Remove the SystemZ backend.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142878 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Dan Gohman 2011-10-24 23:48:32 +00:00
parent b36e03d987
commit 29074ccf6c
117 changed files with 12 additions and 8826 deletions

View File

@ -76,7 +76,6 @@ set(LLVM_ALL_TARGETS
PowerPC
PTX
Sparc
SystemZ
X86
XCore
)

View File

@ -357,7 +357,6 @@ AC_CACHE_CHECK([target architecture],[llvm_cv_target_arch],
mips-*) llvm_cv_target_arch="Mips" ;;
xcore-*) llvm_cv_target_arch="XCore" ;;
msp430-*) llvm_cv_target_arch="MSP430" ;;
s390x-*) llvm_cv_target_arch="SystemZ" ;;
bfin-*) llvm_cv_target_arch="Blackfin" ;;
mblaze-*) llvm_cv_target_arch="MBlaze" ;;
ptx-*) llvm_cv_target_arch="PTX" ;;
@ -494,7 +493,6 @@ else
Mips) AC_SUBST(TARGET_HAS_JIT,1) ;;
XCore) AC_SUBST(TARGET_HAS_JIT,0) ;;
MSP430) AC_SUBST(TARGET_HAS_JIT,0) ;;
SystemZ) AC_SUBST(TARGET_HAS_JIT,0) ;;
Blackfin) AC_SUBST(TARGET_HAS_JIT,0) ;;
MBlaze) AC_SUBST(TARGET_HAS_JIT,0) ;;
PTX) AC_SUBST(TARGET_HAS_JIT,0) ;;
@ -608,13 +606,13 @@ TARGETS_TO_BUILD=""
AC_ARG_ENABLE([targets],AS_HELP_STRING([--enable-targets],
[Build specific host targets: all or target1,target2,... Valid targets are:
host, x86, x86_64, sparc, powerpc, alpha, arm, mips, spu,
xcore, msp430, systemz, blackfin, ptx, cbe, and cpp (default=all)]),,
xcore, msp430, blackfin, ptx, cbe, and cpp (default=all)]),,
enableval=all)
if test "$enableval" = host-only ; then
enableval=host
fi
case "$enableval" in
all) TARGETS_TO_BUILD="X86 Sparc PowerPC Alpha ARM Mips CellSPU XCore MSP430 SystemZ Blackfin CBackend CppBackend MBlaze PTX" ;;
all) TARGETS_TO_BUILD="X86 Sparc PowerPC Alpha ARM Mips CellSPU XCore MSP430 Blackfin CBackend CppBackend MBlaze PTX" ;;
*)for a_target in `echo $enableval|sed -e 's/,/ /g' ` ; do
case "$a_target" in
x86) TARGETS_TO_BUILD="X86 $TARGETS_TO_BUILD" ;;
@ -627,7 +625,6 @@ case "$enableval" in
spu) TARGETS_TO_BUILD="CellSPU $TARGETS_TO_BUILD" ;;
xcore) TARGETS_TO_BUILD="XCore $TARGETS_TO_BUILD" ;;
msp430) TARGETS_TO_BUILD="MSP430 $TARGETS_TO_BUILD" ;;
systemz) TARGETS_TO_BUILD="SystemZ $TARGETS_TO_BUILD" ;;
blackfin) TARGETS_TO_BUILD="Blackfin $TARGETS_TO_BUILD" ;;
cbe) TARGETS_TO_BUILD="CBackend $TARGETS_TO_BUILD" ;;
cpp) TARGETS_TO_BUILD="CppBackend $TARGETS_TO_BUILD" ;;
@ -645,7 +642,6 @@ case "$enableval" in
CellSPU|SPU) TARGETS_TO_BUILD="CellSPU $TARGETS_TO_BUILD" ;;
XCore) TARGETS_TO_BUILD="XCore $TARGETS_TO_BUILD" ;;
MSP430) TARGETS_TO_BUILD="MSP430 $TARGETS_TO_BUILD" ;;
s390x) TARGETS_TO_BUILD="SystemZ $TARGETS_TO_BUILD" ;;
Blackfin) TARGETS_TO_BUILD="Blackfin $TARGETS_TO_BUILD" ;;
PTX) TARGETS_TO_BUILD="PTX $TARGETS_TO_BUILD" ;;
*) AC_MSG_ERROR([Can not set target to build]) ;;

9
configure vendored
View File

@ -1416,7 +1416,7 @@ Optional Features:
--enable-targets Build specific host targets: all or
target1,target2,... Valid targets are: host, x86,
x86_64, sparc, powerpc, alpha, arm, mips, spu,
xcore, msp430, systemz, blackfin, ptx, cbe, and cpp
xcore, msp430, blackfin, ptx, cbe, and cpp
(default=all)
--enable-cbe-printf-a Enable C Backend output with hex floating point via
%a (default is YES)
@ -3880,7 +3880,6 @@ else
mips-*) llvm_cv_target_arch="Mips" ;;
xcore-*) llvm_cv_target_arch="XCore" ;;
msp430-*) llvm_cv_target_arch="MSP430" ;;
s390x-*) llvm_cv_target_arch="SystemZ" ;;
bfin-*) llvm_cv_target_arch="Blackfin" ;;
mblaze-*) llvm_cv_target_arch="MBlaze" ;;
ptx-*) llvm_cv_target_arch="PTX" ;;
@ -5084,8 +5083,6 @@ else
XCore) TARGET_HAS_JIT=0
;;
MSP430) TARGET_HAS_JIT=0
;;
SystemZ) TARGET_HAS_JIT=0
;;
Blackfin) TARGET_HAS_JIT=0
;;
@ -5277,7 +5274,7 @@ if test "$enableval" = host-only ; then
enableval=host
fi
case "$enableval" in
all) TARGETS_TO_BUILD="X86 Sparc PowerPC Alpha ARM Mips CellSPU XCore MSP430 SystemZ Blackfin CBackend CppBackend MBlaze PTX" ;;
all) TARGETS_TO_BUILD="X86 Sparc PowerPC Alpha ARM Mips CellSPU XCore MSP430 Blackfin CBackend CppBackend MBlaze PTX" ;;
*)for a_target in `echo $enableval|sed -e 's/,/ /g' ` ; do
case "$a_target" in
x86) TARGETS_TO_BUILD="X86 $TARGETS_TO_BUILD" ;;
@ -5290,7 +5287,6 @@ case "$enableval" in
spu) TARGETS_TO_BUILD="CellSPU $TARGETS_TO_BUILD" ;;
xcore) TARGETS_TO_BUILD="XCore $TARGETS_TO_BUILD" ;;
msp430) TARGETS_TO_BUILD="MSP430 $TARGETS_TO_BUILD" ;;
systemz) TARGETS_TO_BUILD="SystemZ $TARGETS_TO_BUILD" ;;
blackfin) TARGETS_TO_BUILD="Blackfin $TARGETS_TO_BUILD" ;;
cbe) TARGETS_TO_BUILD="CBackend $TARGETS_TO_BUILD" ;;
cpp) TARGETS_TO_BUILD="CppBackend $TARGETS_TO_BUILD" ;;
@ -5308,7 +5304,6 @@ case "$enableval" in
CellSPU|SPU) TARGETS_TO_BUILD="CellSPU $TARGETS_TO_BUILD" ;;
XCore) TARGETS_TO_BUILD="XCore $TARGETS_TO_BUILD" ;;
MSP430) TARGETS_TO_BUILD="MSP430 $TARGETS_TO_BUILD" ;;
s390x) TARGETS_TO_BUILD="SystemZ $TARGETS_TO_BUILD" ;;
Blackfin) TARGETS_TO_BUILD="Blackfin $TARGETS_TO_BUILD" ;;
PTX) TARGETS_TO_BUILD="PTX $TARGETS_TO_BUILD" ;;
*) { { echo "$as_me:$LINENO: error: Can not set target to build" >&5

View File

@ -2217,7 +2217,6 @@ is the key:</p>
<th>PTX</th>
<th>PowerPC</th>
<th>Sparc</th>
<th>SystemZ</th>
<th>X86</th>
<th>XCore</th>
</tr>
@ -2234,7 +2233,6 @@ is the key:</p>
<td class="no"></td> <!-- PTX -->
<td class="yes"></td> <!-- PowerPC -->
<td class="yes"></td> <!-- Sparc -->
<td class="unknown"></td> <!-- SystemZ -->
<td class="yes"></td> <!-- X86 -->
<td class="unknown"></td> <!-- XCore -->
</tr>
@ -2251,7 +2249,6 @@ is the key:</p>
<td class="no"></td> <!-- PTX -->
<td class="no"></td> <!-- PowerPC -->
<td class="no"></td> <!-- Sparc -->
<td class="no"></td> <!-- SystemZ -->
<td class="yes"></td> <!-- X86 -->
<td class="no"></td> <!-- XCore -->
</tr>
@ -2268,7 +2265,6 @@ is the key:</p>
<td class="no"></td> <!-- PTX -->
<td class="no"></td> <!-- PowerPC -->
<td class="no"></td> <!-- Sparc -->
<td class="no"></td> <!-- SystemZ -->
<td class="yes"></td> <!-- X86 -->
<td class="no"></td> <!-- XCore -->
</tr>
@ -2285,7 +2281,6 @@ is the key:</p>
<td class="unknown"></td> <!-- PTX -->
<td class="yes"></td> <!-- PowerPC -->
<td class="unknown"></td> <!-- Sparc -->
<td class="unknown"></td> <!-- SystemZ -->
<td class="yes"></td> <!-- X86 -->
<td class="unknown"></td> <!-- XCore -->
</tr>
@ -2302,7 +2297,6 @@ is the key:</p>
<td class="unknown"></td> <!-- PTX -->
<td class="yes"></td> <!-- PowerPC -->
<td class="unknown"></td> <!-- Sparc -->
<td class="unknown"></td> <!-- SystemZ -->
<td class="yes"></td> <!-- X86 -->
<td class="unknown"></td> <!-- XCore -->
</tr>
@ -2319,7 +2313,6 @@ is the key:</p>
<td class="no"></td> <!-- PTX -->
<td class="no"></td> <!-- PowerPC -->
<td class="no"></td> <!-- Sparc -->
<td class="no"></td> <!-- SystemZ -->
<td class="yes"></td> <!-- X86 -->
<td class="no"></td> <!-- XCore -->
</tr>
@ -2336,7 +2329,6 @@ is the key:</p>
<td class="unknown"></td> <!-- PTX -->
<td class="yes"></td> <!-- PowerPC -->
<td class="unknown"></td> <!-- Sparc -->
<td class="unknown"></td> <!-- SystemZ -->
<td class="yes"></td> <!-- X86 -->
<td class="unknown"></td> <!-- XCore -->
</tr>

View File

@ -759,7 +759,7 @@ components, please contact us on the <a
href="http://lists.cs.uiuc.edu/mailman/listinfo/llvmdev">LLVMdev list</a>.</p>
<ul>
<li>The Alpha, Blackfin, CellSPU, MicroBlaze, MSP430, MIPS, PTX, SystemZ
<li>The Alpha, Blackfin, CellSPU, MicroBlaze, MSP430, MIPS, PTX,
and XCore backends are experimental.</li>
<li><tt>llc</tt> "<tt>-filetype=obj</tt>" is experimental on all targets
other than darwin and ELF X86 systems.</li>

View File

@ -56,7 +56,6 @@ public:
ppc64, // PPC64: powerpc64, ppu
sparc, // Sparc: sparc
sparcv9, // Sparcv9: Sparcv9
systemz, // SystemZ: s390x
tce, // TCE (http://tce.cs.tut.fi/): tce
thumb, // Thumb: thumb, thumbv.*
x86, // X86: i[3-9]86

View File

@ -92,7 +92,7 @@ public:
/// IsLegalToFold - Returns true if the specific operand node N of
/// U can be folded during instruction selection that starts at Root.
/// FIXME: This is a static member function because the MSP430/SystemZ/X86
/// FIXME: This is a static member function because the MSP430/X86
/// targets, which uses it during isel. This could become a proper member.
static bool IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
CodeGenOpt::Level OptLevel,

View File

@ -31,7 +31,6 @@ const char *Triple::getArchTypeName(ArchType Kind) {
case ppc: return "powerpc";
case sparc: return "sparc";
case sparcv9: return "sparcv9";
case systemz: return "s390x";
case tce: return "tce";
case thumb: return "thumb";
case x86: return "i386";
@ -165,8 +164,6 @@ Triple::ArchType Triple::getArchTypeForLLVMName(StringRef Name) {
return sparc;
if (Name == "sparcv9")
return sparcv9;
if (Name == "systemz")
return systemz;
if (Name == "tce")
return tce;
if (Name == "thumb")
@ -316,8 +313,6 @@ Triple::ArchType Triple::ParseArch(StringRef ArchName) {
return sparc;
else if (ArchName == "sparcv9")
return sparcv9;
else if (ArchName == "s390x")
return systemz;
else if (ArchName == "tce")
return tce;
else if (ArchName == "xcore")

View File

@ -1,36 +0,0 @@
set(LLVM_TARGET_DEFINITIONS SystemZ.td)
llvm_tablegen(SystemZGenRegisterInfo.inc -gen-register-info)
llvm_tablegen(SystemZGenInstrInfo.inc -gen-instr-info)
llvm_tablegen(SystemZGenAsmWriter.inc -gen-asm-writer)
llvm_tablegen(SystemZGenDAGISel.inc -gen-dag-isel)
llvm_tablegen(SystemZGenCallingConv.inc -gen-callingconv)
llvm_tablegen(SystemZGenSubtargetInfo.inc -gen-subtarget)
add_public_tablegen_target(SystemZCommonTableGen)
add_llvm_target(SystemZCodeGen
SystemZAsmPrinter.cpp
SystemZISelDAGToDAG.cpp
SystemZISelLowering.cpp
SystemZInstrInfo.cpp
SystemZFrameLowering.cpp
SystemZRegisterInfo.cpp
SystemZSubtarget.cpp
SystemZTargetMachine.cpp
SystemZSelectionDAGInfo.cpp
)
add_llvm_library_dependencies(LLVMSystemZCodeGen
LLVMAsmPrinter
LLVMCodeGen
LLVMCore
LLVMMC
LLVMSelectionDAG
LLVMSupport
LLVMSystemZDesc
LLVMSystemZInfo
LLVMTarget
)
add_subdirectory(TargetInfo)
add_subdirectory(MCTargetDesc)

View File

@ -1,14 +0,0 @@
add_llvm_library(LLVMSystemZDesc
SystemZMCTargetDesc.cpp
SystemZMCAsmInfo.cpp
)
add_llvm_library_dependencies(LLVMSystemZDesc
LLVMMC
LLVMSystemZInfo
)
add_dependencies(LLVMSystemZDesc SystemZCommonTableGen)
# Hack: we need to include 'main' target directory to grab private headers
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/.. ${CMAKE_CURRENT_BINARY_DIR}/..)

View File

@ -1,16 +0,0 @@
##===- lib/Target/SystemZ/TargetDesc/Makefile --------------*- Makefile -*-===##
#
# The LLVM Compiler Infrastructure
#
# This file is distributed under the University of Illinois Open Source
# License. See LICENSE.TXT for details.
#
##===----------------------------------------------------------------------===##
LEVEL = ../../../..
LIBRARYNAME = LLVMSystemZDesc
# Hack: we need to include 'main' target directory to grab private headers
CPP.Flags += -I$(PROJ_OBJ_DIR)/.. -I$(PROJ_SRC_DIR)/..
include $(LEVEL)/Makefile.common

View File

@ -1,32 +0,0 @@
//===-- SystemZMCAsmInfo.cpp - SystemZ asm properties ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the declarations of the SystemZMCAsmInfo properties.
//
//===----------------------------------------------------------------------===//
#include "SystemZMCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/Support/ELF.h"
using namespace llvm;
SystemZMCAsmInfo::SystemZMCAsmInfo(const Target &T, StringRef TT) {
IsLittleEndian = false;
PointerSize = 8;
PrivateGlobalPrefix = ".L";
WeakRefDirective = "\t.weak\t";
PCSymbol = ".";
}
const MCSection *SystemZMCAsmInfo::
getNonexecutableStackSection(MCContext &Ctx) const{
return Ctx.getELFSection(".note.GNU-stack", ELF::SHT_PROGBITS,
0, SectionKind::getMetadata());
}

View File

@ -1,30 +0,0 @@
//====-- SystemZMCAsmInfo.h - SystemZ asm properties -----------*- C++ -*--===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the declaration of the SystemZMCAsmInfo class.
//
//===----------------------------------------------------------------------===//
#ifndef SystemZTARGETASMINFO_H
#define SystemZTARGETASMINFO_H
#include "llvm/MC/MCAsmInfo.h"
namespace llvm {
class Target;
class StringRef;
struct SystemZMCAsmInfo : public MCAsmInfo {
explicit SystemZMCAsmInfo(const Target &T, StringRef TT);
virtual const MCSection *getNonexecutableStackSection(MCContext &Ctx) const;
};
} // namespace llvm
#endif

View File

@ -1,81 +0,0 @@
//===-- SystemZMCTargetDesc.cpp - SystemZ Target Descriptions ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file provides SystemZ specific target descriptions.
//
//===----------------------------------------------------------------------===//
#include "SystemZMCTargetDesc.h"
#include "SystemZMCAsmInfo.h"
#include "llvm/MC/MCCodeGenInfo.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/TargetRegistry.h"
#define GET_INSTRINFO_MC_DESC
#include "SystemZGenInstrInfo.inc"
#define GET_SUBTARGETINFO_MC_DESC
#include "SystemZGenSubtargetInfo.inc"
#define GET_REGINFO_MC_DESC
#include "SystemZGenRegisterInfo.inc"
using namespace llvm;
static MCInstrInfo *createSystemZMCInstrInfo() {
MCInstrInfo *X = new MCInstrInfo();
InitSystemZMCInstrInfo(X);
return X;
}
static MCRegisterInfo *createSystemZMCRegisterInfo(StringRef TT) {
MCRegisterInfo *X = new MCRegisterInfo();
InitSystemZMCRegisterInfo(X, 0);
return X;
}
static MCSubtargetInfo *createSystemZMCSubtargetInfo(StringRef TT,
StringRef CPU,
StringRef FS) {
MCSubtargetInfo *X = new MCSubtargetInfo();
InitSystemZMCSubtargetInfo(X, TT, CPU, FS);
return X;
}
static MCCodeGenInfo *createSystemZMCCodeGenInfo(StringRef TT, Reloc::Model RM,
CodeModel::Model CM) {
MCCodeGenInfo *X = new MCCodeGenInfo();
if (RM == Reloc::Default)
RM = Reloc::Static;
X->InitMCCodeGenInfo(RM, CM);
return X;
}
extern "C" void LLVMInitializeSystemZTargetMC() {
// Register the MC asm info.
RegisterMCAsmInfo<SystemZMCAsmInfo> X(TheSystemZTarget);
// Register the MC codegen info.
TargetRegistry::RegisterMCCodeGenInfo(TheSystemZTarget,
createSystemZMCCodeGenInfo);
// Register the MC instruction info.
TargetRegistry::RegisterMCInstrInfo(TheSystemZTarget,
createSystemZMCInstrInfo);
// Register the MC register info.
TargetRegistry::RegisterMCRegInfo(TheSystemZTarget,
createSystemZMCRegisterInfo);
// Register the MC subtarget info.
TargetRegistry::RegisterMCSubtargetInfo(TheSystemZTarget,
createSystemZMCSubtargetInfo);
}

