMask);
|
||||
};
|
||||
|
||||
} // namespace llvm
|
||||
|
||||
#endif
|
||||
|
@ -31,7 +31,9 @@ using namespace llvm;
|
||||
|
||||
#define DEBUG_TYPE "lowerbitsets"
|
||||
|
||||
STATISTIC(NumBitSetsCreated, "Number of bitsets created");
|
||||
STATISTIC(ByteArraySizeBits, "Byte array size in bits");
|
||||
STATISTIC(ByteArraySizeBytes, "Byte array size in bytes");
|
||||
STATISTIC(NumByteArraysCreated, "Number of byte arrays created");
|
||||
STATISTIC(NumBitSetCallsLowered, "Number of bitset calls lowered");
|
||||
STATISTIC(NumBitSetDisjointSets, "Number of disjoint sets of bitsets");
|
||||
|
||||
@ -46,7 +48,7 @@ bool BitSetInfo::containsGlobalOffset(uint64_t Offset) const {
|
||||
if (BitOffset >= BitSize)
|
||||
return false;
|
||||
|
||||
return (Bits[BitOffset / 8] >> (BitOffset % 8)) & 1;
|
||||
return Bits.count(BitOffset);
|
||||
}
|
||||
|
||||
bool BitSetInfo::containsValue(
|
||||
@ -101,18 +103,15 @@ BitSetInfo BitSetBuilder::build() {
|
||||
BSI.ByteOffset = Min;
|
||||
|
||||
BSI.AlignLog2 = 0;
|
||||
// FIXME: Can probably do something smarter if all offsets are 0.
|
||||
if (Mask != 0)
|
||||
BSI.AlignLog2 = countTrailingZeros(Mask, ZB_Undefined);
|
||||
|
||||
// Build the compressed bitset while normalizing the offsets against the
|
||||
// computed alignment.
|
||||
BSI.BitSize = ((Max - Min) >> BSI.AlignLog2) + 1;
|
||||
uint64_t ByteSize = (BSI.BitSize + 7) / 8;
|
||||
BSI.Bits.resize(ByteSize);
|
||||
for (uint64_t Offset : Offsets) {
|
||||
Offset >>= BSI.AlignLog2;
|
||||
BSI.Bits[Offset / 8] |= 1 << (Offset % 8);
|
||||
BSI.Bits.insert(Offset);
|
||||
}
|
||||
|
||||
return BSI;
|
||||
@ -147,14 +146,46 @@ void GlobalLayoutBuilder::addFragment(const std::set<uint64_t> &F) {
|
||||
FragmentMap[ObjIndex] = FragmentIndex;
|
||||
}
|
||||
|
||||
void ByteArrayBuilder::allocate(const std::set<uint64_t> &Bits,
|
||||
uint64_t BitSize, uint64_t &AllocByteOffset,
|
||||
uint8_t &AllocMask) {
|
||||
// Find the smallest current allocation.
|
||||
unsigned Bit = 0;
|
||||
for (unsigned I = 1; I != BitsPerByte; ++I)
|
||||
if (BitAllocs[I] < BitAllocs[Bit])
|
||||
Bit = I;
|
||||
|
||||
AllocByteOffset = BitAllocs[Bit];
|
||||
|
||||
// Add our size to it.
|
||||
unsigned ReqSize = AllocByteOffset + BitSize;
|
||||
BitAllocs[Bit] = ReqSize;
|
||||
if (Bytes.size() < ReqSize)
|
||||
Bytes.resize(ReqSize);
|
||||
|
||||
// Set our bits.
|
||||
AllocMask = 1 << Bit;
|
||||
for (uint64_t B : Bits)
|
||||
Bytes[AllocByteOffset + B] |= AllocMask;
|
||||
}
|
||||
|
||||
namespace {
|
||||
|
||||
struct ByteArrayInfo {
|
||||
std::set<uint64_t> Bits;
|
||||
uint64_t BitSize;
|
||||
GlobalVariable *ByteArray;
|
||||
Constant *Mask;
|
||||
};
|
||||
|
||||
struct LowerBitSets : public ModulePass {
|
||||
static char ID;
|
||||
LowerBitSets() : ModulePass(ID) {
|
||||
initializeLowerBitSetsPass(*PassRegistry::getPassRegistry());
|
||||
}
|
||||
|
||||
Module *M;
|
||||
|
||||
const DataLayout *DL;
|
||||
IntegerType *Int1Ty;
|
||||
IntegerType *Int8Ty;
|
||||
@ -169,20 +200,23 @@ struct LowerBitSets : public ModulePass {
|
||||
// Mapping from bitset mdstrings to the call sites that test them.