View File

@ -1,38 +0,0 @@
//===-- SystemZMCTargetDesc.h - SystemZ Target Descriptions -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file provides SystemZ specific target descriptions.
//
//===----------------------------------------------------------------------===//
#ifndef SYSTEMZMCTARGETDESC_H
#define SYSTEMZMCTARGETDESC_H
namespace llvm {
class MCSubtargetInfo;
class Target;
class StringRef;
extern Target TheSystemZTarget;
} // End llvm namespace
// Defines symbolic names for SystemZ registers.
// This defines a mapping from register name to register number.
#define GET_REGINFO_ENUM
#include "SystemZGenRegisterInfo.inc"
// Defines symbolic names for the SystemZ instructions.
#define GET_INSTRINFO_ENUM
#include "SystemZGenInstrInfo.inc"
#define GET_SUBTARGETINFO_ENUM
#include "SystemZGenSubtargetInfo.inc"
#endif

View File

@ -1,22 +0,0 @@
##===- lib/Target/SystemZ/Makefile ---------------------------*- Makefile -*-===##
#
# The LLVM Compiler Infrastructure
#
# This file is distributed under the University of Illinois Open Source
# License. See LICENSE.TXT for details.
#
##===----------------------------------------------------------------------===##
LEVEL = ../../..
LIBRARYNAME = LLVMSystemZCodeGen
TARGET = SystemZ
# Make sure that tblgen is run, first thing.
BUILT_SOURCES = SystemZGenRegisterInfo.inc SystemZGenInstrInfo.inc \
SystemZGenAsmWriter.inc SystemZGenDAGISel.inc \
SystemZGenSubtargetInfo.inc SystemZGenCallingConv.inc
DIRS = TargetInfo MCTargetDesc
include $(LEVEL)/Makefile.common

View File

@ -1,52 +0,0 @@
//=-- SystemZ.h - Top-level interface for SystemZ representation -*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the entry points for global functions defined in
// the LLVM SystemZ backend.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TARGET_SystemZ_H
#define LLVM_TARGET_SystemZ_H
#include "MCTargetDesc/SystemZMCTargetDesc.h"
#include "llvm/Target/TargetMachine.h"
namespace llvm {
class SystemZTargetMachine;
class FunctionPass;
class formatted_raw_ostream;
namespace SystemZCC {
// SystemZ specific condition code. These correspond to SYSTEMZ_*_COND in
// SystemZInstrInfo.td. They must be kept in synch.
enum CondCodes {
O = 0,
H = 1,
NLE = 2,
L = 3,
NHE = 4,
LH = 5,
NE = 6,
E = 7,
NLH = 8,
HE = 9,
NL = 10,
LE = 11,
NH = 12,
NO = 13,
INVALID = -1
};
}
FunctionPass *createSystemZISelDag(SystemZTargetMachine &TM,
CodeGenOpt::Level OptLevel);
} // end namespace llvm;
#endif

View File

@ -1,61 +0,0 @@
//===- SystemZ.td - Describe the SystemZ Target Machine ------*- tblgen -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// This is the top level entry point for the SystemZ target.
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Target-independent interfaces
//===----------------------------------------------------------------------===//
include "llvm/Target/Target.td"
//===----------------------------------------------------------------------===//
// Subtarget Features.
//===----------------------------------------------------------------------===//
def FeatureZ10 : SubtargetFeature<"z10", "HasZ10Insts", "true",
"Support Z10 instructions">;
//===----------------------------------------------------------------------===//
// SystemZ supported processors.
//===----------------------------------------------------------------------===//
class Proc<string Name, list<SubtargetFeature> Features>
: Processor<Name, NoItineraries, Features>;
def : Proc<"z9", []>;
def : Proc<"z10", [FeatureZ10]>;
//===----------------------------------------------------------------------===//
// Register File Description
//===----------------------------------------------------------------------===//
include "SystemZRegisterInfo.td"
//===----------------------------------------------------------------------===//
// Calling Convention Description
//===----------------------------------------------------------------------===//
include "SystemZCallingConv.td"
//===----------------------------------------------------------------------===//
// Instruction Descriptions
//===----------------------------------------------------------------------===//
include "SystemZInstrInfo.td"
include "SystemZInstrFP.td"
def SystemZInstrInfo : InstrInfo {}
//===----------------------------------------------------------------------===//
// Target Declaration
//===----------------------------------------------------------------------===//
def SystemZ : Target {
let InstructionSet = SystemZInstrInfo;
}

View File

@ -1,221 +0,0 @@
//===-- SystemZAsmPrinter.cpp - SystemZ LLVM assembly writer ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to the SystemZ assembly language.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "asm-printer"
#include "SystemZ.h"
#include "SystemZInstrInfo.h"
#include "SystemZTargetMachine.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Target/Mangler.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
namespace {
class SystemZAsmPrinter : public AsmPrinter {
public:
SystemZAsmPrinter(TargetMachine &TM, MCStreamer &Streamer)
: AsmPrinter(TM, Streamer) {}
virtual const char *getPassName() const {
return "SystemZ Assembly Printer";
}
void printOperand(const MachineInstr *MI, int OpNum, raw_ostream &O,
const char* Modifier = 0);
void printPCRelImmOperand(const MachineInstr *MI, int OpNum, raw_ostream &O);
void printRIAddrOperand(const MachineInstr *MI, int OpNum, raw_ostream &O,
const char* Modifier = 0);
void printRRIAddrOperand(const MachineInstr *MI, int OpNum, raw_ostream &O,
const char* Modifier = 0);
void printS16ImmOperand(const MachineInstr *MI, int OpNum, raw_ostream &O) {
O << (int16_t)MI->getOperand(OpNum).getImm();
}
void printU16ImmOperand(const MachineInstr *MI, int OpNum, raw_ostream &O) {
O << (uint16_t)MI->getOperand(OpNum).getImm();
}
void printS32ImmOperand(const MachineInstr *MI, int OpNum, raw_ostream &O) {
O << (int32_t)MI->getOperand(OpNum).getImm();
}
void printU32ImmOperand(const MachineInstr *MI, int OpNum, raw_ostream &O) {
O << (uint32_t)MI->getOperand(OpNum).getImm();
}
void printInstruction(const MachineInstr *MI, raw_ostream &O);
static const char *getRegisterName(unsigned RegNo);
void EmitInstruction(const MachineInstr *MI);
};
} // end of anonymous namespace
#include "SystemZGenAsmWriter.inc"
void SystemZAsmPrinter::EmitInstruction(const MachineInstr *MI) {
SmallString<128> Str;
raw_svector_ostream OS(Str);
printInstruction(MI, OS);
OutStreamer.EmitRawText(OS.str());
}
void SystemZAsmPrinter::printPCRelImmOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O) {
const MachineOperand &MO = MI->getOperand(OpNum);
switch (MO.getType()) {
case MachineOperand::MO_Immediate:
O << MO.getImm();
return;
case MachineOperand::MO_MachineBasicBlock:
O << *MO.getMBB()->getSymbol();
return;
case MachineOperand::MO_GlobalAddress: {
const GlobalValue *GV = MO.getGlobal();
O << *Mang->getSymbol(GV);
// Assemble calls via PLT for externally visible symbols if PIC.
if (TM.getRelocationModel() == Reloc::PIC_ &&
!GV->hasHiddenVisibility() && !GV->hasProtectedVisibility() &&
!GV->hasLocalLinkage())
O << "@PLT";
printOffset(MO.getOffset(), O);
return;
}
case MachineOperand::MO_ExternalSymbol: {
std::string Name(MAI->getGlobalPrefix());
Name += MO.getSymbolName();
O << Name;
if (TM.getRelocationModel() == Reloc::PIC_)
O << "@PLT";
return;
}
default:
assert(0 && "Not implemented yet!");
}
}
void SystemZAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O, const char *Modifier) {
const MachineOperand &MO = MI->getOperand(OpNum);
switch (MO.getType()) {
case MachineOperand::MO_Register: {
assert (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
"Virtual registers should be already mapped!");
unsigned Reg = MO.getReg();
if (Modifier && strncmp(Modifier, "subreg", 6) == 0) {
if (strncmp(Modifier + 7, "even", 4) == 0)
Reg = TM.getRegisterInfo()->getSubReg(Reg, SystemZ::subreg_32bit);
else if (strncmp(Modifier + 7, "odd", 3) == 0)
Reg = TM.getRegisterInfo()->getSubReg(Reg, SystemZ::subreg_odd32);
else
assert(0 && "Invalid subreg modifier");
}
O << '%' << getRegisterName(Reg);
return;
}
case MachineOperand::MO_Immediate:
O << MO.getImm();
return;
case MachineOperand::MO_MachineBasicBlock:
O << *MO.getMBB()->getSymbol();
return;
case MachineOperand::MO_JumpTableIndex:
O << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() << '_'
<< MO.getIndex();
return;
case MachineOperand::MO_ConstantPoolIndex:
O << MAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
<< MO.getIndex();
printOffset(MO.getOffset(), O);
break;
case MachineOperand::MO_GlobalAddress:
O << *Mang->getSymbol(MO.getGlobal());
break;
case MachineOperand::MO_ExternalSymbol: {
O << *GetExternalSymbolSymbol(MO.getSymbolName());
break;
}
default:
assert(0 && "Not implemented yet!");
}
switch (MO.getTargetFlags()) {
default: assert(0 && "Unknown target flag on GV operand");
case SystemZII::MO_NO_FLAG:
break;
case SystemZII::MO_GOTENT: O << "@GOTENT"; break;
case SystemZII::MO_PLT: O << "@PLT"; break;
}
printOffset(MO.getOffset(), O);
}
void SystemZAsmPrinter::printRIAddrOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O,
const char *Modifier) {
const MachineOperand &Base = MI->getOperand(OpNum);
// Print displacement operand.
printOperand(MI, OpNum+1, O);
// Print base operand (if any)
if (Base.getReg()) {
O << '(';
printOperand(MI, OpNum, O);
O << ')';
}
}
void SystemZAsmPrinter::printRRIAddrOperand(const MachineInstr *MI, int OpNum,
raw_ostream &O,
const char *Modifier) {
const MachineOperand &Base = MI->getOperand(OpNum);
const MachineOperand &Index = MI->getOperand(OpNum+2);
// Print displacement operand.
printOperand(MI, OpNum+1, O);
// Print base operand (if any)
if (Base.getReg()) {
O << '(';
printOperand(MI, OpNum, O);
if (Index.getReg()) {
O << ',';
printOperand(MI, OpNum+2, O);
}
O << ')';
} else
assert(!Index.getReg() && "Should allocate base register first!");
}
// Force static initialization.
extern "C" void LLVMInitializeSystemZAsmPrinter() {
RegisterAsmPrinter<SystemZAsmPrinter> X(TheSystemZTarget);
}

View File

@ -1,46 +0,0 @@
//=- SystemZCallingConv.td - Calling Conventions for SystemZ -*- tablegen -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// This describes the calling conventions for SystemZ architecture.
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// SystemZ Return Value Calling Convention
//===----------------------------------------------------------------------===//
def RetCC_SystemZ : CallingConv<[
// Promote i8/i16/i32 arguments to i64.
CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
// i64 is returned in register R2
CCIfType<[i64], CCAssignToReg<[R2D, R3D, R4D, R5D]>>,
// f32 / f64 are returned in F0
CCIfType<[f32], CCAssignToReg<[F0S, F2S, F4S, F6S]>>,
CCIfType<[f64], CCAssignToReg<[F0L, F2L, F4L, F6L]>>
]>;
//===----------------------------------------------------------------------===//
// SystemZ Argument Calling Conventions
//===----------------------------------------------------------------------===//
def CC_SystemZ : CallingConv<[
// Promote i8/i16/i32 arguments to i64.
CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
// The first 5 integer arguments of non-varargs functions are passed in
// integer registers.
CCIfType<[i64], CCAssignToReg<[R2D, R3D, R4D, R5D, R6D]>>,
// The first 4 floating point arguments of non-varargs functions are passed
// in FP registers.
CCIfType<[f32], CCAssignToReg<[F0S, F2S, F4S, F6S]>>,
CCIfType<[f64], CCAssignToReg<[F0L, F2L, F4L, F6L]>>,
// Integer values get stored in stack slots that are 8 bytes in
// size and 8-byte aligned.
CCIfType<[i64, f32, f64], CCAssignToStack<8, 8>>
]>;

View File

@ -1,386 +0,0 @@
//=====- SystemZFrameLowering.cpp - SystemZ Frame Information ------*- C++ -*-====//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the SystemZ implementation of TargetFrameLowering class.
//
//===----------------------------------------------------------------------===//
#include "SystemZFrameLowering.h"
#include "SystemZInstrBuilder.h"
#include "SystemZInstrInfo.h"
#include "SystemZMachineFunctionInfo.h"
#include "llvm/Function.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;
SystemZFrameLowering::SystemZFrameLowering(const SystemZSubtarget &sti)
: TargetFrameLowering(TargetFrameLowering::StackGrowsDown, 8, -160), STI(sti) {
// Fill the spill offsets map
static const unsigned SpillOffsTab[][2] = {
{ SystemZ::R2D, 0x10 },
{ SystemZ::R3D, 0x18 },
{ SystemZ::R4D, 0x20 },
{ SystemZ::R5D, 0x28 },
{ SystemZ::R6D, 0x30 },
{ SystemZ::R7D, 0x38 },
{ SystemZ::R8D, 0x40 },
{ SystemZ::R9D, 0x48 },
{ SystemZ::R10D, 0x50 },
{ SystemZ::R11D, 0x58 },
{ SystemZ::R12D, 0x60 },
{ SystemZ::R13D, 0x68 },
{ SystemZ::R14D, 0x70 },
{ SystemZ::R15D, 0x78 }
};
RegSpillOffsets.grow(SystemZ::NUM_TARGET_REGS);
for (unsigned i = 0, e = array_lengthof(SpillOffsTab); i != e; ++i)
RegSpillOffsets[SpillOffsTab[i][0]] = SpillOffsTab[i][1];
}
/// needsFP - Return true if the specified function should have a dedicated
/// frame pointer register. This is true if the function has variable sized
/// allocas or if frame pointer elimination is disabled.
bool SystemZFrameLowering::hasFP(const MachineFunction &MF) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
return DisableFramePointerElim(MF) || MFI->hasVarSizedObjects();
}
/// emitSPUpdate - Emit a series of instructions to increment / decrement the
/// stack pointer by a constant value.
static
void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
int64_t NumBytes, const TargetInstrInfo &TII) {
unsigned Opc; uint64_t Chunk;
bool isSub = NumBytes < 0;
uint64_t Offset = isSub ? -NumBytes : NumBytes;
if (Offset >= (1LL << 15) - 1) {
Opc = SystemZ::ADD64ri32;
Chunk = (1LL << 31) - 1;
} else {
Opc = SystemZ::ADD64ri16;
Chunk = (1LL << 15) - 1;
}
DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
while (Offset) {
uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset;
MachineInstr *MI =
BuildMI(MBB, MBBI, DL, TII.get(Opc), SystemZ::R15D)
.addReg(SystemZ::R15D).addImm(isSub ? -ThisVal : ThisVal);
// The PSW implicit def is dead.
MI->getOperand(3).setIsDead();
Offset -= ThisVal;
}
}
void SystemZFrameLowering::emitPrologue(MachineFunction &MF) const {
MachineBasicBlock &MBB = MF.front(); // Prolog goes in entry BB
MachineFrameInfo *MFI = MF.getFrameInfo();
const SystemZInstrInfo &TII =
*static_cast<const SystemZInstrInfo*>(MF.getTarget().getInstrInfo());
SystemZMachineFunctionInfo *SystemZMFI =
MF.getInfo<SystemZMachineFunctionInfo>();
MachineBasicBlock::iterator MBBI = MBB.begin();
DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
// Get the number of bytes to allocate from the FrameInfo.
// Note that area for callee-saved stuff is already allocated, thus we need to
// 'undo' the stack movement.
uint64_t StackSize = MFI->getStackSize();
StackSize -= SystemZMFI->getCalleeSavedFrameSize();
uint64_t NumBytes = StackSize - getOffsetOfLocalArea();
// Skip the callee-saved push instructions.
while (MBBI != MBB.end() &&
(MBBI->getOpcode() == SystemZ::MOV64mr ||
MBBI->getOpcode() == SystemZ::MOV64mrm))
++MBBI;
if (MBBI != MBB.end())
DL = MBBI->getDebugLoc();
// adjust stack pointer: R15 -= numbytes
if (StackSize || MFI->hasCalls()) {
assert(MF.getRegInfo().isPhysRegUsed(SystemZ::R15D) &&
"Invalid stack frame calculation!");
emitSPUpdate(MBB, MBBI, -(int64_t)NumBytes, TII);
}
if (hasFP(MF)) {
// Update R11 with the new base value...
BuildMI(MBB, MBBI, DL, TII.get(SystemZ::MOV64rr), SystemZ::R11D)
.addReg(SystemZ::R15D);
// Mark the FramePtr as live-in in every block except the entry.
for (MachineFunction::iterator I = llvm::next(MF.begin()), E = MF.end();
I != E; ++I)
I->addLiveIn(SystemZ::R11D);
}
}
void SystemZFrameLowering::emitEpilogue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
const SystemZInstrInfo &TII =
*static_cast<const SystemZInstrInfo*>(MF.getTarget().getInstrInfo());
SystemZMachineFunctionInfo *SystemZMFI =
MF.getInfo<SystemZMachineFunctionInfo>();
unsigned RetOpcode = MBBI->getOpcode();
switch (RetOpcode) {
case SystemZ::RET: break; // These are ok
default:
assert(0 && "Can only insert epilog into returning blocks");
}
// Get the number of bytes to allocate from the FrameInfo
// Note that area for callee-saved stuff is already allocated, thus we need to
// 'undo' the stack movement.
uint64_t StackSize =
MFI->getStackSize() - SystemZMFI->getCalleeSavedFrameSize();
uint64_t NumBytes = StackSize - getOffsetOfLocalArea();
// Skip the final terminator instruction.
while (MBBI != MBB.begin()) {
MachineBasicBlock::iterator PI = prior(MBBI);
--MBBI;
if (!PI->getDesc().isTerminator())
break;
}
// During callee-saved restores emission stack frame was not yet finialized
// (and thus - the stack size was unknown). Tune the offset having full stack
// size in hands.
if (StackSize || MFI->hasCalls()) {
assert((MBBI->getOpcode() == SystemZ::MOV64rmm ||
MBBI->getOpcode() == SystemZ::MOV64rm) &&
"Expected to see callee-save register restore code");
assert(MF.getRegInfo().isPhysRegUsed(SystemZ::R15D) &&
"Invalid stack frame calculation!");
unsigned i = 0;
MachineInstr &MI = *MBBI;
while (!MI.getOperand(i).isImm()) {
++i;
assert(i < MI.getNumOperands() && "Unexpected restore code!");
}
uint64_t Offset = NumBytes + MI.getOperand(i).getImm();
// If Offset does not fit into 20-bit signed displacement field we need to
// emit some additional code...
if (Offset > 524287) {
// Fold the displacement into load instruction as much as possible.
NumBytes = Offset - 524287;
Offset = 524287;
emitSPUpdate(MBB, MBBI, NumBytes, TII);
}
MI.getOperand(i).ChangeToImmediate(Offset);
}
}
int SystemZFrameLowering::getFrameIndexOffset(const MachineFunction &MF,
int FI) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
const SystemZMachineFunctionInfo *SystemZMFI =
MF.getInfo<SystemZMachineFunctionInfo>();
int Offset = MFI->getObjectOffset(FI) + MFI->getOffsetAdjustment();
uint64_t StackSize = MFI->getStackSize();
// Fixed objects are really located in the "previous" frame.
if (FI < 0)
StackSize -= SystemZMFI->getCalleeSavedFrameSize();
Offset += StackSize - getOffsetOfLocalArea();
// Skip the register save area if we generated the stack frame.
if (StackSize || MFI->hasCalls())
Offset -= getOffsetOfLocalArea();
return Offset;
}
bool
SystemZFrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
const std::vector<CalleeSavedInfo> &CSI,
const TargetRegisterInfo *TRI) const {
if (CSI.empty())
return false;
DebugLoc DL;
if (MI != MBB.end()) DL = MI->getDebugLoc();
MachineFunction &MF = *MBB.getParent();
const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
SystemZMachineFunctionInfo *MFI = MF.getInfo<SystemZMachineFunctionInfo>();
unsigned CalleeFrameSize = 0;
// Scan the callee-saved and find the bounds of register spill area.
unsigned LowReg = 0, HighReg = 0, StartOffset = -1U, EndOffset = 0;
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
unsigned Reg = CSI[i].getReg();
if (!SystemZ::FP64RegClass.contains(Reg)) {
unsigned Offset = RegSpillOffsets[Reg];
CalleeFrameSize += 8;
if (StartOffset > Offset) {
LowReg = Reg; StartOffset = Offset;
}
if (EndOffset < Offset) {
HighReg = Reg; EndOffset = RegSpillOffsets[Reg];
}
}
}
// Save information for epilogue inserter.
MFI->setCalleeSavedFrameSize(CalleeFrameSize);
MFI->setLowReg(LowReg); MFI->setHighReg(HighReg);
// Save GPRs
if (StartOffset) {
// Build a store instruction. Use STORE MULTIPLE instruction if there are many
// registers to store, otherwise - just STORE.
MachineInstrBuilder MIB =
BuildMI(MBB, MI, DL, TII.get((LowReg == HighReg ?
SystemZ::MOV64mr : SystemZ::MOV64mrm)));
// Add store operands.
MIB.addReg(SystemZ::R15D).addImm(StartOffset);
if (LowReg == HighReg)
MIB.addReg(0);
MIB.addReg(LowReg, RegState::Kill);
if (LowReg != HighReg)
MIB.addReg(HighReg, RegState::Kill);
// Do a second scan adding regs as being killed by instruction
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
unsigned Reg = CSI[i].getReg();
// Add the callee-saved register as live-in. It's killed at the spill.
MBB.addLiveIn(Reg);
if (Reg != LowReg && Reg != HighReg)
MIB.addReg(Reg, RegState::ImplicitKill);
}
}
// Save FPRs
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
unsigned Reg = CSI[i].getReg();
if (SystemZ::FP64RegClass.contains(Reg)) {
MBB.addLiveIn(Reg);
TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i].getFrameIdx(),
&SystemZ::FP64RegClass, TRI);
}
}
return true;
}
bool
SystemZFrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
const std::vector<CalleeSavedInfo> &CSI,
const TargetRegisterInfo *TRI) const {
if (CSI.empty())
return false;
DebugLoc DL;
if (MI != MBB.end()) DL = MI->getDebugLoc();
MachineFunction &MF = *MBB.getParent();
const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
SystemZMachineFunctionInfo *MFI = MF.getInfo<SystemZMachineFunctionInfo>();
// Restore FP registers
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
unsigned Reg = CSI[i].getReg();
if (SystemZ::FP64RegClass.contains(Reg))
TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(),
&SystemZ::FP64RegClass, TRI);
}
// Restore GP registers
unsigned LowReg = MFI->getLowReg(), HighReg = MFI->getHighReg();
unsigned StartOffset = RegSpillOffsets[LowReg];
if (StartOffset) {
// Build a load instruction. Use LOAD MULTIPLE instruction if there are many
// registers to load, otherwise - just LOAD.
MachineInstrBuilder MIB =
BuildMI(MBB, MI, DL, TII.get((LowReg == HighReg ?
SystemZ::MOV64rm : SystemZ::MOV64rmm)));
// Add store operands.
MIB.addReg(LowReg, RegState::Define);
if (LowReg != HighReg)
MIB.addReg(HighReg, RegState::Define);
MIB.addReg(hasFP(MF) ? SystemZ::R11D : SystemZ::R15D);
MIB.addImm(StartOffset);
if (LowReg == HighReg)
MIB.addReg(0);
// Do a second scan adding regs as being defined by instruction
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
unsigned Reg = CSI[i].getReg();
if (Reg != LowReg && Reg != HighReg)
MIB.addReg(Reg, RegState::ImplicitDefine);
}
}
return true;
}
void
SystemZFrameLowering::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
RegScavenger *RS) const {
// Determine whether R15/R14 will ever be clobbered inside the function. And
// if yes - mark it as 'callee' saved.
MachineFrameInfo *FFI = MF.getFrameInfo();
MachineRegisterInfo &MRI = MF.getRegInfo();
// Check whether high FPRs are ever used, if yes - we need to save R15 as
// well.
static const unsigned HighFPRs[] = {
SystemZ::F8L, SystemZ::F9L, SystemZ::F10L, SystemZ::F11L,
SystemZ::F12L, SystemZ::F13L, SystemZ::F14L, SystemZ::F15L,
SystemZ::F8S, SystemZ::F9S, SystemZ::F10S, SystemZ::F11S,
SystemZ::F12S, SystemZ::F13S, SystemZ::F14S, SystemZ::F15S,
};
bool HighFPRsUsed = false;
for (unsigned i = 0, e = array_lengthof(HighFPRs); i != e; ++i)
HighFPRsUsed |= MRI.isPhysRegUsed(HighFPRs[i]);
if (FFI->hasCalls())
/* FIXME: function is varargs */
/* FIXME: function grabs RA */
/* FIXME: function calls eh_return */
MRI.setPhysRegUsed(SystemZ::R14D);
if (HighFPRsUsed ||
FFI->hasCalls() ||
FFI->getObjectIndexEnd() != 0 || // Contains automatic variables
FFI->hasVarSizedObjects() // Function calls dynamic alloca's
/* FIXME: function is varargs */)
MRI.setPhysRegUsed(SystemZ::R15D);
}