|
||||
DenseMap<MDString *, std::vector<CallInst *>> BitSetTestCallSites;
|
||||
|
||||
std::vector<ByteArrayInfo> ByteArrayInfos;
|
||||
|
||||
BitSetInfo
|
||||
buildBitSet(MDString *BitSet,
|
||||
const DenseMap<GlobalVariable *, uint64_t> &GlobalLayout);
|
||||
Value *createBitSetTest(IRBuilder<> &B, const BitSetInfo &BSI,
|
||||
GlobalVariable *BitSetGlobal, Value *BitOffset);
|
||||
ByteArrayInfo *createByteArray(BitSetInfo &BSI);
|
||||
void allocateByteArrays();
|
||||
Value *createBitSetTest(IRBuilder<> &B, BitSetInfo &BSI, ByteArrayInfo *&BAI,
|
||||
Value *BitOffset);
|
||||
Value *
|
||||
lowerBitSetCall(CallInst *CI, const BitSetInfo &BSI,
|
||||
GlobalVariable *BitSetGlobal, GlobalVariable *CombinedGlobal,
|
||||
lowerBitSetCall(CallInst *CI, BitSetInfo &BSI, ByteArrayInfo *&BAI,
|
||||
GlobalVariable *CombinedGlobal,
|
||||
const DenseMap<GlobalVariable *, uint64_t> &GlobalLayout);
|
||||
void buildBitSetsFromGlobals(Module &M,
|
||||
const std::vector<MDString *> &BitSets,
|
||||
void buildBitSetsFromGlobals(const std::vector<MDString *> &BitSets,
|
||||
const std::vector<GlobalVariable *> &Globals);
|
||||
bool buildBitSets(Module &M);
|
||||
bool eraseBitSetMetadata(Module &M);
|
||||
bool buildBitSets();
|
||||
bool eraseBitSetMetadata();
|
||||
|
||||
bool doInitialization(Module &M) override;
|
||||
bool runOnModule(Module &M) override;
|
||||
@ -198,19 +232,21 @@ char LowerBitSets::ID = 0;
|
||||
|
||||
ModulePass *llvm::createLowerBitSetsPass() { return new LowerBitSets; }
|
||||
|
||||
bool LowerBitSets::doInitialization(Module &M) {
|
||||
DL = M.getDataLayout();
|
||||
bool LowerBitSets::doInitialization(Module &Mod) {
|
||||
M = &Mod;
|
||||
|
||||
DL = M->getDataLayout();
|
||||
if (!DL)
|
||||
report_fatal_error("Data layout required");
|
||||
|
||||
Int1Ty = Type::getInt1Ty(M.getContext());
|
||||
Int8Ty = Type::getInt8Ty(M.getContext());
|
||||
Int32Ty = Type::getInt32Ty(M.getContext());
|
||||
Int1Ty = Type::getInt1Ty(M->getContext());
|
||||
Int8Ty = Type::getInt8Ty(M->getContext());
|
||||
Int32Ty = Type::getInt32Ty(M->getContext());
|
||||
Int32PtrTy = PointerType::getUnqual(Int32Ty);
|
||||
Int64Ty = Type::getInt64Ty(M.getContext());
|
||||
IntPtrTy = DL->getIntPtrType(M.getContext(), 0);
|
||||
Int64Ty = Type::getInt64Ty(M->getContext());
|
||||
IntPtrTy = DL->getIntPtrType(M->getContext(), 0);
|
||||
|
||||
BitSetNM = M.getNamedMetadata("llvm.bitsets");
|
||||
BitSetNM = M->getNamedMetadata("llvm.bitsets");
|
||||
|
||||
BitSetTestCallSites.clear();
|
||||
|
||||
@ -259,52 +295,113 @@ static Value *createMaskedBitTest(IRBuilder<> &B, Value *Bits,
|
||||
return B.CreateICmpNE(MaskedBits, ConstantInt::get(BitsType, 0));
|
||||
}
|
||||
|
||||
ByteArrayInfo *LowerBitSets::createByteArray(BitSetInfo &BSI) {
|
||||
// Create globals to stand in for byte arrays and masks. These never actually
|
||||
// get initialized, we RAUW and erase them later in allocateByteArrays() once
|
||||
// we know the offset and mask to use.