View File

@ -1,57 +0,0 @@
//=- SystemZFrameLowering.h - Define frame lowering for z/System -*- C++ -*--=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//
//
//===----------------------------------------------------------------------===//
#ifndef SYSTEMZ_FRAMEINFO_H
#define SYSTEMZ_FRAMEINFO_H
#include "SystemZ.h"
#include "SystemZSubtarget.h"
#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/ADT/IndexedMap.h"
namespace llvm {
class SystemZSubtarget;
class SystemZFrameLowering : public TargetFrameLowering {
IndexedMap<unsigned> RegSpillOffsets;
protected:
const SystemZSubtarget &STI;
public:
explicit SystemZFrameLowering(const SystemZSubtarget &sti);
/// emitProlog/emitEpilog - These methods insert prolog and epilog code into
/// the function.
void emitPrologue(MachineFunction &MF) const;
void emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const;
bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
const std::vector<CalleeSavedInfo> &CSI,
const TargetRegisterInfo *TRI) const;
bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
const std::vector<CalleeSavedInfo> &CSI,
const TargetRegisterInfo *TRI) const;
void processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
RegScavenger *RS) const;
bool hasReservedCallFrame(const MachineFunction &MF) const { return true; }
bool hasFP(const MachineFunction &MF) const;
int getFrameIndexOffset(const MachineFunction &MF, int FI) const;
};
} // End llvm namespace
#endif