|
||||
auto ByteArrayGlobal = new GlobalVariable(
|
||||
*M, Int8Ty, /*isConstant=*/true, GlobalValue::PrivateLinkage, nullptr);
|
||||
auto MaskGlobal = new GlobalVariable(
|
||||
*M, Int8Ty, /*isConstant=*/true, GlobalValue::PrivateLinkage, nullptr);
|
||||
|
||||
ByteArrayInfos.emplace_back();
|
||||
ByteArrayInfo *BAI = &ByteArrayInfos.back();
|
||||
|
||||
BAI->Bits = BSI.Bits;
|
||||
BAI->BitSize = BSI.BitSize;
|
||||
BAI->ByteArray = ByteArrayGlobal;
|
||||
BAI->Mask = ConstantExpr::getPtrToInt(MaskGlobal, Int8Ty);
|
||||
return BAI;
|
||||
}
|
||||
|
||||
void LowerBitSets::allocateByteArrays() {
|
||||
std::stable_sort(ByteArrayInfos.begin(), ByteArrayInfos.end(),
|
||||
[](const ByteArrayInfo &BAI1, const ByteArrayInfo &BAI2) {
|
||||
return BAI1.BitSize > BAI2.BitSize;
|
||||
});
|
||||
|
||||
std::vector<uint64_t> ByteArrayOffsets(ByteArrayInfos.size());
|
||||
|
||||
ByteArrayBuilder BAB;
|
||||
for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) {
|
||||
ByteArrayInfo *BAI = &ByteArrayInfos[I];
|
||||
|
||||
uint8_t Mask;
|
||||
BAB.allocate(BAI->Bits, BAI->BitSize, ByteArrayOffsets[I], Mask);
|
||||
|
||||
BAI->Mask->replaceAllUsesWith(ConstantInt::get(Int8Ty, Mask));
|
||||
cast<GlobalVariable>(BAI->Mask->getOperand(0))->eraseFromParent();
|
||||
}
|
||||
|
||||
Constant *ByteArrayConst = ConstantDataArray::get(M->getContext(), BAB.Bytes);
|
||||
auto ByteArray =
|
||||
new GlobalVariable(*M, ByteArrayConst->getType(), /*isConstant=*/true,
|
||||
GlobalValue::PrivateLinkage, ByteArrayConst);
|
||||
|
||||
for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) {
|
||||
ByteArrayInfo *BAI = &ByteArrayInfos[I];
|
||||
|
||||
Constant *Idxs[] = {ConstantInt::get(IntPtrTy, 0),
|
||||
ConstantInt::get(IntPtrTy, ByteArrayOffsets[I])};
|
||||
Constant *GEP = ConstantExpr::getInBoundsGetElementPtr(ByteArray, Idxs);
|
||||
|
||||
// Create an alias instead of RAUW'ing the gep directly. On x86 this ensures
|
||||
// that the pc-relative displacement is folded into the lea instead of the
|
||||
// test instruction getting another displacement.
|
||||
GlobalAlias *Alias = GlobalAlias::create(
|
||||
Int8Ty, 0, GlobalValue::PrivateLinkage, "bits", GEP, M);
|
||||
BAI->ByteArray->replaceAllUsesWith(Alias);
|
||||
BAI->ByteArray->eraseFromParent();
|
||||
}
|
||||
|
||||
ByteArraySizeBits = BAB.BitAllocs[0] + BAB.BitAllocs[1] + BAB.BitAllocs[2] +
|
||||
BAB.BitAllocs[3] + BAB.BitAllocs[4] + BAB.BitAllocs[5] +
|
||||
BAB.BitAllocs[6] + BAB.BitAllocs[7];
|
||||
ByteArraySizeBytes = BAB.Bytes.size();
|
||||
}
|
||||
|
||||
/// Build a test that bit BitOffset is set in BSI, where
|
||||
/// BitSetGlobal is a global containing the bits in BSI.
|
||||
Value *LowerBitSets::createBitSetTest(IRBuilder<> &B, const BitSetInfo &BSI,
|
||||
GlobalVariable *BitSetGlobal,
|
||||
Value *BitOffset) {
|
||||
if (BSI.Bits.size() <= 8) {
|
||||
Value *LowerBitSets::createBitSetTest(IRBuilder<> &B, BitSetInfo &BSI,
|
||||
ByteArrayInfo *&BAI, Value *BitOffset) {
|
||||
if (BSI.BitSize <= 64) {
|
||||
// If the bit set is sufficiently small, we can avoid a load by bit testing
|
||||
// a constant.
|
||||
IntegerType *BitsTy;
|
||||
if (BSI.Bits.size() <= 4)
|
||||
if (BSI.BitSize <= 32)
|
||||
BitsTy = Int32Ty;
|
||||
else
|
||||
BitsTy = Int64Ty;
|
||||
|
||||
uint64_t Bits = 0;
|
||||
for (auto I = BSI.Bits.rbegin(), E = BSI.Bits.rend(); I != E; ++I) {
|
||||
Bits <<= 8;
|
||||
Bits |= *I;
|
||||
}
|
||||
for (auto Bit : BSI.Bits)
|
||||
Bits |= uint64_t(1) << Bit;
|
||||
Constant *BitsConst = ConstantInt::get(BitsTy, Bits);
|
||||
return createMaskedBitTest(B, BitsConst, BitOffset);
|
||||
} else {
|
||||
// TODO: We might want to use the memory variant of the bt instruction
|
||||
// with the previously computed bit offset at -Os. This instruction does
|
||||
// exactly what we want but has been benchmarked as being slower than open
|
||||
// coding the load+bt.
|
||||
Value *BitSetGlobalOffset =
|
||||
B.CreateLShr(BitOffset, ConstantInt::get(IntPtrTy, 5));
|
||||
Value *BitSetEntryAddr = B.CreateGEP(
|
||||
ConstantExpr::getBitCast(BitSetGlobal, Int32PtrTy), BitSetGlobalOffset);
|
||||
Value *BitSetEntry = B.CreateLoad(BitSetEntryAddr);
|
||||
if (!BAI) {
|
||||
++NumByteArraysCreated;
|
||||
BAI = createByteArray(BSI);
|
||||
}
|
||||
|
||||
return createMaskedBitTest(B, BitSetEntry, BitOffset);
|
||||
Value *ByteAddr = B.CreateGEP(BAI->ByteArray, BitOffset);
|
||||
Value *Byte = B.CreateLoad(ByteAddr);
|
||||
|
||||
Value *ByteAndMask = B.CreateAnd(Byte, BAI->Mask);
|
||||
return B.CreateICmpNE(ByteAndMask, ConstantInt::get(Int8Ty, 0));
|
||||
}
|
||||
}
|
||||
|
||||
/// Lower a llvm.bitset.test call to its implementation. Returns the value to
|
||||
/// replace the call with.
|
||||
Value *LowerBitSets::lowerBitSetCall(
|
||||
CallInst *CI, const BitSetInfo &BSI, GlobalVariable *BitSetGlobal,
|
||||
CallInst *CI, BitSetInfo &BSI, ByteArrayInfo *&BAI,
|
||||
GlobalVariable *CombinedGlobal,
|
||||
const DenseMap<GlobalVariable *, uint64_t> &GlobalLayout) {
|
||||
Value *Ptr = CI->getArgOperand(0);
|
||||
|
||||
if (BSI.containsValue(DL, GlobalLayout, Ptr))
|
||||
return ConstantInt::getTrue(BitSetGlobal->getParent()->getContext());
|
||||
return ConstantInt::getTrue(CombinedGlobal->getParent()->getContext());
|
||||
|
||||
Constant *GlobalAsInt = ConstantExpr::getPtrToInt(CombinedGlobal, IntPtrTy);
|
||||
Constant *OffsetedGlobalAsInt = ConstantExpr::getAdd(
|
||||
@ -353,7 +450,7 @@ Value *LowerBitSets::lowerBitSetCall(
|
||||
|
||||
// Now that we know that the offset is in range and aligned, load the
|
||||
// appropriate bit from the bitset.
|
||||
Value *Bit = createBitSetTest(ThenB, BSI, BitSetGlobal, BitOffset);
|
||||
Value *Bit = createBitSetTest(ThenB, BSI, BAI, BitOffset);
|
||||
|
||||
// The value we want is 0 if we came directly from the initial block
|
||||
// (having failed the range or alignment checks), or the loaded bit if
|
||||
@ -368,7 +465,6 @@ Value *LowerBitSets::lowerBitSetCall(
|
||||
/// Given a disjoint set of bitsets and globals, layout the globals, build the
|
||||
/// bit sets and lower the llvm.bitset.test calls.