View File

@ -1,779 +0,0 @@
//==-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ ---===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines an instruction selector for the SystemZ target.
//
//===----------------------------------------------------------------------===//
#include "SystemZ.h"
#include "SystemZTargetMachine.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Intrinsics.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
namespace {
/// SystemZRRIAddressMode - This corresponds to rriaddr, but uses SDValue's
/// instead of register numbers for the leaves of the matched tree.
struct SystemZRRIAddressMode {
enum {
RegBase,
FrameIndexBase
} BaseType;
struct { // This is really a union, discriminated by BaseType!
SDValue Reg;
int FrameIndex;
} Base;
SDValue IndexReg;
int64_t Disp;
bool isRI;
SystemZRRIAddressMode(bool RI = false)
: BaseType(RegBase), IndexReg(), Disp(0), isRI(RI) {
}
void dump() {
errs() << "SystemZRRIAddressMode " << this << '\n';
if (BaseType == RegBase) {
errs() << "Base.Reg ";
if (Base.Reg.getNode() != 0)
Base.Reg.getNode()->dump();
else
errs() << "nul";
errs() << '\n';
} else {
errs() << " Base.FrameIndex " << Base.FrameIndex << '\n';
}
if (!isRI) {
errs() << "IndexReg ";
if (IndexReg.getNode() != 0) IndexReg.getNode()->dump();
else errs() << "nul";
}
errs() << " Disp " << Disp << '\n';
}
};
}
/// SystemZDAGToDAGISel - SystemZ specific code to select SystemZ machine
/// instructions for SelectionDAG operations.
///
namespace {
class SystemZDAGToDAGISel : public SelectionDAGISel {
const SystemZTargetLowering &Lowering;
const SystemZSubtarget &Subtarget;
void getAddressOperandsRI(const SystemZRRIAddressMode &AM,
SDValue &Base, SDValue &Disp);
void getAddressOperands(const SystemZRRIAddressMode &AM,
SDValue &Base, SDValue &Disp,
SDValue &Index);
public:
SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
: SelectionDAGISel(TM, OptLevel),
Lowering(*TM.getTargetLowering()),
Subtarget(*TM.getSubtargetImpl()) { }
virtual const char *getPassName() const {
return "SystemZ DAG->DAG Pattern Instruction Selection";
}
/// getI8Imm - Return a target constant with the specified value, of type
/// i8.
inline SDValue getI8Imm(uint64_t Imm) {
return CurDAG->getTargetConstant(Imm, MVT::i8);
}
/// getI16Imm - Return a target constant with the specified value, of type
/// i16.
inline SDValue getI16Imm(uint64_t Imm) {
return CurDAG->getTargetConstant(Imm, MVT::i16);
}
/// getI32Imm - Return a target constant with the specified value, of type
/// i32.
inline SDValue getI32Imm(uint64_t Imm) {
return CurDAG->getTargetConstant(Imm, MVT::i32);
}
// Include the pieces autogenerated from the target description.
#include "SystemZGenDAGISel.inc"
private:
bool SelectAddrRI12Only(SDValue& Addr,
SDValue &Base, SDValue &Disp);
bool SelectAddrRI12(SDValue& Addr,
SDValue &Base, SDValue &Disp,
bool is12BitOnly = false);
bool SelectAddrRI(SDValue& Addr, SDValue &Base, SDValue &Disp);
bool SelectAddrRRI12(SDValue Addr,
SDValue &Base, SDValue &Disp, SDValue &Index);
bool SelectAddrRRI20(SDValue Addr,
SDValue &Base, SDValue &Disp, SDValue &Index);
bool SelectLAAddr(SDValue Addr,
SDValue &Base, SDValue &Disp, SDValue &Index);
SDNode *Select(SDNode *Node);
bool TryFoldLoad(SDNode *P, SDValue N,
SDValue &Base, SDValue &Disp, SDValue &Index);
bool MatchAddress(SDValue N, SystemZRRIAddressMode &AM,
bool is12Bit, unsigned Depth = 0);
bool MatchAddressBase(SDValue N, SystemZRRIAddressMode &AM);
};
} // end anonymous namespace
/// createSystemZISelDag - This pass converts a legalized DAG into a
/// SystemZ-specific DAG, ready for instruction scheduling.
///
FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
CodeGenOpt::Level OptLevel) {
return new SystemZDAGToDAGISel(TM, OptLevel);
}
/// isImmSExt20 - This method tests to see if the node is either a 32-bit
/// or 64-bit immediate, and if the value can be accurately represented as a
/// sign extension from a 20-bit value. If so, this returns true and the
/// immediate.
static bool isImmSExt20(int64_t Val, int64_t &Imm) {
if (Val >= -524288 && Val <= 524287) {
Imm = Val;
return true;
}
return false;
}
/// isImmZExt12 - This method tests to see if the node is either a 32-bit
/// or 64-bit immediate, and if the value can be accurately represented as a
/// zero extension from a 12-bit value. If so, this returns true and the
/// immediate.
static bool isImmZExt12(int64_t Val, int64_t &Imm) {
if (Val >= 0 && Val <= 0xFFF) {
Imm = Val;
return true;
}
return false;
}
/// MatchAddress - Add the specified node to the specified addressing mode,
/// returning true if it cannot be done. This just pattern matches for the
/// addressing mode.
bool SystemZDAGToDAGISel::MatchAddress(SDValue N, SystemZRRIAddressMode &AM,
bool is12Bit, unsigned Depth) {
DebugLoc dl = N.getDebugLoc();
DEBUG(errs() << "MatchAddress: "; AM.dump());
// Limit recursion.
if (Depth > 5)
return MatchAddressBase(N, AM);
// FIXME: We can perform better here. If we have something like
// (shift (add A, imm), N), we can try to reassociate stuff and fold shift of
// imm into addressing mode.
switch (N.getOpcode()) {
default: break;
case ISD::Constant: {
int64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
int64_t Imm = 0;
bool Match = (is12Bit ?
isImmZExt12(AM.Disp + Val, Imm) :
isImmSExt20(AM.Disp + Val, Imm));
if (Match) {
AM.Disp = Imm;
return false;
}
break;
}
case ISD::FrameIndex:
if (AM.BaseType == SystemZRRIAddressMode::RegBase &&
AM.Base.Reg.getNode() == 0) {
AM.BaseType = SystemZRRIAddressMode::FrameIndexBase;
AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
return false;
}
break;
case ISD::SUB: {
// Given A-B, if A can be completely folded into the address and
// the index field with the index field unused, use -B as the index.
// This is a win if a has multiple parts that can be folded into
// the address. Also, this saves a mov if the base register has
// other uses, since it avoids a two-address sub instruction, however
// it costs an additional mov if the index register has other uses.
// Test if the LHS of the sub can be folded.
SystemZRRIAddressMode Backup = AM;
if (MatchAddress(N.getNode()->getOperand(0), AM, is12Bit, Depth+1)) {
AM = Backup;
break;
}
// Test if the index field is free for use.
if (AM.IndexReg.getNode() || AM.isRI) {
AM = Backup;
break;
}
// If the base is a register with multiple uses, this transformation may
// save a mov. Otherwise it's probably better not to do it.
if (AM.BaseType == SystemZRRIAddressMode::RegBase &&
(!AM.Base.Reg.getNode() || AM.Base.Reg.getNode()->hasOneUse())) {
AM = Backup;
break;
}
// Ok, the transformation is legal and appears profitable. Go for it.
SDValue RHS = N.getNode()->getOperand(1);
SDValue Zero = CurDAG->getConstant(0, N.getValueType());
SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
AM.IndexReg = Neg;
// Insert the new nodes into the topological ordering.
if (Zero.getNode()->getNodeId() == -1 ||
Zero.getNode()->getNodeId() > N.getNode()->getNodeId()) {
CurDAG->RepositionNode(N.getNode(), Zero.getNode());
Zero.getNode()->setNodeId(N.getNode()->getNodeId());
}
if (Neg.getNode()->getNodeId() == -1 ||
Neg.getNode()->getNodeId() > N.getNode()->getNodeId()) {
CurDAG->RepositionNode(N.getNode(), Neg.getNode());
Neg.getNode()->setNodeId(N.getNode()->getNodeId());
}
return false;
}
case ISD::ADD: {
SystemZRRIAddressMode Backup = AM;
if (!MatchAddress(N.getNode()->getOperand(0), AM, is12Bit, Depth+1) &&
!MatchAddress(N.getNode()->getOperand(1), AM, is12Bit, Depth+1))
return false;
AM = Backup;
if (!MatchAddress(N.getNode()->getOperand(1), AM, is12Bit, Depth+1) &&
!MatchAddress(N.getNode()->getOperand(0), AM, is12Bit, Depth+1))
return false;
AM = Backup;
// If we couldn't fold both operands into the address at the same time,
// see if we can just put each operand into a register and fold at least
// the add.
if (!AM.isRI &&
AM.BaseType == SystemZRRIAddressMode::RegBase &&
!AM.Base.Reg.getNode() && !AM.IndexReg.getNode()) {
AM.Base.Reg = N.getNode()->getOperand(0);
AM.IndexReg = N.getNode()->getOperand(1);
return false;
}
break;
}
case ISD::OR:
// Handle "X | C" as "X + C" iff X is known to have C bits clear.
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
SystemZRRIAddressMode Backup = AM;
int64_t Offset = CN->getSExtValue();
int64_t Imm = 0;
bool MatchOffset = (is12Bit ?
isImmZExt12(AM.Disp + Offset, Imm) :
isImmSExt20(AM.Disp + Offset, Imm));
// The resultant disp must fit in 12 or 20-bits.
if (MatchOffset &&
// LHS should be an addr mode.
!MatchAddress(N.getOperand(0), AM, is12Bit, Depth+1) &&
// Check to see if the LHS & C is zero.
CurDAG->MaskedValueIsZero(N.getOperand(0), CN->getAPIntValue())) {
AM.Disp = Imm;
return false;
}
AM = Backup;
}
break;
}
return MatchAddressBase(N, AM);
}
/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
/// specified addressing mode without any further recursion.
bool SystemZDAGToDAGISel::MatchAddressBase(SDValue N,
SystemZRRIAddressMode &AM) {
// Is the base register already occupied?
if (AM.BaseType != SystemZRRIAddressMode::RegBase || AM.Base.Reg.getNode()) {
// If so, check to see if the index register is set.
if (AM.IndexReg.getNode() == 0 && !AM.isRI) {
AM.IndexReg = N;
return false;
}
// Otherwise, we cannot select it.
return true;
}
// Default, generate it as a register.
AM.BaseType = SystemZRRIAddressMode::RegBase;
AM.Base.Reg = N;
return false;
}
void SystemZDAGToDAGISel::getAddressOperandsRI(const SystemZRRIAddressMode &AM,
SDValue &Base, SDValue &Disp) {
if (AM.BaseType == SystemZRRIAddressMode::RegBase)
Base = AM.Base.Reg;
else
Base = CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, TLI.getPointerTy());
Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i64);
}
void SystemZDAGToDAGISel::getAddressOperands(const SystemZRRIAddressMode &AM,
SDValue &Base, SDValue &Disp,
SDValue &Index) {
getAddressOperandsRI(AM, Base, Disp);
Index = AM.IndexReg;
}
/// Returns true if the address can be represented by a base register plus
/// an unsigned 12-bit displacement [r+imm].
bool SystemZDAGToDAGISel::SelectAddrRI12Only(SDValue &Addr,
SDValue &Base, SDValue &Disp) {
return SelectAddrRI12(Addr, Base, Disp, /*is12BitOnly*/true);
}
bool SystemZDAGToDAGISel::SelectAddrRI12(SDValue &Addr,
SDValue &Base, SDValue &Disp,
bool is12BitOnly) {
SystemZRRIAddressMode AM20(/*isRI*/true), AM12(/*isRI*/true);
bool Done = false;
if (!Addr.hasOneUse()) {
unsigned Opcode = Addr.getOpcode();
if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex) {
// If we are able to fold N into addressing mode, then we'll allow it even
// if N has multiple uses. In general, addressing computation is used as
// addresses by all of its uses. But watch out for CopyToReg uses, that
// means the address computation is liveout. It will be computed by a LA
// so we want to avoid computing the address twice.
for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
if (UI->getOpcode() == ISD::CopyToReg) {
MatchAddressBase(Addr, AM12);
Done = true;
break;
}
}
}
}
if (!Done && MatchAddress(Addr, AM12, /* is12Bit */ true))
return false;
// Check, whether we can match stuff using 20-bit displacements
if (!Done && !is12BitOnly &&
!MatchAddress(Addr, AM20, /* is12Bit */ false))
if (AM12.Disp == 0 && AM20.Disp != 0)
return false;
DEBUG(errs() << "MatchAddress (final): "; AM12.dump());
EVT VT = Addr.getValueType();
if (AM12.BaseType == SystemZRRIAddressMode::RegBase) {
if (!AM12.Base.Reg.getNode())
AM12.Base.Reg = CurDAG->getRegister(0, VT);
}
assert(AM12.IndexReg.getNode() == 0 && "Invalid reg-imm address mode!");
getAddressOperandsRI(AM12, Base, Disp);
return true;
}
/// Returns true if the address can be represented by a base register plus
/// a signed 20-bit displacement [r+imm].
bool SystemZDAGToDAGISel::SelectAddrRI(SDValue& Addr,
SDValue &Base, SDValue &Disp) {
SystemZRRIAddressMode AM(/*isRI*/true);
bool Done = false;
if (!Addr.hasOneUse()) {
unsigned Opcode = Addr.getOpcode();
if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex) {
// If we are able to fold N into addressing mode, then we'll allow it even
// if N has multiple uses. In general, addressing computation is used as
// addresses by all of its uses. But watch out for CopyToReg uses, that
// means the address computation is liveout. It will be computed by a LA
// so we want to avoid computing the address twice.
for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
if (UI->getOpcode() == ISD::CopyToReg) {
MatchAddressBase(Addr, AM);
Done = true;
break;
}
}
}
}
if (!Done && MatchAddress(Addr, AM, /* is12Bit */ false))
return false;
DEBUG(errs() << "MatchAddress (final): "; AM.dump());
EVT VT = Addr.getValueType();
if (AM.BaseType == SystemZRRIAddressMode::RegBase) {
if (!AM.Base.Reg.getNode())
AM.Base.Reg = CurDAG->getRegister(0, VT);
}
assert(AM.IndexReg.getNode() == 0 && "Invalid reg-imm address mode!");
getAddressOperandsRI(AM, Base, Disp);
return true;
}
/// Returns true if the address can be represented by a base register plus
/// index register plus an unsigned 12-bit displacement [base + idx + imm].
bool SystemZDAGToDAGISel::SelectAddrRRI12(SDValue Addr,
SDValue &Base, SDValue &Disp, SDValue &Index) {
SystemZRRIAddressMode AM20, AM12;
bool Done = false;
if (!Addr.hasOneUse()) {
unsigned Opcode = Addr.getOpcode();
if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex) {
// If we are able to fold N into addressing mode, then we'll allow it even
// if N has multiple uses. In general, addressing computation is used as
// addresses by all of its uses. But watch out for CopyToReg uses, that
// means the address computation is liveout. It will be computed by a LA
// so we want to avoid computing the address twice.
for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
if (UI->getOpcode() == ISD::CopyToReg) {
MatchAddressBase(Addr, AM12);
Done = true;
break;
}
}
}
}
if (!Done && MatchAddress(Addr, AM12, /* is12Bit */ true))
return false;
// Check, whether we can match stuff using 20-bit displacements
if (!Done && !MatchAddress(Addr, AM20, /* is12Bit */ false))
if (AM12.Disp == 0 && AM20.Disp != 0)
return false;
DEBUG(errs() << "MatchAddress (final): "; AM12.dump());
EVT VT = Addr.getValueType();
if (AM12.BaseType == SystemZRRIAddressMode::RegBase) {
if (!AM12.Base.Reg.getNode())
AM12.Base.Reg = CurDAG->getRegister(0, VT);
}
if (!AM12.IndexReg.getNode())
AM12.IndexReg = CurDAG->getRegister(0, VT);
getAddressOperands(AM12, Base, Disp, Index);
return true;
}
/// Returns true if the address can be represented by a base register plus
/// index register plus a signed 20-bit displacement [base + idx + imm].
bool SystemZDAGToDAGISel::SelectAddrRRI20(SDValue Addr,
SDValue &Base, SDValue &Disp, SDValue &Index) {
SystemZRRIAddressMode AM;
bool Done = false;
if (!Addr.hasOneUse()) {
unsigned Opcode = Addr.getOpcode();
if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex) {
// If we are able to fold N into addressing mode, then we'll allow it even
// if N has multiple uses. In general, addressing computation is used as
// addresses by all of its uses. But watch out for CopyToReg uses, that
// means the address computation is liveout. It will be computed by a LA
// so we want to avoid computing the address twice.
for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
if (UI->getOpcode() == ISD::CopyToReg) {
MatchAddressBase(Addr, AM);
Done = true;
break;
}
}
}
}
if (!Done && MatchAddress(Addr, AM, /* is12Bit */ false))
return false;
DEBUG(errs() << "MatchAddress (final): "; AM.dump());
EVT VT = Addr.getValueType();
if (AM.BaseType == SystemZRRIAddressMode::RegBase) {
if (!AM.Base.Reg.getNode())
AM.Base.Reg = CurDAG->getRegister(0, VT);
}
if (!AM.IndexReg.getNode())
AM.IndexReg = CurDAG->getRegister(0, VT);
getAddressOperands(AM, Base, Disp, Index);
return true;
}
/// SelectLAAddr - it calls SelectAddr and determines if the maximal addressing
/// mode it matches can be cost effectively emitted as an LA/LAY instruction.
bool SystemZDAGToDAGISel::SelectLAAddr(SDValue Addr,
SDValue &Base, SDValue &Disp, SDValue &Index) {
SystemZRRIAddressMode AM;
if (MatchAddress(Addr, AM, false))
return false;
EVT VT = Addr.getValueType();
unsigned Complexity = 0;
if (AM.BaseType == SystemZRRIAddressMode::RegBase)
if (AM.Base.Reg.getNode())
Complexity = 1;
else
AM.Base.Reg = CurDAG->getRegister(0, VT);
else if (AM.BaseType == SystemZRRIAddressMode::FrameIndexBase)
Complexity = 4;
if (AM.IndexReg.getNode())
Complexity += 1;
else
AM.IndexReg = CurDAG->getRegister(0, VT);
if (AM.Disp && (AM.Base.Reg.getNode() || AM.IndexReg.getNode()))
Complexity += 1;
if (Complexity > 2) {
getAddressOperands(AM, Base, Disp, Index);
return true;
}
return false;
}
bool SystemZDAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
SDValue &Base, SDValue &Disp, SDValue &Index) {
if (ISD::isNON_EXTLoad(N.getNode()) &&
IsLegalToFold(N, P, P, OptLevel))
return SelectAddrRRI20(N.getOperand(1), Base, Disp, Index);
return false;
}
SDNode *SystemZDAGToDAGISel::Select(SDNode *Node) {
EVT NVT = Node->getValueType(0);
DebugLoc dl = Node->getDebugLoc();
unsigned Opcode = Node->getOpcode();
// Dump information about the Node being selected
DEBUG(errs() << "Selecting: "; Node->dump(CurDAG); errs() << "\n");
// If we have a custom node, we already have selected!
if (Node->isMachineOpcode()) {
DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
return NULL; // Already selected.
}
switch (Opcode) {
default: break;
case ISD::SDIVREM: {
unsigned Opc, MOpc;
SDValue N0 = Node->getOperand(0);
SDValue N1 = Node->getOperand(1);
EVT ResVT;
bool is32Bit = false;
switch (NVT.getSimpleVT().SimpleTy) {
default: assert(0 && "Unsupported VT!");
case MVT::i32:
Opc = SystemZ::SDIVREM32r; MOpc = SystemZ::SDIVREM32m;
ResVT = MVT::v2i64;
is32Bit = true;
break;
case MVT::i64:
Opc = SystemZ::SDIVREM64r; MOpc = SystemZ::SDIVREM64m;
ResVT = MVT::v2i64;
break;
}
SDValue Tmp0, Tmp1, Tmp2;
bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2);
// Prepare the dividend
SDNode *Dividend;
if (is32Bit)
Dividend = CurDAG->getMachineNode(SystemZ::MOVSX64rr32, dl, MVT::i64, N0);
else
Dividend = N0.getNode();
// Insert prepared dividend into suitable 'subreg'
SDNode *Tmp = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
dl, ResVT);
Dividend =
CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, dl, ResVT,
SDValue(Tmp, 0), SDValue(Dividend, 0),
CurDAG->getTargetConstant(SystemZ::subreg_odd, MVT::i32));
SDNode *Result;
SDValue DivVal = SDValue(Dividend, 0);
if (foldedLoad) {
SDValue Ops[] = { DivVal, Tmp0, Tmp1, Tmp2, N1.getOperand(0) };
Result = CurDAG->getMachineNode(MOpc, dl, ResVT, MVT::Other,
Ops, array_lengthof(Ops));
// Update the chain.
ReplaceUses(N1.getValue(1), SDValue(Result, 1));
} else {
Result = CurDAG->getMachineNode(Opc, dl, ResVT, SDValue(Dividend, 0), N1);
}
// Copy the division (odd subreg) result, if it is needed.
if (!SDValue(Node, 0).use_empty()) {
unsigned SubRegIdx = (is32Bit ?
SystemZ::subreg_odd32 : SystemZ::subreg_odd);
SDNode *Div = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
dl, NVT,
SDValue(Result, 0),
CurDAG->getTargetConstant(SubRegIdx,
MVT::i32));
ReplaceUses(SDValue(Node, 0), SDValue(Div, 0));
DEBUG(errs() << "=> "; Result->dump(CurDAG); errs() << "\n");
}
// Copy the remainder (even subreg) result, if it is needed.
if (!SDValue(Node, 1).use_empty()) {
unsigned SubRegIdx = (is32Bit ?
SystemZ::subreg_32bit : SystemZ::subreg_even);
SDNode *Rem = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
dl, NVT,
SDValue(Result, 0),
CurDAG->getTargetConstant(SubRegIdx,
MVT::i32));
ReplaceUses(SDValue(Node, 1), SDValue(Rem, 0));
DEBUG(errs() << "=> "; Result->dump(CurDAG); errs() << "\n");
}
return NULL;
}
case ISD::UDIVREM: {
unsigned Opc, MOpc, ClrOpc;
SDValue N0 = Node->getOperand(0);
SDValue N1 = Node->getOperand(1);
EVT ResVT;
bool is32Bit = false;
switch (NVT.getSimpleVT().SimpleTy) {
default: assert(0 && "Unsupported VT!");
case MVT::i32:
Opc = SystemZ::UDIVREM32r; MOpc = SystemZ::UDIVREM32m;
ClrOpc = SystemZ::MOV64Pr0_even;
ResVT = MVT::v2i32;
is32Bit = true;
break;
case MVT::i64:
Opc = SystemZ::UDIVREM64r; MOpc = SystemZ::UDIVREM64m;
ClrOpc = SystemZ::MOV128r0_even;
ResVT = MVT::v2i64;
break;
}
SDValue Tmp0, Tmp1, Tmp2;
bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2);
// Prepare the dividend
SDNode *Dividend = N0.getNode();
// Insert prepared dividend into suitable 'subreg'
SDNode *Tmp = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
dl, ResVT);
{
unsigned SubRegIdx = (is32Bit ?
SystemZ::subreg_odd32 : SystemZ::subreg_odd);
Dividend =
CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, dl, ResVT,
SDValue(Tmp, 0), SDValue(Dividend, 0),
CurDAG->getTargetConstant(SubRegIdx, MVT::i32));
}
// Zero out even subreg
Dividend = CurDAG->getMachineNode(ClrOpc, dl, ResVT, SDValue(Dividend, 0));
SDValue DivVal = SDValue(Dividend, 0);
SDNode *Result;
if (foldedLoad) {
SDValue Ops[] = { DivVal, Tmp0, Tmp1, Tmp2, N1.getOperand(0) };
Result = CurDAG->getMachineNode(MOpc, dl, ResVT, MVT::Other,
Ops, array_lengthof(Ops));
// Update the chain.
ReplaceUses(N1.getValue(1), SDValue(Result, 1));
} else {
Result = CurDAG->getMachineNode(Opc, dl, ResVT, DivVal, N1);
}
// Copy the division (odd subreg) result, if it is needed.
if (!SDValue(Node, 0).use_empty()) {
unsigned SubRegIdx = (is32Bit ?
SystemZ::subreg_odd32 : SystemZ::subreg_odd);
SDNode *Div = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
dl, NVT,
SDValue(Result, 0),
CurDAG->getTargetConstant(SubRegIdx,
MVT::i32));
ReplaceUses(SDValue(Node, 0), SDValue(Div, 0));
DEBUG(errs() << "=> "; Result->dump(CurDAG); errs() << "\n");
}
// Copy the remainder (even subreg) result, if it is needed.
if (!SDValue(Node, 1).use_empty()) {
unsigned SubRegIdx = (is32Bit ?
SystemZ::subreg_32bit : SystemZ::subreg_even);
SDNode *Rem = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
dl, NVT,
SDValue(Result, 0),
CurDAG->getTargetConstant(SubRegIdx,
MVT::i32));
ReplaceUses(SDValue(Node, 1), SDValue(Rem, 0));
DEBUG(errs() << "=> "; Result->dump(CurDAG); errs() << "\n");
}
return NULL;
}
}
// Select the default instruction
SDNode *ResNode = SelectCode(Node);
DEBUG(errs() << "=> ";
if (ResNode == NULL || ResNode == Node)
Node->dump(CurDAG);
else
ResNode->dump(CurDAG);
errs() << "\n";
);
return ResNode;
}

View File

@ -1,868 +0,0 @@
//===-- SystemZISelLowering.cpp - SystemZ DAG Lowering Implementation -----==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the SystemZTargetLowering class.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "systemz-lower"
#include "SystemZISelLowering.h"
#include "SystemZ.h"
#include "SystemZTargetMachine.h"
#include "SystemZSubtarget.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Intrinsics.h"
#include "llvm/CallingConv.h"
#include "llvm/GlobalVariable.h"
#include "llvm/GlobalAlias.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/VectorExtras.h"
using namespace llvm;
SystemZTargetLowering::SystemZTargetLowering(SystemZTargetMachine &tm) :
TargetLowering(tm, new TargetLoweringObjectFileELF()),
Subtarget(*tm.getSubtargetImpl()), TM(tm) {
RegInfo = TM.getRegisterInfo();
// Set up the register classes.
addRegisterClass(MVT::i32, SystemZ::GR32RegisterClass);
addRegisterClass(MVT::i64, SystemZ::GR64RegisterClass);
addRegisterClass(MVT::v2i32,SystemZ::GR64PRegisterClass);
addRegisterClass(MVT::v2i64,SystemZ::GR128RegisterClass);
if (!UseSoftFloat) {
addRegisterClass(MVT::f32, SystemZ::FP32RegisterClass);
addRegisterClass(MVT::f64, SystemZ::FP64RegisterClass);
}
// Compute derived properties from the register classes
computeRegisterProperties();
// Provide all sorts of operation actions
setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
setLoadExtAction(ISD::SEXTLOAD, MVT::f32, Expand);
setLoadExtAction(ISD::ZEXTLOAD, MVT::f32, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
setLoadExtAction(ISD::SEXTLOAD, MVT::f64, Expand);
setLoadExtAction(ISD::ZEXTLOAD, MVT::f64, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand);
setStackPointerRegisterToSaveRestore(SystemZ::R15D);
// TODO: It may be better to default to latency-oriented scheduling, however
// LLVM's current latency-oriented scheduler can't handle physreg definitions
// such as SystemZ has with PSW, so set this to the register-pressure
// scheduler, because it can.
setSchedulingPreference(Sched::RegPressure);
setBooleanContents(ZeroOrOneBooleanContent);
setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
setOperationAction(ISD::BRCOND, MVT::Other, Expand);
setOperationAction(ISD::BR_CC, MVT::i32, Custom);
setOperationAction(ISD::BR_CC, MVT::i64, Custom);
setOperationAction(ISD::BR_CC, MVT::f32, Custom);
setOperationAction(ISD::BR_CC, MVT::f64, Custom);
setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
setOperationAction(ISD::JumpTable, MVT::i64, Custom);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
setOperationAction(ISD::SDIV, MVT::i32, Expand);
setOperationAction(ISD::UDIV, MVT::i32, Expand);
setOperationAction(ISD::SDIV, MVT::i64, Expand);
setOperationAction(ISD::UDIV, MVT::i64, Expand);
setOperationAction(ISD::SREM, MVT::i32, Expand);
setOperationAction(ISD::UREM, MVT::i32, Expand);
setOperationAction(ISD::SREM, MVT::i64, Expand);
setOperationAction(ISD::UREM, MVT::i64, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
setOperationAction(ISD::CTPOP, MVT::i32, Expand);
setOperationAction(ISD::CTPOP, MVT::i64, Expand);
setOperationAction(ISD::CTTZ, MVT::i32, Expand);
setOperationAction(ISD::CTTZ, MVT::i64, Expand);
setOperationAction(ISD::CTLZ, MVT::i32, Promote);
setOperationAction(ISD::CTLZ, MVT::i64, Legal);
// FIXME: Can we lower these 2 efficiently?
setOperationAction(ISD::SETCC, MVT::i32, Expand);
setOperationAction(ISD::SETCC, MVT::i64, Expand);
setOperationAction(ISD::SETCC, MVT::f32, Expand);
setOperationAction(ISD::SETCC, MVT::f64, Expand);
setOperationAction(ISD::SELECT, MVT::i32, Expand);
setOperationAction(ISD::SELECT, MVT::i64, Expand);
setOperationAction(ISD::SELECT, MVT::f32, Expand);
setOperationAction(ISD::SELECT, MVT::f64, Expand);
setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
setOperationAction(ISD::MULHS, MVT::i64, Expand);
setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
// FIXME: Can we support these natively?
setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
// Lower some FP stuff
setOperationAction(ISD::FSIN, MVT::f32, Expand);
setOperationAction(ISD::FSIN, MVT::f64, Expand);
setOperationAction(ISD::FCOS, MVT::f32, Expand);
setOperationAction(ISD::FCOS, MVT::f64, Expand);
setOperationAction(ISD::FREM, MVT::f32, Expand);
setOperationAction(ISD::FREM, MVT::f64, Expand);
setOperationAction(ISD::FMA, MVT::f32, Expand);
setOperationAction(ISD::FMA, MVT::f64, Expand);
// We have only 64-bit bitconverts
setOperationAction(ISD::BITCAST, MVT::f32, Expand);
setOperationAction(ISD::BITCAST, MVT::i32, Expand);
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
setMinFunctionAlignment(1);
}
SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
case ISD::BR_CC: return LowerBR_CC(Op, DAG);
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
case ISD::JumpTable: return LowerJumpTable(Op, DAG);
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
default:
llvm_unreachable("Should not custom lower this!");
return SDValue();
}
}
bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
if (UseSoftFloat || (VT != MVT::f32 && VT != MVT::f64))
return false;
// +0.0 lzer
// +0.0f lzdr
// -0.0 lzer + lner
// -0.0f lzdr + lndr
return Imm.isZero() || Imm.isNegZero();
}
//===----------------------------------------------------------------------===//
// SystemZ Inline Assembly Support
//===----------------------------------------------------------------------===//
/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
TargetLowering::ConstraintType
SystemZTargetLowering::getConstraintType(const std::string &Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'r':
return C_RegisterClass;
default:
break;
}
}
return TargetLowering::getConstraintType(Constraint);
}
std::pair<unsigned, const TargetRegisterClass*>
SystemZTargetLowering::
getRegForInlineAsmConstraint(const std::string &Constraint,
EVT VT) const {
if (Constraint.size() == 1) {
// GCC Constraint Letters
switch (Constraint[0]) {
default: break;
case 'r': // GENERAL_REGS
if (VT == MVT::i32)
return std::make_pair(0U, SystemZ::GR32RegisterClass);
else if (VT == MVT::i128)
return std::make_pair(0U, SystemZ::GR128RegisterClass);
return std::make_pair(0U, SystemZ::GR64RegisterClass);
}
}
return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
}
//===----------------------------------------------------------------------===//
// Calling Convention Implementation
//===----------------------------------------------------------------------===//
#include "SystemZGenCallingConv.inc"
SDValue
SystemZTargetLowering::LowerFormalArguments(SDValue Chain,
CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::InputArg>
&Ins,
DebugLoc dl,
SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals)
const {
switch (CallConv) {
default:
llvm_unreachable("Unsupported calling convention");
case CallingConv::C:
case CallingConv::Fast:
return LowerCCCArguments(Chain, CallConv, isVarArg, Ins, dl, DAG, InVals);
}
}
SDValue
SystemZTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
CallingConv::ID CallConv, bool isVarArg,
bool &isTailCall,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
// SystemZ target does not yet support tail call optimization.
isTailCall = false;
switch (CallConv) {
default:
llvm_unreachable("Unsupported calling convention");
case CallingConv::Fast:
case CallingConv::C:
return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
Outs, OutVals, Ins, dl, DAG, InVals);
}
}
/// LowerCCCArguments - transform physical registers into virtual registers and
/// generate load operations for arguments places on the stack.
// FIXME: struct return stuff
// FIXME: varargs
SDValue
SystemZTargetLowering::LowerCCCArguments(SDValue Chain,
CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::InputArg>
&Ins,
DebugLoc dl,
SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals)
const {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
MachineRegisterInfo &RegInfo = MF.getRegInfo();
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
getTargetMachine(), ArgLocs, *DAG.getContext());
CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
if (isVarArg)
report_fatal_error("Varargs not supported yet");
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
SDValue ArgValue;
CCValAssign &VA = ArgLocs[i];
EVT LocVT = VA.getLocVT();
if (VA.isRegLoc()) {
// Arguments passed in registers
TargetRegisterClass *RC;
switch (LocVT.getSimpleVT().SimpleTy) {
default:
#ifndef NDEBUG
errs() << "LowerFormalArguments Unhandled argument type: "
<< LocVT.getSimpleVT().SimpleTy
<< "\n";
#endif
llvm_unreachable(0);
case MVT::i64:
RC = SystemZ::GR64RegisterClass;
break;
case MVT::f32:
RC = SystemZ::FP32RegisterClass;
break;
case MVT::f64:
RC = SystemZ::FP64RegisterClass;
break;
}
unsigned VReg = RegInfo.createVirtualRegister(RC);
RegInfo.addLiveIn(VA.getLocReg(), VReg);
ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
} else {
// Sanity check
assert(VA.isMemLoc());
// Create the nodes corresponding to a load from this parameter slot.
// Create the frame index object for this incoming parameter...
int FI = MFI->CreateFixedObject(LocVT.getSizeInBits()/8,
VA.getLocMemOffset(), true);
// Create the SelectionDAG nodes corresponding to a load
// from this parameter
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
ArgValue = DAG.getLoad(LocVT, dl, Chain, FIN,
MachinePointerInfo::getFixedStack(FI),
false, false, 0);
}
// If this is an 8/16/32-bit value, it is really passed promoted to 64
// bits. Insert an assert[sz]ext to capture this, then truncate to the
// right size.
if (VA.getLocInfo() == CCValAssign::SExt)
ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
DAG.getValueType(VA.getValVT()));
else if (VA.getLocInfo() == CCValAssign::ZExt)
ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
DAG.getValueType(VA.getValVT()));
if (VA.getLocInfo() != CCValAssign::Full)
ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
InVals.push_back(ArgValue);
}
return Chain;
}
/// LowerCCCCallTo - functions arguments are copied from virtual regs to
/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
/// TODO: sret.
SDValue
SystemZTargetLowering::LowerCCCCallTo(SDValue Chain, SDValue Callee,
CallingConv::ID CallConv, bool isVarArg,
bool isTailCall,
const SmallVectorImpl<ISD::OutputArg>
&Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
MachineFunction &MF = DAG.getMachineFunction();
const TargetFrameLowering *TFI = TM.getFrameLowering();
// Offset to first argument stack slot.
const unsigned FirstArgOffset = 160;
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
getTargetMachine(), ArgLocs, *DAG.getContext());
CCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
// Get a count of how many bytes are to be pushed on the stack.
unsigned NumBytes = CCInfo.getNextStackOffset();
Chain = DAG.getCALLSEQ_START(Chain ,DAG.getConstant(NumBytes,
getPointerTy(), true));
SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
SmallVector<SDValue, 12> MemOpChains;
SDValue StackPtr;
// Walk the register/memloc assignments, inserting copies/loads.
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
SDValue Arg = OutVals[i];
// Promote the value if needed.
switch (VA.getLocInfo()) {
default: assert(0 && "Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::AExt:
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
break;
}
// Arguments that can be passed on register must be kept at RegsToPass
// vector
if (VA.isRegLoc()) {
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
} else {
assert(VA.isMemLoc());
if (StackPtr.getNode() == 0)
StackPtr =
DAG.getCopyFromReg(Chain, dl,
(TFI->hasFP(MF) ?
SystemZ::R11D : SystemZ::R15D),
getPointerTy());
unsigned Offset = FirstArgOffset + VA.getLocMemOffset();
SDValue PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(),
StackPtr,
DAG.getIntPtrConstant(Offset));
MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
MachinePointerInfo(),
false, false, 0));
}
}
// Transform all store nodes into one single node because all store nodes are
// independent of each other.
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
&MemOpChains[0], MemOpChains.size());
// Build a sequence of copy-to-reg nodes chained together with token chain and
// flag operands which copy the outgoing args into registers. The InFlag in
// necessary since all emitted instructions must be stuck together.
SDValue InFlag;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
RegsToPass[i].second, InFlag);
InFlag = Chain.getValue(1);
}
// If the callee is a GlobalAddress node (quite common, every direct call is)
// turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
// Likewise ExternalSymbol -> TargetExternalSymbol.
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy());
else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
Callee = DAG.getTargetExternalSymbol(E->getSymbol(), getPointerTy());
// Returns a chain & a flag for retval copy to use.
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
// Add argument registers to the end of the list so that they are
// known live into the call.
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
if (InFlag.getNode())
Ops.push_back(InFlag);
Chain = DAG.getNode(SystemZISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
InFlag = Chain.getValue(1);
// Create the CALLSEQ_END node.
Chain = DAG.getCALLSEQ_END(Chain,
DAG.getConstant(NumBytes, getPointerTy(), true),
DAG.getConstant(0, getPointerTy(), true),
InFlag);
InFlag = Chain.getValue(1);
// Handle result values, copying them out of physregs into vregs that we
// return.
return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl,
DAG, InVals);
}
/// LowerCallResult - Lower the result values of a call into the
/// appropriate copies out of appropriate physical registers.
///
SDValue
SystemZTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg>
&Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
getTargetMachine(), RVLocs, *DAG.getContext());
CCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign &VA = RVLocs[i];
Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
VA.getLocVT(), InFlag).getValue(1);
SDValue RetValue = Chain.getValue(0);
InFlag = Chain.getValue(2);
// If this is an 8/16/32-bit value, it is really passed promoted to 64
// bits. Insert an assert[sz]ext to capture this, then truncate to the
// right size.
if (VA.getLocInfo() == CCValAssign::SExt)
RetValue = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), RetValue,
DAG.getValueType(VA.getValVT()));
else if (VA.getLocInfo() == CCValAssign::ZExt)
RetValue = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), RetValue,
DAG.getValueType(VA.getValVT()));
if (VA.getLocInfo() != CCValAssign::Full)
RetValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), RetValue);
InVals.push_back(RetValue);
}
return Chain;
}
SDValue
SystemZTargetLowering::LowerReturn(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
DebugLoc dl, SelectionDAG &DAG) const {
// CCValAssign - represent the assignment of the return value to a location
SmallVector<CCValAssign, 16> RVLocs;
// CCState - Info about the registers and stack slot.
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
getTargetMachine(), RVLocs, *DAG.getContext());
// Analize return values.
CCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
// If this is the first return lowered for this function, add the regs to the
// liveout set for the function.
if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
for (unsigned i = 0; i != RVLocs.size(); ++i)
if (RVLocs[i].isRegLoc())
DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
}
SDValue Flag;
// Copy the result values into the output registers.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign &VA = RVLocs[i];
SDValue ResValue = OutVals[i];
assert(VA.isRegLoc() && "Can only return in registers!");
// If this is an 8/16/32-bit value, it is really should be passed promoted
// to 64 bits.
if (VA.getLocInfo() == CCValAssign::SExt)
ResValue = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ResValue);
else if (VA.getLocInfo() == CCValAssign::ZExt)
ResValue = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ResValue);
else if (VA.getLocInfo() == CCValAssign::AExt)
ResValue = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ResValue);
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ResValue, Flag);
// Guarantee that all emitted copies are stuck together,
// avoiding something bad.
Flag = Chain.getValue(1);
}
if (Flag.getNode())
return DAG.getNode(SystemZISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
// Return Void
return DAG.getNode(SystemZISD::RET_FLAG, dl, MVT::Other, Chain);
}
SDValue SystemZTargetLowering::EmitCmp(SDValue LHS, SDValue RHS,
ISD::CondCode CC, SDValue &SystemZCC,
SelectionDAG &DAG) const {
// FIXME: Emit a test if RHS is zero
bool isUnsigned = false;
SystemZCC::CondCodes TCC;
switch (CC) {
default:
llvm_unreachable("Invalid integer condition!");
case ISD::SETEQ:
case ISD::SETOEQ:
TCC = SystemZCC::E;
break;
case ISD::SETUEQ:
TCC = SystemZCC::NLH;
break;
case ISD::SETNE:
case ISD::SETONE:
TCC = SystemZCC::NE;
break;
case ISD::SETUNE:
TCC = SystemZCC::LH;
break;
case ISD::SETO:
TCC = SystemZCC::O;
break;
case ISD::SETUO:
TCC = SystemZCC::NO;
break;
case ISD::SETULE:
if (LHS.getValueType().isFloatingPoint()) {
TCC = SystemZCC::NH;
break;
}
isUnsigned = true; // FALLTHROUGH
case ISD::SETLE:
case ISD::SETOLE:
TCC = SystemZCC::LE;
break;
case ISD::SETUGE:
if (LHS.getValueType().isFloatingPoint()) {
TCC = SystemZCC::NL;
break;
}
isUnsigned = true; // FALLTHROUGH
case ISD::SETGE:
case ISD::SETOGE:
TCC = SystemZCC::HE;
break;
case ISD::SETUGT:
if (LHS.getValueType().isFloatingPoint()) {
TCC = SystemZCC::NLE;
break;
}
isUnsigned = true; // FALLTHROUGH
case ISD::SETGT:
case ISD::SETOGT:
TCC = SystemZCC::H;
break;
case ISD::SETULT:
if (LHS.getValueType().isFloatingPoint()) {
TCC = SystemZCC::NHE;
break;
}
isUnsigned = true; // FALLTHROUGH
case ISD::SETLT:
case ISD::SETOLT:
TCC = SystemZCC::L;
break;
}
SystemZCC = DAG.getConstant(TCC, MVT::i32);
DebugLoc dl = LHS.getDebugLoc();
return DAG.getNode((isUnsigned ? SystemZISD::UCMP : SystemZISD::CMP),
dl, MVT::i64, LHS, RHS);
}
SDValue SystemZTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
SDValue LHS = Op.getOperand(2);
SDValue RHS = Op.getOperand(3);
SDValue Dest = Op.getOperand(4);
DebugLoc dl = Op.getDebugLoc();
SDValue SystemZCC;
SDValue Flag = EmitCmp(LHS, RHS, CC, SystemZCC, DAG);
return DAG.getNode(SystemZISD::BRCOND, dl, Op.getValueType(),
Chain, Dest, SystemZCC, Flag);
}
SDValue SystemZTargetLowering::LowerSELECT_CC(SDValue Op,
SelectionDAG &DAG) const {
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDValue TrueV = Op.getOperand(2);
SDValue FalseV = Op.getOperand(3);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
DebugLoc dl = Op.getDebugLoc();
SDValue SystemZCC;
SDValue Flag = EmitCmp(LHS, RHS, CC, SystemZCC, DAG);
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
SmallVector<SDValue, 4> Ops;
Ops.push_back(TrueV);
Ops.push_back(FalseV);
Ops.push_back(SystemZCC);
Ops.push_back(Flag);
return DAG.getNode(SystemZISD::SELECT, dl, VTs, &Ops[0], Ops.size());
}
SDValue SystemZTargetLowering::LowerGlobalAddress(SDValue Op,
SelectionDAG &DAG) const {
DebugLoc dl = Op.getDebugLoc();
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
bool IsPic = getTargetMachine().getRelocationModel() == Reloc::PIC_;
bool ExtraLoadRequired =
Subtarget.GVRequiresExtraLoad(GV, getTargetMachine(), false);
SDValue Result;
if (!IsPic && !ExtraLoadRequired) {
Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
Offset = 0;
} else {
unsigned char OpFlags = 0;
if (ExtraLoadRequired)
OpFlags = SystemZII::MO_GOTENT;
Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
}
Result = DAG.getNode(SystemZISD::PCRelativeWrapper, dl,
getPointerTy(), Result);
if (ExtraLoadRequired)
Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
MachinePointerInfo::getGOT(), false, false, 0);
// If there was a non-zero offset that we didn't fold, create an explicit
// addition for it.
if (Offset != 0)
Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
DAG.getConstant(Offset, getPointerTy()));
return Result;
}
// FIXME: PIC here
SDValue SystemZTargetLowering::LowerJumpTable(SDValue Op,
SelectionDAG &DAG) const {
DebugLoc dl = Op.getDebugLoc();
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
return DAG.getNode(SystemZISD::PCRelativeWrapper, dl, getPointerTy(), Result);
}
// FIXME: PIC here
// FIXME: This is just dirty hack. We need to lower cpool properly
SDValue SystemZTargetLowering::LowerConstantPool(SDValue Op,
SelectionDAG &DAG) const {
DebugLoc dl = Op.getDebugLoc();
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
CP->getAlignment(),
CP->getOffset());
return DAG.getNode(SystemZISD::PCRelativeWrapper, dl, getPointerTy(), Result);
}
const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
switch (Opcode) {
case SystemZISD::RET_FLAG: return "SystemZISD::RET_FLAG";
case SystemZISD::CALL: return "SystemZISD::CALL";
case SystemZISD::BRCOND: return "SystemZISD::BRCOND";
case SystemZISD::CMP: return "SystemZISD::CMP";
case SystemZISD::UCMP: return "SystemZISD::UCMP";
case SystemZISD::SELECT: return "SystemZISD::SELECT";
case SystemZISD::PCRelativeWrapper: return "SystemZISD::PCRelativeWrapper";
default: return NULL;
}
}
//===----------------------------------------------------------------------===//
// Other Lowering Code
//===----------------------------------------------------------------------===//
MachineBasicBlock*
SystemZTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *BB) const {
const SystemZInstrInfo &TII = *TM.getInstrInfo();
DebugLoc dl = MI->getDebugLoc();
assert((MI->getOpcode() == SystemZ::Select32 ||
MI->getOpcode() == SystemZ::SelectF32 ||
MI->getOpcode() == SystemZ::Select64 ||
MI->getOpcode() == SystemZ::SelectF64) &&
"Unexpected instr type to insert");
// To "insert" a SELECT instruction, we actually have to insert the diamond
// control-flow pattern. The incoming instruction knows the destination vreg
// to set, the condition code register to branch on, the true/false values to
// select between, and a branch opcode to use.
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator I = BB;
++I;
// thisMBB:
// ...
// TrueVal = ...
// cmpTY ccX, r1, r2
// jCC copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *thisMBB = BB;
MachineFunction *F = BB->getParent();
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *copy1MBB = F->CreateMachineBasicBlock(LLVM_BB);
SystemZCC::CondCodes CC = (SystemZCC::CondCodes)MI->getOperand(3).getImm();
F->insert(I, copy0MBB);
F->insert(I, copy1MBB);
// Update machine-CFG edges by transferring all successors of the current
// block to the new block which will contain the Phi node for the select.
copy1MBB->splice(copy1MBB->begin(), BB,
llvm::next(MachineBasicBlock::iterator(MI)),
BB->end());
copy1MBB->transferSuccessorsAndUpdatePHIs(BB);
// Next, add the true and fallthrough blocks as its successors.
BB->addSuccessor(copy0MBB);
BB->addSuccessor(copy1MBB);
BuildMI(BB, dl, TII.getBrCond(CC)).addMBB(copy1MBB);
// copy0MBB:
// %FalseValue = ...
// # fallthrough to copy1MBB
BB = copy0MBB;
// Update machine-CFG edges
BB->addSuccessor(copy1MBB);
// copy1MBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
// ...
BB = copy1MBB;
BuildMI(*BB, BB->begin(), dl, TII.get(SystemZ::PHI),
MI->getOperand(0).getReg())
.addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB)
.addReg(MI->getOperand(1).getReg()).addMBB(thisMBB);
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}