|
||||
void LowerBitSets::buildBitSetsFromGlobals(
|
||||
Module &M,
|
||||
const std::vector<MDString *> &BitSets,
|
||||
const std::vector<GlobalVariable *> &Globals) {
|
||||
// Build a new global with the combined contents of the referenced globals.
|
||||
@ -391,9 +487,9 @@ void LowerBitSets::buildBitSetsFromGlobals(
|
||||
}
|
||||
if (!GlobalInits.empty())
|
||||
GlobalInits.pop_back();
|
||||
Constant *NewInit = ConstantStruct::getAnon(M.getContext(), GlobalInits);
|
||||
Constant *NewInit = ConstantStruct::getAnon(M->getContext(), GlobalInits);
|
||||
auto CombinedGlobal =
|
||||
new GlobalVariable(M, NewInit->getType(), /*isConstant=*/true,
|
||||
new GlobalVariable(*M, NewInit->getType(), /*isConstant=*/true,
|
||||
GlobalValue::PrivateLinkage, NewInit);
|
||||
|
||||
const StructLayout *CombinedGlobalLayout =
|
||||
@ -410,18 +506,12 @@ void LowerBitSets::buildBitSetsFromGlobals(
|
||||
// Build the bitset.
|
||||
BitSetInfo BSI = buildBitSet(BS, GlobalLayout);
|
||||
|
||||
// Create a global in which to store it.
|
||||
++NumBitSetsCreated;
|
||||
Constant *BitsConst = ConstantDataArray::get(M.getContext(), BSI.Bits);
|
||||
auto BitSetGlobal = new GlobalVariable(
|
||||
M, BitsConst->getType(), /*isConstant=*/true,
|
||||
GlobalValue::PrivateLinkage, BitsConst, BS->getString() + ".bits");
|
||||
ByteArrayInfo *BAI = 0;
|
||||
|
||||
// Lower each call to llvm.bitset.test for this bitset.
|
||||
for (CallInst *CI : BitSetTestCallSites[BS]) {
|
||||
++NumBitSetCallsLowered;
|
||||
Value *Lowered =
|
||||
lowerBitSetCall(CI, BSI, BitSetGlobal, CombinedGlobal, GlobalLayout);
|
||||
Value *Lowered = lowerBitSetCall(CI, BSI, BAI, CombinedGlobal, GlobalLayout);
|
||||
CI->replaceAllUsesWith(Lowered);
|
||||
CI->eraseFromParent();
|
||||
}
|
||||
@ -439,7 +529,7 @@ void LowerBitSets::buildBitSetsFromGlobals(
|
||||
GlobalAlias *GAlias = GlobalAlias::create(
|
||||
Globals[I]->getType()->getElementType(),
|
||||
Globals[I]->getType()->getAddressSpace(), Globals[I]->getLinkage(),
|
||||
"", CombinedGlobalElemPtr, &M);
|
||||
"", CombinedGlobalElemPtr, M);
|
||||
GAlias->takeName(Globals[I]);
|
||||
Globals[I]->replaceAllUsesWith(GAlias);
|
||||
Globals[I]->eraseFromParent();
|
||||
@ -447,9 +537,9 @@ void LowerBitSets::buildBitSetsFromGlobals(
|
||||
}
|
||||
|
||||
/// Lower all bit sets in this module.
|
||||
bool LowerBitSets::buildBitSets(Module &M) {
|
||||
bool LowerBitSets::buildBitSets() {
|
||||
Function *BitSetTestFunc =
|
||||
M.getFunction(Intrinsic::getName(Intrinsic::bitset_test));
|
||||
M->getFunction(Intrinsic::getName(Intrinsic::bitset_test));
|
||||
if (!BitSetTestFunc)
|
||||
return false;
|
||||
|
||||
@ -591,22 +681,24 @@ bool LowerBitSets::buildBitSets(Module &M) {
|
||||
});
|
||||
|
||||
// Build the bitsets from this disjoint set.