View File

@ -1,145 +0,0 @@
//==-- SystemZISelLowering.h - SystemZ DAG Lowering Interface ----*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that SystemZ uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TARGET_SystemZ_ISELLOWERING_H
#define LLVM_TARGET_SystemZ_ISELLOWERING_H
#include "SystemZ.h"
#include "SystemZRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/Target/TargetLowering.h"
namespace llvm {
namespace SystemZISD {
enum {
FIRST_NUMBER = ISD::BUILTIN_OP_END,
/// Return with a flag operand. Operand 0 is the chain operand.
RET_FLAG,
/// CALL - These operations represent an abstract call
/// instruction, which includes a bunch of information.
CALL,
/// PCRelativeWrapper - PC relative address
PCRelativeWrapper,
/// CMP, UCMP - Compare instruction
CMP,
UCMP,
/// BRCOND - Conditional branch. Operand 0 is chain operand, operand 1 is
/// the block to branch if condition is true, operand 2 is condition code
/// and operand 3 is the flag operand produced by a CMP instruction.
BRCOND,
/// SELECT - Operands 0 and 1 are selection variables, operand 2 is
/// condition code and operand 3 is the flag operand.
SELECT
};
}
class SystemZSubtarget;
class SystemZTargetMachine;
class SystemZTargetLowering : public TargetLowering {
public:
explicit SystemZTargetLowering(SystemZTargetMachine &TM);
virtual MVT getShiftAmountTy(EVT LHSTy) const { return MVT::i64; }
/// LowerOperation - Provide custom lowering hooks for some operations.
virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
/// getTargetNodeName - This method returns the name of a target specific
/// DAG node.
virtual const char *getTargetNodeName(unsigned Opcode) const;
std::pair<unsigned, const TargetRegisterClass*>
getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const;
TargetLowering::ConstraintType
getConstraintType(const std::string &Constraint) const;
SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
SDValue EmitCmp(SDValue LHS, SDValue RHS,
ISD::CondCode CC, SDValue &SystemZCC,
SelectionDAG &DAG) const;
MachineBasicBlock* EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *BB) const;
/// isFPImmLegal - Returns true if the target can instruction select the
/// specified FP immediate natively. If false, the legalizer will
/// materialize the FP immediate as a load from a constant pool.
virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const;
private:
SDValue LowerCCCCallTo(SDValue Chain, SDValue Callee,
CallingConv::ID CallConv, bool isVarArg,
bool isTailCall,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const;
SDValue LowerCCCArguments(SDValue Chain,
CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl,
SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const;
SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const;
virtual SDValue
LowerFormalArguments(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const;
virtual SDValue
LowerCall(SDValue Chain, SDValue Callee,
CallingConv::ID CallConv, bool isVarArg, bool &isTailCall,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const;
virtual SDValue
LowerReturn(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
DebugLoc dl, SelectionDAG &DAG) const;
const SystemZSubtarget &Subtarget;
const SystemZTargetMachine &TM;
const SystemZRegisterInfo *RegInfo;
};
} // namespace llvm
#endif // LLVM_TARGET_SystemZ_ISELLOWERING_H

View File

@ -1,128 +0,0 @@
//===- SystemZInstrBuilder.h - Functions to aid building insts -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file exposes functions that may be used with BuildMI from the
// MachineInstrBuilder.h file to handle SystemZ'isms in a clean way.
//
// The BuildMem function may be used with the BuildMI function to add entire
// memory references in a single, typed, function call.
//
// For reference, the order of operands for memory references is:
// (Operand), Base, Displacement, Index.
//
//===----------------------------------------------------------------------===//
#ifndef SYSTEMZINSTRBUILDER_H
#define SYSTEMZINSTRBUILDER_H
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
namespace llvm {
/// SystemZAddressMode - This struct holds a generalized full x86 address mode.
/// The base register can be a frame index, which will eventually be replaced
/// with R15 or R11 and Disp being offsetted accordingly.
struct SystemZAddressMode {
enum {
RegBase,
FrameIndexBase
} BaseType;
union {
unsigned Reg;
int FrameIndex;
} Base;
unsigned IndexReg;
int32_t Disp;
const GlobalValue *GV;
SystemZAddressMode() : BaseType(RegBase), IndexReg(0), Disp(0) {
Base.Reg = 0;
}
};
/// addDirectMem - This function is used to add a direct memory reference to the
/// current instruction -- that is, a dereference of an address in a register,
/// with no index or displacement.
///
static inline const MachineInstrBuilder &
addDirectMem(const MachineInstrBuilder &MIB, unsigned Reg) {
// Because memory references are always represented with 3
// values, this adds: Reg, [0, NoReg] to the instruction.
return MIB.addReg(Reg).addImm(0).addReg(0);
}
static inline const MachineInstrBuilder &
addOffset(const MachineInstrBuilder &MIB, int Offset) {
return MIB.addImm(Offset).addReg(0);
}
/// addRegOffset - This function is used to add a memory reference of the form
/// [Reg + Offset], i.e., one with no or index, but with a
/// displacement. An example is: 10(%r15).
///
static inline const MachineInstrBuilder &
addRegOffset(const MachineInstrBuilder &MIB,
unsigned Reg, bool isKill, int Offset) {
return addOffset(MIB.addReg(Reg, getKillRegState(isKill)), Offset);
}
/// addRegReg - This function is used to add a memory reference of the form:
/// [Reg + Reg].
static inline const MachineInstrBuilder &
addRegReg(const MachineInstrBuilder &MIB,
unsigned Reg1, bool isKill1, unsigned Reg2, bool isKill2) {
return MIB.addReg(Reg1, getKillRegState(isKill1)).addImm(0)
.addReg(Reg2, getKillRegState(isKill2));
}
static inline const MachineInstrBuilder &
addFullAddress(const MachineInstrBuilder &MIB, const SystemZAddressMode &AM) {
if (AM.BaseType == SystemZAddressMode::RegBase)
MIB.addReg(AM.Base.Reg);
else if (AM.BaseType == SystemZAddressMode::FrameIndexBase)
MIB.addFrameIndex(AM.Base.FrameIndex);
else
assert(0);
return MIB.addImm(AM.Disp).addReg(AM.IndexReg);
}
/// addFrameReference - This function is used to add a reference to the base of
/// an abstract object on the stack frame of the current function. This
/// reference has base register as the FrameIndex offset until it is resolved.
/// This allows a constant offset to be specified as well...
///
static inline const MachineInstrBuilder &
addFrameReference(const MachineInstrBuilder &MIB, int FI, int Offset = 0) {
MachineInstr *MI = MIB;
MachineFunction &MF = *MI->getParent()->getParent();
MachineFrameInfo &MFI = *MF.getFrameInfo();
const MCInstrDesc &MCID = MI->getDesc();
unsigned Flags = 0;
if (MCID.mayLoad())
Flags |= MachineMemOperand::MOLoad;
if (MCID.mayStore())
Flags |= MachineMemOperand::MOStore;
MachineMemOperand *MMO =
MF.getMachineMemOperand(MachinePointerInfo(
PseudoSourceValue::getFixedStack(FI), Offset),
Flags, MFI.getObjectSize(FI),
MFI.getObjectAlignment(FI));
return addOffset(MIB.addFrameIndex(FI), Offset)
.addMemOperand(MMO);
}
} // End llvm namespace
#endif

View File

@ -1,340 +0,0 @@
//===- SystemZInstrFP.td - SystemZ FP Instruction defs --------*- tblgen-*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the SystemZ (binary) floating point instructions in
// TableGen format.
//
//===----------------------------------------------------------------------===//
// FIXME: multiclassify!
//===----------------------------------------------------------------------===//
// FP Pattern fragments
def fpimm0 : PatLeaf<(fpimm), [{
return N->isExactlyValue(+0.0);
}]>;
def fpimmneg0 : PatLeaf<(fpimm), [{
return N->isExactlyValue(-0.0);
}]>;
let Uses = [PSW], usesCustomInserter = 1 in {
def SelectF32 : Pseudo<(outs FP32:$dst), (ins FP32:$src1, FP32:$src2, i8imm:$cc),
"# SelectF32 PSEUDO",
[(set FP32:$dst,
(SystemZselect FP32:$src1, FP32:$src2, imm:$cc, PSW))]>;
def SelectF64 : Pseudo<(outs FP64:$dst), (ins FP64:$src1, FP64:$src2, i8imm:$cc),
"# SelectF64 PSEUDO",
[(set FP64:$dst,
(SystemZselect FP64:$src1, FP64:$src2, imm:$cc, PSW))]>;
}
//===----------------------------------------------------------------------===//
// Move Instructions
// Floating point constant loads.
let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
def LD_Fp032 : Pseudo<(outs FP32:$dst), (ins),
"lzer\t{$dst}",
[(set FP32:$dst, fpimm0)]>;
def LD_Fp064 : Pseudo<(outs FP64:$dst), (ins),
"lzdr\t{$dst}",
[(set FP64:$dst, fpimm0)]>;
}
let neverHasSideEffects = 1 in {
def FMOV32rr : Pseudo<(outs FP32:$dst), (ins FP32:$src),
"ler\t{$dst, $src}",
[]>;
def FMOV64rr : Pseudo<(outs FP64:$dst), (ins FP64:$src),
"ldr\t{$dst, $src}",
[]>;
}
let canFoldAsLoad = 1, isReMaterializable = 1 in {
def FMOV32rm : Pseudo<(outs FP32:$dst), (ins rriaddr12:$src),
"le\t{$dst, $src}",
[(set FP32:$dst, (load rriaddr12:$src))]>;
def FMOV32rmy : Pseudo<(outs FP32:$dst), (ins rriaddr:$src),
"ley\t{$dst, $src}",
[(set FP32:$dst, (load rriaddr:$src))]>;
def FMOV64rm : Pseudo<(outs FP64:$dst), (ins rriaddr12:$src),
"ld\t{$dst, $src}",
[(set FP64:$dst, (load rriaddr12:$src))]>;
def FMOV64rmy : Pseudo<(outs FP64:$dst), (ins rriaddr:$src),
"ldy\t{$dst, $src}",
[(set FP64:$dst, (load rriaddr:$src))]>;
}
def FMOV32mr : Pseudo<(outs), (ins rriaddr12:$dst, FP32:$src),
"ste\t{$src, $dst}",
[(store FP32:$src, rriaddr12:$dst)]>;
def FMOV32mry : Pseudo<(outs), (ins rriaddr:$dst, FP32:$src),
"stey\t{$src, $dst}",
[(store FP32:$src, rriaddr:$dst)]>;
def FMOV64mr : Pseudo<(outs), (ins rriaddr12:$dst, FP64:$src),
"std\t{$src, $dst}",
[(store FP64:$src, rriaddr12:$dst)]>;
def FMOV64mry : Pseudo<(outs), (ins rriaddr:$dst, FP64:$src),
"stdy\t{$src, $dst}",
[(store FP64:$src, rriaddr:$dst)]>;
def FCOPYSIGN32 : Pseudo<(outs FP32:$dst), (ins FP32:$src1, FP32:$src2),
"cpsdr\t{$dst, $src2, $src1}",
[(set FP32:$dst, (fcopysign FP32:$src1, FP32:$src2))]>;
def FCOPYSIGN64 : Pseudo<(outs FP64:$dst), (ins FP64:$src1, FP64:$src2),
"cpsdr\t{$dst, $src2, $src1}",
[(set FP64:$dst, (fcopysign FP64:$src1, FP64:$src2))]>;
//===----------------------------------------------------------------------===//
// Arithmetic Instructions
let Defs = [PSW] in {
def FNEG32rr : Pseudo<(outs FP32:$dst), (ins FP32:$src),
"lcebr\t{$dst, $src}",
[(set FP32:$dst, (fneg FP32:$src)),
(implicit PSW)]>;
def FNEG64rr : Pseudo<(outs FP64:$dst), (ins FP64:$src),
"lcdbr\t{$dst, $src}",
[(set FP64:$dst, (fneg FP64:$src)),
(implicit PSW)]>;
def FABS32rr : Pseudo<(outs FP32:$dst), (ins FP32:$src),
"lpebr\t{$dst, $src}",
[(set FP32:$dst, (fabs FP32:$src)),
(implicit PSW)]>;
def FABS64rr : Pseudo<(outs FP64:$dst), (ins FP64:$src),
"lpdbr\t{$dst, $src}",
[(set FP64:$dst, (fabs FP64:$src)),
(implicit PSW)]>;
def FNABS32rr : Pseudo<(outs FP32:$dst), (ins FP32:$src),
"lnebr\t{$dst, $src}",
[(set FP32:$dst, (fneg(fabs FP32:$src))),
(implicit PSW)]>;
def FNABS64rr : Pseudo<(outs FP64:$dst), (ins FP64:$src),
"lndbr\t{$dst, $src}",
[(set FP64:$dst, (fneg(fabs FP64:$src))),
(implicit PSW)]>;
}
let Constraints = "$src1 = $dst" in {
let Defs = [PSW] in {
let isCommutable = 1 in { // X = ADD Y, Z == X = ADD Z, Y
def FADD32rr : Pseudo<(outs FP32:$dst), (ins FP32:$src1, FP32:$src2),
"aebr\t{$dst, $src2}",
[(set FP32:$dst, (fadd FP32:$src1, FP32:$src2)),
(implicit PSW)]>;
def FADD64rr : Pseudo<(outs FP64:$dst), (ins FP64:$src1, FP64:$src2),
"adbr\t{$dst, $src2}",
[(set FP64:$dst, (fadd FP64:$src1, FP64:$src2)),
(implicit PSW)]>;
}
def FADD32rm : Pseudo<(outs FP32:$dst), (ins FP32:$src1, rriaddr12:$src2),
"aeb\t{$dst, $src2}",
[(set FP32:$dst, (fadd FP32:$src1, (load rriaddr12:$src2))),
(implicit PSW)]>;
def FADD64rm : Pseudo<(outs FP64:$dst), (ins FP64:$src1, rriaddr12:$src2),
"adb\t{$dst, $src2}",
[(set FP64:$dst, (fadd FP64:$src1, (load rriaddr12:$src2))),
(implicit PSW)]>;
def FSUB32rr : Pseudo<(outs FP32:$dst), (ins FP32:$src1, FP32:$src2),
"sebr\t{$dst, $src2}",
[(set FP32:$dst, (fsub FP32:$src1, FP32:$src2)),
(implicit PSW)]>;
def FSUB64rr : Pseudo<(outs FP64:$dst), (ins FP64:$src1, FP64:$src2),
"sdbr\t{$dst, $src2}",
[(set FP64:$dst, (fsub FP64:$src1, FP64:$src2)),
(implicit PSW)]>;
def FSUB32rm : Pseudo<(outs FP32:$dst), (ins FP32:$src1, rriaddr12:$src2),
"seb\t{$dst, $src2}",
[(set FP32:$dst, (fsub FP32:$src1, (load rriaddr12:$src2))),
(implicit PSW)]>;
def FSUB64rm : Pseudo<(outs FP64:$dst), (ins FP64:$src1, rriaddr12:$src2),
"sdb\t{$dst, $src2}",
[(set FP64:$dst, (fsub FP64:$src1, (load rriaddr12:$src2))),
(implicit PSW)]>;
} // Defs = [PSW]
let isCommutable = 1 in { // X = MUL Y, Z == X = MUL Z, Y
def FMUL32rr : Pseudo<(outs FP32:$dst), (ins FP32:$src1, FP32:$src2),
"meebr\t{$dst, $src2}",
[(set FP32:$dst, (fmul FP32:$src1, FP32:$src2))]>;
def FMUL64rr : Pseudo<(outs FP64:$dst), (ins FP64:$src1, FP64:$src2),
"mdbr\t{$dst, $src2}",
[(set FP64:$dst, (fmul FP64:$src1, FP64:$src2))]>;
}
def FMUL32rm : Pseudo<(outs FP32:$dst), (ins FP32:$src1, rriaddr12:$src2),
"meeb\t{$dst, $src2}",
[(set FP32:$dst, (fmul FP32:$src1, (load rriaddr12:$src2)))]>;
def FMUL64rm : Pseudo<(outs FP64:$dst), (ins FP64:$src1, rriaddr12:$src2),
"mdb\t{$dst, $src2}",
[(set FP64:$dst, (fmul FP64:$src1, (load rriaddr12:$src2)))]>;
def FMADD32rr : Pseudo<(outs FP32:$dst), (ins FP32:$src1, FP32:$src2, FP32:$src3),
"maebr\t{$dst, $src3, $src2}",
[(set FP32:$dst, (fadd (fmul FP32:$src2, FP32:$src3),
FP32:$src1))]>;
def FMADD32rm : Pseudo<(outs FP32:$dst), (ins FP32:$src1, rriaddr12:$src2, FP32:$src3),
"maeb\t{$dst, $src3, $src2}",
[(set FP32:$dst, (fadd (fmul (load rriaddr12:$src2),
FP32:$src3),
FP32:$src1))]>;
def FMADD64rr : Pseudo<(outs FP64:$dst), (ins FP64:$src1, FP64:$src2, FP64:$src3),
"madbr\t{$dst, $src3, $src2}",
[(set FP64:$dst, (fadd (fmul FP64:$src2, FP64:$src3),
FP64:$src1))]>;
def FMADD64rm : Pseudo<(outs FP64:$dst), (ins FP64:$src1, rriaddr12:$src2, FP64:$src3),
"madb\t{$dst, $src3, $src2}",
[(set FP64:$dst, (fadd (fmul (load rriaddr12:$src2),
FP64:$src3),
FP64:$src1))]>;
def FMSUB32rr : Pseudo<(outs FP32:$dst), (ins FP32:$src1, FP32:$src2, FP32:$src3),
"msebr\t{$dst, $src3, $src2}",
[(set FP32:$dst, (fsub (fmul FP32:$src2, FP32:$src3),
FP32:$src1))]>;
def FMSUB32rm : Pseudo<(outs FP32:$dst), (ins FP32:$src1, rriaddr12:$src2, FP32:$src3),
"mseb\t{$dst, $src3, $src2}",
[(set FP32:$dst, (fsub (fmul (load rriaddr12:$src2),
FP32:$src3),
FP32:$src1))]>;
def FMSUB64rr : Pseudo<(outs FP64:$dst), (ins FP64:$src1, FP64:$src2, FP64:$src3),
"msdbr\t{$dst, $src3, $src2}",
[(set FP64:$dst, (fsub (fmul FP64:$src2, FP64:$src3),
FP64:$src1))]>;
def FMSUB64rm : Pseudo<(outs FP64:$dst), (ins FP64:$src1, rriaddr12:$src2, FP64:$src3),
"msdb\t{$dst, $src3, $src2}",
[(set FP64:$dst, (fsub (fmul (load rriaddr12:$src2),
FP64:$src3),
FP64:$src1))]>;
def FDIV32rr : Pseudo<(outs FP32:$dst), (ins FP32:$src1, FP32:$src2),
"debr\t{$dst, $src2}",
[(set FP32:$dst, (fdiv FP32:$src1, FP32:$src2))]>;
def FDIV64rr : Pseudo<(outs FP64:$dst), (ins FP64:$src1, FP64:$src2),
"ddbr\t{$dst, $src2}",
[(set FP64:$dst, (fdiv FP64:$src1, FP64:$src2))]>;
def FDIV32rm : Pseudo<(outs FP32:$dst), (ins FP32:$src1, rriaddr12:$src2),
"deb\t{$dst, $src2}",
[(set FP32:$dst, (fdiv FP32:$src1, (load rriaddr12:$src2)))]>;
def FDIV64rm : Pseudo<(outs FP64:$dst), (ins FP64:$src1, rriaddr12:$src2),
"ddb\t{$dst, $src2}",
[(set FP64:$dst, (fdiv FP64:$src1, (load rriaddr12:$src2)))]>;
} // Constraints = "$src1 = $dst"
def FSQRT32rr : Pseudo<(outs FP32:$dst), (ins FP32:$src),
"sqebr\t{$dst, $src}",
[(set FP32:$dst, (fsqrt FP32:$src))]>;
def FSQRT64rr : Pseudo<(outs FP64:$dst), (ins FP64:$src),
"sqdbr\t{$dst, $src}",
[(set FP64:$dst, (fsqrt FP64:$src))]>;
def FSQRT32rm : Pseudo<(outs FP32:$dst), (ins rriaddr12:$src),
"sqeb\t{$dst, $src}",
[(set FP32:$dst, (fsqrt (load rriaddr12:$src)))]>;
def FSQRT64rm : Pseudo<(outs FP64:$dst), (ins rriaddr12:$src),
"sqdb\t{$dst, $src}",
[(set FP64:$dst, (fsqrt (load rriaddr12:$src)))]>;
def FROUND64r32 : Pseudo<(outs FP32:$dst), (ins FP64:$src),
"ledbr\t{$dst, $src}",
[(set FP32:$dst, (fround FP64:$src))]>;
def FEXT32r64 : Pseudo<(outs FP64:$dst), (ins FP32:$src),
"ldebr\t{$dst, $src}",
[(set FP64:$dst, (fextend FP32:$src))]>;
def FEXT32m64 : Pseudo<(outs FP64:$dst), (ins rriaddr12:$src),
"ldeb\t{$dst, $src}",
[(set FP64:$dst, (fextend (load rriaddr12:$src)))]>;
let Defs = [PSW] in {
def FCONVFP32 : Pseudo<(outs FP32:$dst), (ins GR32:$src),
"cefbr\t{$dst, $src}",
[(set FP32:$dst, (sint_to_fp GR32:$src)),
(implicit PSW)]>;
def FCONVFP32r64: Pseudo<(outs FP32:$dst), (ins GR64:$src),
"cegbr\t{$dst, $src}",
[(set FP32:$dst, (sint_to_fp GR64:$src)),
(implicit PSW)]>;
def FCONVFP64r32: Pseudo<(outs FP64:$dst), (ins GR32:$src),
"cdfbr\t{$dst, $src}",
[(set FP64:$dst, (sint_to_fp GR32:$src)),
(implicit PSW)]>;
def FCONVFP64 : Pseudo<(outs FP64:$dst), (ins GR64:$src),
"cdgbr\t{$dst, $src}",
[(set FP64:$dst, (sint_to_fp GR64:$src)),
(implicit PSW)]>;
def FCONVGR32 : Pseudo<(outs GR32:$dst), (ins FP32:$src),
"cfebr\t{$dst, 5, $src}",
[(set GR32:$dst, (fp_to_sint FP32:$src)),
(implicit PSW)]>;
def FCONVGR32r64: Pseudo<(outs GR32:$dst), (ins FP64:$src),
"cfdbr\t{$dst, 5, $src}",
[(set GR32:$dst, (fp_to_sint FP64:$src)),
(implicit PSW)]>;
def FCONVGR64r32: Pseudo<(outs GR64:$dst), (ins FP32:$src),
"cgebr\t{$dst, 5, $src}",
[(set GR64:$dst, (fp_to_sint FP32:$src)),
(implicit PSW)]>;
def FCONVGR64 : Pseudo<(outs GR64:$dst), (ins FP64:$src),
"cgdbr\t{$dst, 5, $src}",
[(set GR64:$dst, (fp_to_sint FP64:$src)),
(implicit PSW)]>;
} // Defs = [PSW]
def FBCONVG64 : Pseudo<(outs GR64:$dst), (ins FP64:$src),
"lgdr\t{$dst, $src}",
[(set GR64:$dst, (bitconvert FP64:$src))]>;
def FBCONVF64 : Pseudo<(outs FP64:$dst), (ins GR64:$src),
"ldgr\t{$dst, $src}",
[(set FP64:$dst, (bitconvert GR64:$src))]>;
//===----------------------------------------------------------------------===//
// Test instructions (like AND but do not produce any result)
// Integer comparisons
let Defs = [PSW] in {
def FCMP32rr : Pseudo<(outs), (ins FP32:$src1, FP32:$src2),
"cebr\t$src1, $src2",
[(set PSW, (SystemZcmp FP32:$src1, FP32:$src2))]>;
def FCMP64rr : Pseudo<(outs), (ins FP64:$src1, FP64:$src2),
"cdbr\t$src1, $src2",
[(set PSW, (SystemZcmp FP64:$src1, FP64:$src2))]>;
def FCMP32rm : Pseudo<(outs), (ins FP32:$src1, rriaddr12:$src2),
"ceb\t$src1, $src2",
[(set PSW, (SystemZcmp FP32:$src1,
(load rriaddr12:$src2)))]>;
def FCMP64rm : Pseudo<(outs), (ins FP64:$src1, rriaddr12:$src2),
"cdb\t$src1, $src2",
[(set PSW, (SystemZcmp FP64:$src1,
(load rriaddr12:$src2)))]>;
} // Defs = [PSW]
//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
//===----------------------------------------------------------------------===//
// Floating point constant -0.0
def : Pat<(f32 fpimmneg0), (FNEG32rr (LD_Fp032))>;
def : Pat<(f64 fpimmneg0), (FNEG64rr (LD_Fp064))>;

View File

@ -1,133 +0,0 @@
//===- SystemZInstrFormats.td - SystemZ Instruction Formats ----*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// Format specifies the encoding used by the instruction. This is part of the
// ad-hoc solution used to emit machine instruction encodings by our machine
// code emitter.
class Format<bits<5> val> {
bits<5> Value = val;
}
def Pseudo : Format<0>;
def EForm : Format<1>;
def IForm : Format<2>;
def RIForm : Format<3>;
def RIEForm : Format<4>;
def RILForm : Format<5>;
def RISForm : Format<6>;
def RRForm : Format<7>;
def RREForm : Format<8>;
def RRFForm : Format<9>;
def RRRForm : Format<10>;
def RRSForm : Format<11>;
def RSForm : Format<12>;
def RSIForm : Format<13>;
def RSILForm : Format<14>;
def RSYForm : Format<15>;
def RXForm : Format<16>;
def RXEForm : Format<17>;
def RXFForm : Format<18>;
def RXYForm : Format<19>;
def SForm : Format<20>;
def SIForm : Format<21>;
def SILForm : Format<22>;
def SIYForm : Format<23>;
def SSForm : Format<24>;
def SSEForm : Format<25>;
def SSFForm : Format<26>;
class InstSystemZ<bits<16> op, Format f, dag outs, dag ins> : Instruction {
let Namespace = "SystemZ";
bits<16> Opcode = op;
Format Form = f;
bits<5> FormBits = Form.Value;
dag OutOperandList = outs;
dag InOperandList = ins;
}
class I8<bits<8> op, Format f, dag outs, dag ins, string asmstr,
list<dag> pattern>
: InstSystemZ<0, f, outs, ins> {
let Opcode{0-7} = op;
let Opcode{8-15} = 0;
let Pattern = pattern;
let AsmString = asmstr;
}
class I12<bits<12> op, Format f, dag outs, dag ins, string asmstr,
list<dag> pattern>
: InstSystemZ<0, f, outs, ins> {
let Opcode{0-11} = op;
let Opcode{12-15} = 0;
let Pattern = pattern;
let AsmString = asmstr;
}
class I16<bits<16> op, Format f, dag outs, dag ins, string asmstr,
list<dag> pattern>
: InstSystemZ<op, f, outs, ins> {
let Pattern = pattern;
let AsmString = asmstr;
}
class RRI<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: I8<op, RRForm, outs, ins, asmstr, pattern>;
class RII<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: I12<op, RIForm, outs, ins, asmstr, pattern>;
class RILI<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: I12<op, RILForm, outs, ins, asmstr, pattern>;
class RREI<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: I16<op, RREForm, outs, ins, asmstr, pattern>;
class RXI<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: I8<op, RXForm, outs, ins, asmstr, pattern> {
let AddedComplexity = 1;
}
class RXYI<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: I16<op, RXYForm, outs, ins, asmstr, pattern>;
class RSI<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: I8<op, RSForm, outs, ins, asmstr, pattern> {
let AddedComplexity = 1;
}
class RSYI<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: I16<op, RSYForm, outs, ins, asmstr, pattern>;
class SII<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: I8<op, SIForm, outs, ins, asmstr, pattern> {
let AddedComplexity = 1;
}
class SIYI<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: I16<op, SIYForm, outs, ins, asmstr, pattern>;
class SILI<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: I16<op, SILForm, outs, ins, asmstr, pattern>;
//===----------------------------------------------------------------------===//
// Pseudo instructions
//===----------------------------------------------------------------------===//
class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<0, Pseudo, outs, ins> {
let Pattern = pattern;
let AsmString = asmstr;
}

View File

@ -1,439 +0,0 @@
//===- SystemZInstrInfo.cpp - SystemZ Instruction Information --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the SystemZ implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
#include "SystemZ.h"
#include "SystemZInstrBuilder.h"
#include "SystemZInstrInfo.h"
#include "SystemZMachineFunctionInfo.h"
#include "SystemZTargetMachine.h"
#include "llvm/Function.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"
#define GET_INSTRINFO_CTOR
#include "SystemZGenInstrInfo.inc"
using namespace llvm;
SystemZInstrInfo::SystemZInstrInfo(SystemZTargetMachine &tm)
: SystemZGenInstrInfo(SystemZ::ADJCALLSTACKUP, SystemZ::ADJCALLSTACKDOWN),
RI(tm, *this), TM(tm) {
}
/// isGVStub - Return true if the GV requires an extra load to get the
/// real address.
static inline bool isGVStub(GlobalValue *GV, SystemZTargetMachine &TM) {
return TM.getSubtarget<SystemZSubtarget>().GVRequiresExtraLoad(GV, TM, false);
}
void SystemZInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned SrcReg, bool isKill, int FrameIdx,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
DebugLoc DL;
if (MI != MBB.end()) DL = MI->getDebugLoc();
unsigned Opc = 0;
if (RC == &SystemZ::GR32RegClass ||
RC == &SystemZ::ADDR32RegClass)
Opc = SystemZ::MOV32mr;
else if (RC == &SystemZ::GR64RegClass ||
RC == &SystemZ::ADDR64RegClass) {
Opc = SystemZ::MOV64mr;
} else if (RC == &SystemZ::FP32RegClass) {
Opc = SystemZ::FMOV32mr;
} else if (RC == &SystemZ::FP64RegClass) {
Opc = SystemZ::FMOV64mr;
} else if (RC == &SystemZ::GR64PRegClass) {
Opc = SystemZ::MOV64Pmr;
} else if (RC == &SystemZ::GR128RegClass) {
Opc = SystemZ::MOV128mr;
} else
llvm_unreachable("Unsupported regclass to store");
addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
.addReg(SrcReg, getKillRegState(isKill));
}
void SystemZInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned DestReg, int FrameIdx,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const{
DebugLoc DL;
if (MI != MBB.end()) DL = MI->getDebugLoc();
unsigned Opc = 0;
if (RC == &SystemZ::GR32RegClass ||
RC == &SystemZ::ADDR32RegClass)
Opc = SystemZ::MOV32rm;
else if (RC == &SystemZ::GR64RegClass ||
RC == &SystemZ::ADDR64RegClass) {
Opc = SystemZ::MOV64rm;
} else if (RC == &SystemZ::FP32RegClass) {
Opc = SystemZ::FMOV32rm;
} else if (RC == &SystemZ::FP64RegClass) {
Opc = SystemZ::FMOV64rm;
} else if (RC == &SystemZ::GR64PRegClass) {
Opc = SystemZ::MOV64Prm;
} else if (RC == &SystemZ::GR128RegClass) {
Opc = SystemZ::MOV128rm;
} else
llvm_unreachable("Unsupported regclass to load");
addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
}
void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I, DebugLoc DL,
unsigned DestReg, unsigned SrcReg,
bool KillSrc) const {
unsigned Opc;
if (SystemZ::GR64RegClass.contains(DestReg, SrcReg))
Opc = SystemZ::MOV64rr;
else if (SystemZ::GR32RegClass.contains(DestReg, SrcReg))
Opc = SystemZ::MOV32rr;
else if (SystemZ::GR64PRegClass.contains(DestReg, SrcReg))
Opc = SystemZ::MOV64rrP;
else if (SystemZ::GR128RegClass.contains(DestReg, SrcReg))
Opc = SystemZ::MOV128rr;
else if (SystemZ::FP32RegClass.contains(DestReg, SrcReg))
Opc = SystemZ::FMOV32rr;
else if (SystemZ::FP64RegClass.contains(DestReg, SrcReg))
Opc = SystemZ::FMOV64rr;
else
llvm_unreachable("Impossible reg-to-reg copy");
BuildMI(MBB, I, DL, get(Opc), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
}
unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
int &FrameIndex) const {
switch (MI->getOpcode()) {
default: break;
case SystemZ::MOV32rm:
case SystemZ::MOV32rmy:
case SystemZ::MOV64rm:
case SystemZ::MOVSX32rm8:
case SystemZ::MOVSX32rm16y:
case SystemZ::MOVSX64rm8:
case SystemZ::MOVSX64rm16:
case SystemZ::MOVSX64rm32:
case SystemZ::MOVZX32rm8:
case SystemZ::MOVZX32rm16:
case SystemZ::MOVZX64rm8:
case SystemZ::MOVZX64rm16:
case SystemZ::MOVZX64rm32:
case SystemZ::FMOV32rm:
case SystemZ::FMOV32rmy:
case SystemZ::FMOV64rm:
case SystemZ::FMOV64rmy:
case SystemZ::MOV64Prm:
case SystemZ::MOV64Prmy:
case SystemZ::MOV128rm:
if (MI->getOperand(1).isFI() &&
MI->getOperand(2).isImm() && MI->getOperand(3).isReg() &&
MI->getOperand(2).getImm() == 0 && MI->getOperand(3).getReg() == 0) {
FrameIndex = MI->getOperand(1).getIndex();
return MI->getOperand(0).getReg();
}
break;
}
return 0;
}
unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
int &FrameIndex) const {
switch (MI->getOpcode()) {
default: break;
case SystemZ::MOV32mr:
case SystemZ::MOV32mry:
case SystemZ::MOV64mr:
case SystemZ::MOV32m8r:
case SystemZ::MOV32m8ry:
case SystemZ::MOV32m16r:
case SystemZ::MOV32m16ry:
case SystemZ::MOV64m8r:
case SystemZ::MOV64m8ry:
case SystemZ::MOV64m16r:
case SystemZ::MOV64m16ry:
case SystemZ::MOV64m32r:
case SystemZ::MOV64m32ry:
case SystemZ::FMOV32mr:
case SystemZ::FMOV32mry:
case SystemZ::FMOV64mr:
case SystemZ::FMOV64mry:
case SystemZ::MOV64Pmr:
case SystemZ::MOV64Pmry:
case SystemZ::MOV128mr:
if (MI->getOperand(0).isFI() &&
MI->getOperand(1).isImm() && MI->getOperand(2).isReg() &&
MI->getOperand(1).getImm() == 0 && MI->getOperand(2).getReg() == 0) {
FrameIndex = MI->getOperand(0).getIndex();
return MI->getOperand(3).getReg();
}
break;
}
return 0;
}
bool SystemZInstrInfo::
ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
assert(Cond.size() == 1 && "Invalid Xbranch condition!");
SystemZCC::CondCodes CC = static_cast<SystemZCC::CondCodes>(Cond[0].getImm());
Cond[0].setImm(getOppositeCondition(CC));
return false;
}
bool SystemZInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
const MCInstrDesc &MCID = MI->getDesc();
if (!MCID.isTerminator()) return false;
// Conditional branch is a special case.
if (MCID.isBranch() && !MCID.isBarrier())
return true;
if (!MCID.isPredicable())
return true;
return !isPredicated(MI);
}
bool SystemZInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
bool AllowModify) const {
// Start from the bottom of the block and work up, examining the
// terminator instructions.
MachineBasicBlock::iterator I = MBB.end();
while (I != MBB.begin()) {
--I;
if (I->isDebugValue())
continue;
// Working from the bottom, when we see a non-terminator
// instruction, we're done.
if (!isUnpredicatedTerminator(I))
break;
// A terminator that isn't a branch can't easily be handled
// by this analysis.
if (!I->getDesc().isBranch())
return true;
// Handle unconditional branches.
if (I->getOpcode() == SystemZ::JMP) {
if (!AllowModify) {
TBB = I->getOperand(0).getMBB();
continue;
}
// If the block has any instructions after a JMP, delete them.
while (llvm::next(I) != MBB.end())
llvm::next(I)->eraseFromParent();
Cond.clear();
FBB = 0;
// Delete the JMP if it's equivalent to a fall-through.
if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
TBB = 0;
I->eraseFromParent();
I = MBB.end();
continue;
}
// TBB is used to indicate the unconditinal destination.
TBB = I->getOperand(0).getMBB();
continue;
}
// Handle conditional branches.
SystemZCC::CondCodes BranchCode = getCondFromBranchOpc(I->getOpcode());
if (BranchCode == SystemZCC::INVALID)
return true; // Can't handle indirect branch.
// Working from the bottom, handle the first conditional branch.
if (Cond.empty()) {
FBB = TBB;
TBB = I->getOperand(0).getMBB();
Cond.push_back(MachineOperand::CreateImm(BranchCode));
continue;
}
// Handle subsequent conditional branches. Only handle the case where all
// conditional branches branch to the same destination.
assert(Cond.size() == 1);
assert(TBB);
// Only handle the case where all conditional branches branch to
// the same destination.
if (TBB != I->getOperand(0).getMBB())
return true;
SystemZCC::CondCodes OldBranchCode = (SystemZCC::CondCodes)Cond[0].getImm();
// If the conditions are the same, we can leave them alone.
if (OldBranchCode == BranchCode)
continue;
return true;
}
return false;
}
unsigned SystemZInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
MachineBasicBlock::iterator I = MBB.end();
unsigned Count = 0;
while (I != MBB.begin()) {
--I;
if (I->isDebugValue())
continue;
if (I->getOpcode() != SystemZ::JMP &&
getCondFromBranchOpc(I->getOpcode()) == SystemZCC::INVALID)
break;
// Remove the branch.
I->eraseFromParent();
I = MBB.end();
++Count;
}
return Count;
}
unsigned
SystemZInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
MachineBasicBlock *FBB,
const SmallVectorImpl<MachineOperand> &Cond,
DebugLoc DL) const {
// Shouldn't be a fall through.
assert(TBB && "InsertBranch must not be told to insert a fallthrough");
assert((Cond.size() == 1 || Cond.size() == 0) &&
"SystemZ branch conditions have one component!");
if (Cond.empty()) {
// Unconditional branch?
assert(!FBB && "Unconditional branch with multiple successors!");
BuildMI(&MBB, DL, get(SystemZ::JMP)).addMBB(TBB);
return 1;
}
// Conditional branch.
unsigned Count = 0;
SystemZCC::CondCodes CC = (SystemZCC::CondCodes)Cond[0].getImm();
BuildMI(&MBB, DL, getBrCond(CC)).addMBB(TBB);
++Count;
if (FBB) {
// Two-way Conditional branch. Insert the second branch.
BuildMI(&MBB, DL, get(SystemZ::JMP)).addMBB(FBB);
++Count;
}
return Count;
}
const MCInstrDesc&
SystemZInstrInfo::getBrCond(SystemZCC::CondCodes CC) const {
switch (CC) {
default:
llvm_unreachable("Unknown condition code!");
case SystemZCC::O: return get(SystemZ::JO);
case SystemZCC::H: return get(SystemZ::JH);
case SystemZCC::NLE: return get(SystemZ::JNLE);
case SystemZCC::L: return get(SystemZ::JL);
case SystemZCC::NHE: return get(SystemZ::JNHE);
case SystemZCC::LH: return get(SystemZ::JLH);
case SystemZCC::NE: return get(SystemZ::JNE);
case SystemZCC::E: return get(SystemZ::JE);
case SystemZCC::NLH: return get(SystemZ::JNLH);
case SystemZCC::HE: return get(SystemZ::JHE);
case SystemZCC::NL: return get(SystemZ::JNL);
case SystemZCC::LE: return get(SystemZ::JLE);
case SystemZCC::NH: return get(SystemZ::JNH);
case SystemZCC::NO: return get(SystemZ::JNO);
}
}
SystemZCC::CondCodes
SystemZInstrInfo::getCondFromBranchOpc(unsigned Opc) const {
switch (Opc) {
default: return SystemZCC::INVALID;
case SystemZ::JO: return SystemZCC::O;
case SystemZ::JH: return SystemZCC::H;
case SystemZ::JNLE: return SystemZCC::NLE;
case SystemZ::JL: return SystemZCC::L;
case SystemZ::JNHE: return SystemZCC::NHE;
case SystemZ::JLH: return SystemZCC::LH;
case SystemZ::JNE: return SystemZCC::NE;
case SystemZ::JE: return SystemZCC::E;
case SystemZ::JNLH: return SystemZCC::NLH;
case SystemZ::JHE: return SystemZCC::HE;
case SystemZ::JNL: return SystemZCC::NL;
case SystemZ::JLE: return SystemZCC::LE;
case SystemZ::JNH: return SystemZCC::NH;
case SystemZ::JNO: return SystemZCC::NO;
}
}
SystemZCC::CondCodes
SystemZInstrInfo::getOppositeCondition(SystemZCC::CondCodes CC) const {
switch (CC) {
default:
llvm_unreachable("Invalid condition!");
case SystemZCC::O: return SystemZCC::NO;
case SystemZCC::H: return SystemZCC::NH;
case SystemZCC::NLE: return SystemZCC::LE;
case SystemZCC::L: return SystemZCC::NL;
case SystemZCC::NHE: return SystemZCC::HE;
case SystemZCC::LH: return SystemZCC::NLH;
case SystemZCC::NE: return SystemZCC::E;
case SystemZCC::E: return SystemZCC::NE;
case SystemZCC::NLH: return SystemZCC::LH;
case SystemZCC::HE: return SystemZCC::NHE;
case SystemZCC::NL: return SystemZCC::L;
case SystemZCC::LE: return SystemZCC::NLE;
case SystemZCC::NH: return SystemZCC::H;
case SystemZCC::NO: return SystemZCC::O;
}
}
const MCInstrDesc&
SystemZInstrInfo::getLongDispOpc(unsigned Opc) const {
switch (Opc) {
default:
llvm_unreachable("Don't have long disp version of this instruction");
case SystemZ::MOV32mr: return get(SystemZ::MOV32mry);
case SystemZ::MOV32rm: return get(SystemZ::MOV32rmy);
case SystemZ::MOVSX32rm16: return get(SystemZ::MOVSX32rm16y);
case SystemZ::MOV32m8r: return get(SystemZ::MOV32m8ry);
case SystemZ::MOV32m16r: return get(SystemZ::MOV32m16ry);
case SystemZ::MOV64m8r: return get(SystemZ::MOV64m8ry);
case SystemZ::MOV64m16r: return get(SystemZ::MOV64m16ry);
case SystemZ::MOV64m32r: return get(SystemZ::MOV64m32ry);
case SystemZ::MOV8mi: return get(SystemZ::MOV8miy);
case SystemZ::MUL32rm: return get(SystemZ::MUL32rmy);
case SystemZ::CMP32rm: return get(SystemZ::CMP32rmy);
case SystemZ::UCMP32rm: return get(SystemZ::UCMP32rmy);
case SystemZ::FMOV32mr: return get(SystemZ::FMOV32mry);
case SystemZ::FMOV64mr: return get(SystemZ::FMOV64mry);
case SystemZ::FMOV32rm: return get(SystemZ::FMOV32rmy);
case SystemZ::FMOV64rm: return get(SystemZ::FMOV64rmy);
case SystemZ::MOV64Pmr: return get(SystemZ::MOV64Pmry);
case SystemZ::MOV64Prm: return get(SystemZ::MOV64Prmy);
}
}