|
||||
buildBitSetsFromGlobals(M, BitSets, OrderedGlobals);
|
||||
buildBitSetsFromGlobals(BitSets, OrderedGlobals);
|
||||
}
|
||||
|
||||
allocateByteArrays();
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool LowerBitSets::eraseBitSetMetadata(Module &M) {
|
||||
bool LowerBitSets::eraseBitSetMetadata() {
|
||||
if (!BitSetNM)
|
||||
return false;
|
||||
|
||||
M.eraseNamedMetadata(BitSetNM);
|
||||
M->eraseNamedMetadata(BitSetNM);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool LowerBitSets::runOnModule(Module &M) {
|
||||
bool Changed = buildBitSets(M);
|
||||
Changed |= eraseBitSetMetadata(M);
|
||||
bool Changed = buildBitSets();
|
||||
Changed |= eraseBitSetMetadata();
|
||||
return Changed;
|
||||
}
|
||||
|
@ -9,8 +9,9 @@ target datalayout = "e-p:32:32"
|
||||
@c = constant i32 3
|
||||
@d = constant [2 x i32] [i32 4, i32 5]
|
||||
|
||||
; CHECK: [[BA:@[^ ]*]] = private constant [68 x i8] c"\03\01\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\00\02\00\01"
|
||||
|
||||
; Offset 0, 4 byte alignment
|
||||
; CHECK: @bitset1.bits = private constant [9 x i8] c"\03\00\00\00\00\00\00\00\08"
|
||||
!0 = !{!"bitset1", i32* @a, i32 0}
|
||||
; CHECK-NODISCARD-DAG: !{!"bitset1", i32* @a, i32 0}
|
||||
!1 = !{!"bitset1", [63 x i32]* @b, i32 0}
|
||||
@ -19,14 +20,12 @@ target datalayout = "e-p:32:32"
|
||||
; CHECK-NODISCARD-DAG: !{!"bitset1", [2 x i32]* @d, i32 4}
|
||||
|
||||
; Offset 4, 256 byte alignment
|
||||
; CHECK: @bitset2.bits = private constant [1 x i8] c"\03"
|
||||
!3 = !{!"bitset2", [63 x i32]* @b, i32 0}
|
||||
; CHECK-NODISCARD-DAG: !{!"bitset2", [63 x i32]* @b, i32 0}
|
||||
!4 = !{!"bitset2", i32* @c, i32 0}
|
||||
; CHECK-NODISCARD-DAG: !{!"bitset2", i32* @c, i32 0}
|
||||
|
||||
; Offset 0, 4 byte alignment
|
||||
; CHECK: @bitset3.bits = private constant [9 x i8] c"\01\00\00\00\00\00\00\00\02"
|
||||
!5 = !{!"bitset3", i32* @a, i32 0}
|
||||
; CHECK-NODISCARD-DAG: !{!"bitset3", i32* @a, i32 0}
|
||||
!6 = !{!"bitset3", i32* @c, i32 0}
|
||||
@ -43,6 +42,9 @@ target datalayout = "e-p:32:32"
|
||||
; CHECK: @c = alias getelementptr inbounds ({ i32, [0 x i8], [63 x i32], [4 x i8], i32, [0 x i8], [2 x i32] }* [[G]], i32 0, i32 4)
|
||||
; CHECK: @d = alias getelementptr inbounds ({ i32, [0 x i8], [63 x i32], [4 x i8], i32, [0 x i8], [2 x i32] }* [[G]], i32 0, i32 6)
|
||||
|
||||
; CHECK: @bits = private alias getelementptr inbounds ([68 x i8]* [[BA]], i32 0, i32 0)
|
||||
; CHECK: @bits1 = private alias getelementptr inbounds ([68 x i8]* [[BA]], i32 0, i32 0)
|
||||
|
||||
declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
|
||||
|
||||
; CHECK: @foo(i32* [[A0:%[^ ]*]])
|
||||
@ -59,15 +61,12 @@ define i1 @foo(i32* %p) {
|
||||
; CHECK: [[R6:%[^ ]*]] = icmp ult i32 [[R5]], 68
|
||||
; CHECK: br i1 [[R6]]
|
||||
|
||||
; CHECK: [[R8:%[^ ]*]] = lshr i32 [[R5]], 5
|
||||
; CHECK: [[R9:%[^ ]*]] = getelementptr i32, i32* bitcast ([9 x i8]* @bitset1.bits to i32*), i32 [[R8]]
|
||||
; CHECK: [[R10:%[^ ]*]] = load i32, i32* [[R9]]
|
||||
; CHECK: [[R11:%[^ ]*]] = and i32 [[R5]], 31
|
||||
; CHECK: [[R12:%[^ ]*]] = shl i32 1, [[R11]]
|
||||
; CHECK: [[R13:%[^ ]*]] = and i32 [[R10]], [[R12]]
|
||||
; CHECK: [[R14:%[^ ]*]] = icmp ne i32 [[R13]], 0
|
||||
; CHECK: [[R8:%[^ ]*]] = getelementptr i8, i8* @bits, i32 [[R5]]
|
||||
; CHECK: [[R9:%[^ ]*]] = load i8, i8* [[R8]]
|
||||
; CHECK: [[R10:%[^ ]*]] = and i8 [[R9]], 1
|
||||
; CHECK: [[R11:%[^ ]*]] = icmp ne i8 [[R10]], 0
|
||||
|
||||
; CHECK: [[R16:%[^ ]*]] = phi i1 [ false, {{%[^ ]*}} ], [ [[R14]], {{%[^ ]*}} ]
|
||||
; CHECK: [[R16:%[^ ]*]] = phi i1 [ false, {{%[^ ]*}} ], [ [[R11]], {{%[^ ]*}} ]
|
||||
%x = call i1 @llvm.bitset.test(i8* %pi8, metadata !"bitset1")
|
||||
|
||||
; CHECK-NOT: llvm.bitset.test
|
||||
@ -105,15 +104,12 @@ define i1 @baz(i32* %p) {
|
||||
; CHECK: [[T6:%[^ ]*]] = icmp ult i32 [[T5]], 66
|
||||
; CHECK: br i1 [[T6]]
|
||||
|
||||
; CHECK: [[T8:%[^ ]*]] = lshr i32 [[T5]], 5
|
||||
; CHECK: [[T9:%[^ ]*]] = getelementptr i32, i32* bitcast ([9 x i8]* @bitset3.bits to i32*), i32 [[T8]]
|
||||
; CHECK: [[T10:%[^ ]*]] = load i32, i32* [[T9]]
|
||||
; CHECK: [[T11:%[^ ]*]] = and i32 [[T5]], 31
|
||||
; CHECK: [[T12:%[^ ]*]] = shl i32 1, [[T11]]
|
||||
; CHECK: [[T13:%[^ ]*]] = and i32 [[T10]], [[T12]]
|
||||
; CHECK: [[T14:%[^ ]*]] = icmp ne i32 [[T13]], 0
|
||||
; CHECK: [[T8:%[^ ]*]] = getelementptr i8, i8* @bits1, i32 [[T5]]
|
||||
; CHECK: [[T9:%[^ ]*]] = load i8, i8* [[T8]]
|
||||
; CHECK: [[T10:%[^ ]*]] = and i8 [[T9]], 2
|
||||
; CHECK: [[T11:%[^ ]*]] = icmp ne i8 [[T10]], 0
|
||||
|
||||
; CHECK: [[T16:%[^ ]*]] = phi i1 [ false, {{%[^ ]*}} ], [ [[T14]], {{%[^ ]*}} ]
|
||||
; CHECK: [[T16:%[^ ]*]] = phi i1 [ false, {{%[^ ]*}} ], [ [[T11]], {{%[^ ]*}} ]
|
||||
%x = call i1 @llvm.bitset.test(i8* %pi8, metadata !"bitset3")
|
||||
; CHECK: ret i1 [[T16]]
|
||||
ret i1 %x
|
||||
|
@ -15,27 +15,39 @@ using namespace llvm;
|
||||
TEST(LowerBitSets, BitSetBuilder) {
|
||||
struct {
|
||||
std::vector<uint64_t> Offsets;
|
||||
std::vector<uint8_t> Bits;
|
||||
std::set<uint64_t> Bits;
|
||||
uint64_t ByteOffset;
|
||||
uint64_t BitSize;
|
||||
unsigned AlignLog2;
|
||||
bool IsSingleOffset;
|
||||
bool IsAllOnes;
|
||||
} BSBTests[] = {
|
||||
{{}, {0}, 0, 1, 0, false, false},
|
||||
{{0}, {1}, 0, 1, 0, true, true},
|
||||
{{4}, {1}, 4, 1, 0, true, true},
|
||||
{{37}, {1}, 37, 1, 0, true, true},
|
||||
{{0, 1}, {3}, 0, 2, 0, false, true},
|
||||
{{0, 4}, {3}, 0, 2, 2, false, true},
|
||||
{{0, uint64_t(1) << 33}, {3}, 0, 2, 33, false, true},
|
||||
{{3, 7}, {3}, 3, 2, 2, false, true},
|
||||
{{0, 1, 7}, {131}, 0, 8, 0, false, false},
|
||||
{{0, 2, 14}, {131}, 0, 8, 1, false, false},
|
||||
{{0, 1, 8}, {3, 1}, 0, 9, 0, false, false},
|
||||
{{0, 2, 16}, {3, 1}, 0, 9, 1, false, false},
|
||||
{{0, 1, 2, 3, 4, 5, 6, 7}, {255}, 0, 8, 0, false, true},
|
||||
{{0, 1, 2, 3, 4, 5, 6, 7, 8}, {255, 1}, 0, 9, 0, false, true},
|
||||
{{}, {}, 0, 1, 0, false, false},
|
||||
{{0}, {0}, 0, 1, 0, true, true},
|
||||
{{4}, {0}, 4, 1, 0, true, true},
|
||||
{{37}, {0}, 37, 1, 0, true, true},
|
||||
{{0, 1}, {0, 1}, 0, 2, 0, false, true},
|
||||
{{0, 4}, {0, 1}, 0, 2, 2, false, true},
|
||||
{{0, uint64_t(1) << 33}, {0, 1}, 0, 2, 33, false, true},
|
||||
{{3, 7}, {0, 1}, 3, 2, 2, false, true},
|
||||
{{0, 1, 7}, {0, 1, 7}, 0, 8, 0, false, false},
|
||||
{{0, 2, 14}, {0, 1, 7}, 0, 8, 1, false, false},
|
||||
{{0, 1, 8}, {0, 1, 8}, 0, 9, 0, false, false},
|
||||
{{0, 2, 16}, {0, 1, 8}, 0, 9, 1, false, false},
|
||||
{{0, 1, 2, 3, 4, 5, 6, 7},
|
||||
{0, 1, 2, 3, 4, 5, 6, 7},
|
||||
0,
|
||||
8,
|
||||
0,
|
||||
false,
|
||||
true},
|
||||
{{0, 1, 2, 3, 4, 5, 6, 7, 8},
|
||||
{0, 1, 2, 3, 4, 5, 6, 7, 8},
|
||||
0,
|
||||
9,
|
||||
0,
|
||||
false,
|
||||
true},
|
||||
};
|
||||
|
||||
for (auto &&T : BSBTests) {
|
||||
@ -93,3 +105,51 @@ TEST(LowerBitSets, GlobalLayoutBuilder) {
|
||||
EXPECT_EQ(T.WantLayout, ComputedLayout);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(LowerBitSets, ByteArrayBuilder) {
|
||||
struct BABAlloc {
|
||||
std::set<uint64_t> Bits;
|
||||
uint64_t BitSize;
|
||||
uint64_t WantByteOffset;
|
||||
uint8_t WantMask;
|
||||
};
|
||||
|
||||
struct {
|
||||
std::vector<BABAlloc> Allocs;
|
||||
std::vector<uint8_t> WantBytes;
|
||||
} BABTests[] = {
|
||||
{{{{0}, 1, 0, 1}, {{0}, 1, 0, 2}}, {3}},
|
||||
{{{{0}, 16, 0, 1},
|
||||
{{1}, 15, 0, 2},
|
||||
{{2}, 14, 0, 4},
|
||||
{{3}, 13, 0, 8},
|
||||
{{4}, 12, 0, 0x10},
|
||||
{{5}, 11, 0, 0x20},
|
||||
{{6}, 10, 0, 0x40},
|
||||
{{7}, 9, 0, 0x80},
|
||||
{{0}, 7, 9, 0x80},
|
||||
{{0}, 6, 10, 0x40},
|
||||
{{0}, 5, 11, 0x20},
|
||||
{{0}, 4, 12, 0x10},
|
||||
{{0}, 3, 13, 8},
|
||||
{{0}, 2, 14, 4},
|
||||
{{0}, 1, 15, 2}},
|
||||
{1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80, 0, 0x80, 0x40, 0x20, 0x10, 8, 4,
|
||||
2}},
|
||||
};
|
||||
|
||||
for (auto &&T : BABTests) {
|
||||
ByteArrayBuilder BABuilder;
|
||||
|
||||
for (auto &&A : T.Allocs) {
|
||||
uint64_t GotByteOffset;
|
||||
uint8_t GotMask;
|
||||
|
||||
BABuilder.allocate(A.Bits, A.BitSize, GotByteOffset, GotMask);
|
||||
EXPECT_EQ(A.WantByteOffset, GotByteOffset);
|
||||
EXPECT_EQ(A.WantMask, GotMask);
|
||||
}
|
||||
|
||||
EXPECT_EQ(T.WantBytes, BABuilder.Bytes);
|
||||
}
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user