View File

@ -1,113 +0,0 @@
//===- SystemZInstrInfo.h - SystemZ Instruction Information -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the SystemZ implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TARGET_SYSTEMZINSTRINFO_H
#define LLVM_TARGET_SYSTEMZINSTRINFO_H
#include "SystemZ.h"
#include "SystemZRegisterInfo.h"
#include "llvm/ADT/IndexedMap.h"
#include "llvm/Target/TargetInstrInfo.h"
#define GET_INSTRINFO_HEADER
#include "SystemZGenInstrInfo.inc"
namespace llvm {
class SystemZTargetMachine;
/// SystemZII - This namespace holds all of the target specific flags that
/// instruction info tracks.
///
namespace SystemZII {
enum {
//===------------------------------------------------------------------===//
// SystemZ Specific MachineOperand flags.
MO_NO_FLAG = 0,
/// MO_GOTENT - On a symbol operand this indicates that the immediate is
/// the offset to the location of the symbol name from the base of the GOT.
///
/// SYMBOL_LABEL @GOTENT
MO_GOTENT = 1,
/// MO_PLT - On a symbol operand this indicates that the immediate is
/// offset to the PLT entry of symbol name from the current code location.
///
/// SYMBOL_LABEL @PLT
MO_PLT = 2
};
}
class SystemZInstrInfo : public SystemZGenInstrInfo {
const SystemZRegisterInfo RI;
SystemZTargetMachine &TM;
public:
explicit SystemZInstrInfo(SystemZTargetMachine &TM);
/// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
/// such, whenever a client has an instance of instruction info, it should
/// always be able to get register info as well (through this method).
///
virtual const SystemZRegisterInfo &getRegisterInfo() const { return RI; }
virtual void copyPhysReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I, DebugLoc DL,
unsigned DestReg, unsigned SrcReg,
bool KillSrc) const;
unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned SrcReg, bool isKill,
int FrameIndex,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const;
virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned DestReg, int FrameIdx,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const;
bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
virtual bool AnalyzeBranch(MachineBasicBlock &MBB,
MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
bool AllowModify) const;
virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
MachineBasicBlock *FBB,
const SmallVectorImpl<MachineOperand> &Cond,
DebugLoc DL) const;
virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
SystemZCC::CondCodes getOppositeCondition(SystemZCC::CondCodes CC) const;
SystemZCC::CondCodes getCondFromBranchOpc(unsigned Opc) const;
const MCInstrDesc& getBrCond(SystemZCC::CondCodes CC) const;
const MCInstrDesc& getLongDispOpc(unsigned Opc) const;
const MCInstrDesc& getMemoryInstr(unsigned Opc, int64_t Offset = 0) const {
if (Offset < 0 || Offset >= 4096)
return getLongDispOpc(Opc);
else
return get(Opc);
}
};
}
#endif

File diff suppressed because it is too large Load Diff

View File

@ -1,51 +0,0 @@
//==- SystemZMachineFuctionInfo.h - SystemZ machine function info -*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares SystemZ-specific per-machine-function information.
//
//===----------------------------------------------------------------------===//
#ifndef SYSTEMZMACHINEFUNCTIONINFO_H
#define SYSTEMZMACHINEFUNCTIONINFO_H
#include "llvm/CodeGen/MachineFunction.h"
namespace llvm {
/// SystemZMachineFunctionInfo - This class is derived from MachineFunction and
/// contains private SystemZ target-specific information for each MachineFunction.
class SystemZMachineFunctionInfo : public MachineFunctionInfo {
/// CalleeSavedFrameSize - Size of the callee-saved register portion of the
/// stack frame in bytes.
unsigned CalleeSavedFrameSize;
/// LowReg - Low register of range of callee-saved registers to store.
unsigned LowReg;
/// HighReg - High register of range of callee-saved registers to store.
unsigned HighReg;
public:
SystemZMachineFunctionInfo() : CalleeSavedFrameSize(0) {}
explicit SystemZMachineFunctionInfo(MachineFunction &MF)
: CalleeSavedFrameSize(0) {}
unsigned getCalleeSavedFrameSize() const { return CalleeSavedFrameSize; }
void setCalleeSavedFrameSize(unsigned bytes) { CalleeSavedFrameSize = bytes; }
unsigned getLowReg() const { return LowReg; }
void setLowReg(unsigned Reg) { LowReg = Reg; }
unsigned getHighReg() const { return HighReg; }
void setHighReg(unsigned Reg) { HighReg = Reg; }
};
} // End llvm namespace
#endif

View File

@ -1,325 +0,0 @@
//=====- SystemZOperands.td - SystemZ Operands defs ---------*- tblgen-*-=====//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the various SystemZ instruction operands.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Instruction Pattern Stuff.
//===----------------------------------------------------------------------===//
// SystemZ specific condition code. These correspond to CondCode in
// SystemZ.h. They must be kept in synch.
def SYSTEMZ_COND_O : PatLeaf<(i8 0)>;
def SYSTEMZ_COND_H : PatLeaf<(i8 1)>;
def SYSTEMZ_COND_NLE : PatLeaf<(i8 2)>;
def SYSTEMZ_COND_L : PatLeaf<(i8 3)>;
def SYSTEMZ_COND_NHE : PatLeaf<(i8 4)>;
def SYSTEMZ_COND_LH : PatLeaf<(i8 5)>;
def SYSTEMZ_COND_NE : PatLeaf<(i8 6)>;
def SYSTEMZ_COND_E : PatLeaf<(i8 7)>;
def SYSTEMZ_COND_NLH : PatLeaf<(i8 8)>;
def SYSTEMZ_COND_HE : PatLeaf<(i8 9)>;
def SYSTEMZ_COND_NL : PatLeaf<(i8 10)>;
def SYSTEMZ_COND_LE : PatLeaf<(i8 11)>;
def SYSTEMZ_COND_NH : PatLeaf<(i8 12)>;
def SYSTEMZ_COND_NO : PatLeaf<(i8 13)>;
def LO8 : SDNodeXForm<imm, [{
// Transformation function: return low 8 bits.
return getI8Imm(N->getZExtValue() & 0x00000000000000FFULL);
}]>;
def LL16 : SDNodeXForm<imm, [{
// Transformation function: return low 16 bits.
return getI16Imm(N->getZExtValue() & 0x000000000000FFFFULL);
}]>;
def LH16 : SDNodeXForm<imm, [{
// Transformation function: return bits 16-31.
return getI16Imm((N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16);
}]>;
def HL16 : SDNodeXForm<imm, [{
// Transformation function: return bits 32-47.
return getI16Imm((N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32);
}]>;
def HH16 : SDNodeXForm<imm, [{
// Transformation function: return bits 48-63.
return getI16Imm((N->getZExtValue() & 0xFFFF000000000000ULL) >> 48);
}]>;
def LO32 : SDNodeXForm<imm, [{
// Transformation function: return low 32 bits.
return getI32Imm(N->getZExtValue() & 0x00000000FFFFFFFFULL);
}]>;
def HI32 : SDNodeXForm<imm, [{
// Transformation function: return bits 32-63.
return getI32Imm(N->getZExtValue() >> 32);
}]>;
def GetI64FromI32 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getSExtValue(), MVT::i64);
}]>;
def i32ll16 : PatLeaf<(i32 imm), [{
// i32ll16 predicate - true if the 32-bit immediate has only rightmost 16
// bits set.
return ((N->getZExtValue() & 0x000000000000FFFFULL) == N->getZExtValue());
}], LL16>;
def i32lh16 : PatLeaf<(i32 imm), [{
// i32lh16 predicate - true if the 32-bit immediate has only bits 16-31 set.
return ((N->getZExtValue() & 0x00000000FFFF0000ULL) == N->getZExtValue());
}], LH16>;
def i32ll16c : PatLeaf<(i32 imm), [{
// i32ll16c predicate - true if the 32-bit immediate has all bits 16-31 set.
return ((N->getZExtValue() | 0x00000000FFFF0000ULL) == N->getZExtValue());
}], LL16>;
def i32lh16c : PatLeaf<(i32 imm), [{
// i32lh16c predicate - true if the 32-bit immediate has all rightmost 16
// bits set.
return ((N->getZExtValue() | 0x000000000000FFFFULL) == N->getZExtValue());
}], LH16>;
def i64ll16 : PatLeaf<(i64 imm), [{
// i64ll16 predicate - true if the 64-bit immediate has only rightmost 16
// bits set.
return ((N->getZExtValue() & 0x000000000000FFFFULL) == N->getZExtValue());
}], LL16>;
def i64lh16 : PatLeaf<(i64 imm), [{
// i64lh16 predicate - true if the 64-bit immediate has only bits 16-31 set.
return ((N->getZExtValue() & 0x00000000FFFF0000ULL) == N->getZExtValue());
}], LH16>;
def i64hl16 : PatLeaf<(i64 imm), [{
// i64hl16 predicate - true if the 64-bit immediate has only bits 32-47 set.
return ((N->getZExtValue() & 0x0000FFFF00000000ULL) == N->getZExtValue());
}], HL16>;
def i64hh16 : PatLeaf<(i64 imm), [{
// i64hh16 predicate - true if the 64-bit immediate has only bits 48-63 set.
return ((N->getZExtValue() & 0xFFFF000000000000ULL) == N->getZExtValue());
}], HH16>;
def i64ll16c : PatLeaf<(i64 imm), [{
// i64ll16c predicate - true if the 64-bit immediate has only rightmost 16
// bits set.
return ((N->getZExtValue() | 0xFFFFFFFFFFFF0000ULL) == N->getZExtValue());
}], LL16>;
def i64lh16c : PatLeaf<(i64 imm), [{
// i64lh16c predicate - true if the 64-bit immediate has only bits 16-31 set.
return ((N->getZExtValue() | 0xFFFFFFFF0000FFFFULL) == N->getZExtValue());
}], LH16>;
def i64hl16c : PatLeaf<(i64 imm), [{
// i64hl16c predicate - true if the 64-bit immediate has only bits 32-47 set.
return ((N->getZExtValue() | 0xFFFF0000FFFFFFFFULL) == N->getZExtValue());
}], HL16>;
def i64hh16c : PatLeaf<(i64 imm), [{
// i64hh16c predicate - true if the 64-bit immediate has only bits 48-63 set.
return ((N->getZExtValue() | 0x0000FFFFFFFFFFFFULL) == N->getZExtValue());
}], HH16>;
def immSExt16 : PatLeaf<(imm), [{
// immSExt16 predicate - true if the immediate fits in a 16-bit sign extended
// field.
if (N->getValueType(0) == MVT::i64) {
uint64_t val = N->getZExtValue();
return ((int64_t)val == (int16_t)val);
} else if (N->getValueType(0) == MVT::i32) {
uint32_t val = N->getZExtValue();
return ((int32_t)val == (int16_t)val);
}
return false;
}], LL16>;
def immSExt32 : PatLeaf<(i64 imm), [{
// immSExt32 predicate - true if the immediate fits in a 32-bit sign extended
// field.
uint64_t val = N->getZExtValue();
return ((int64_t)val == (int32_t)val);
}], LO32>;
def i64lo32 : PatLeaf<(i64 imm), [{
// i64lo32 predicate - true if the 64-bit immediate has only rightmost 32
// bits set.
return ((N->getZExtValue() & 0x00000000FFFFFFFFULL) == N->getZExtValue());
}], LO32>;
def i64hi32 : PatLeaf<(i64 imm), [{
// i64hi32 predicate - true if the 64-bit immediate has only bits 32-63 set.
return ((N->getZExtValue() & 0xFFFFFFFF00000000ULL) == N->getZExtValue());
}], HI32>;
def i64lo32c : PatLeaf<(i64 imm), [{
// i64lo32 predicate - true if the 64-bit immediate has only rightmost 32
// bits set.
return ((N->getZExtValue() | 0xFFFFFFFF00000000ULL) == N->getZExtValue());
}], LO32>;
def i64hi32c : PatLeaf<(i64 imm), [{
// i64hi32 predicate - true if the 64-bit immediate has only bits 32-63 set.
return ((N->getZExtValue() | 0x00000000FFFFFFFFULL) == N->getZExtValue());
}], HI32>;
def i32immSExt8 : PatLeaf<(i32 imm), [{
// i32immSExt8 predicate - True if the 32-bit immediate fits in a 8-bit
// sign extended field.
return (int32_t)N->getZExtValue() == (int8_t)N->getZExtValue();
}], LO8>;
def i32immSExt16 : PatLeaf<(i32 imm), [{
// i32immSExt16 predicate - True if the 32-bit immediate fits in a 16-bit
// sign extended field.
return (int32_t)N->getZExtValue() == (int16_t)N->getZExtValue();
}], LL16>;
def i64immSExt32 : PatLeaf<(i64 imm), [{
// i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
// sign extended field.
return (int64_t)N->getZExtValue() == (int32_t)N->getZExtValue();
}], LO32>;
def i64immZExt32 : PatLeaf<(i64 imm), [{
// i64immZExt32 predicate - True if the 64-bit immediate fits in a 32-bit
// zero extended field.
return (uint64_t)N->getZExtValue() == (uint32_t)N->getZExtValue();
}], LO32>;
// extloads
def extloadi32i8 : PatFrag<(ops node:$ptr), (i32 (extloadi8 node:$ptr))>;
def extloadi32i16 : PatFrag<(ops node:$ptr), (i32 (extloadi16 node:$ptr))>;
def extloadi64i8 : PatFrag<(ops node:$ptr), (i64 (extloadi8 node:$ptr))>;
def extloadi64i16 : PatFrag<(ops node:$ptr), (i64 (extloadi16 node:$ptr))>;
def extloadi64i32 : PatFrag<(ops node:$ptr), (i64 (extloadi32 node:$ptr))>;
def sextloadi32i8 : PatFrag<(ops node:$ptr), (i32 (sextloadi8 node:$ptr))>;
def sextloadi32i16 : PatFrag<(ops node:$ptr), (i32 (sextloadi16 node:$ptr))>;
def sextloadi64i8 : PatFrag<(ops node:$ptr), (i64 (sextloadi8 node:$ptr))>;
def sextloadi64i16 : PatFrag<(ops node:$ptr), (i64 (sextloadi16 node:$ptr))>;
def sextloadi64i32 : PatFrag<(ops node:$ptr), (i64 (sextloadi32 node:$ptr))>;
def zextloadi32i8 : PatFrag<(ops node:$ptr), (i32 (zextloadi8 node:$ptr))>;
def zextloadi32i16 : PatFrag<(ops node:$ptr), (i32 (zextloadi16 node:$ptr))>;
def zextloadi64i8 : PatFrag<(ops node:$ptr), (i64 (zextloadi8 node:$ptr))>;
def zextloadi64i16 : PatFrag<(ops node:$ptr), (i64 (zextloadi16 node:$ptr))>;
def zextloadi64i32 : PatFrag<(ops node:$ptr), (i64 (zextloadi32 node:$ptr))>;
// A couple of more descriptive operand definitions.
// 32-bits but only 8 bits are significant.
def i32i8imm : Operand<i32>;
// 32-bits but only 16 bits are significant.
def i32i16imm : Operand<i32>;
// 64-bits but only 32 bits are significant.
def i64i32imm : Operand<i64>;
// Branch targets have OtherVT type.
def brtarget : Operand<OtherVT>;
// Unsigned i12
def u12imm : Operand<i32> {
let PrintMethod = "printU12ImmOperand";
}
def u12imm64 : Operand<i64> {
let PrintMethod = "printU12ImmOperand";
}
// Signed i16
def s16imm : Operand<i32> {
let PrintMethod = "printS16ImmOperand";
}
def s16imm64 : Operand<i64> {
let PrintMethod = "printS16ImmOperand";
}
// Unsigned i16
def u16imm : Operand<i32> {
let PrintMethod = "printU16ImmOperand";
}
def u16imm64 : Operand<i64> {
let PrintMethod = "printU16ImmOperand";
}
// Signed i20
def s20imm : Operand<i32> {
let PrintMethod = "printS20ImmOperand";
}
def s20imm64 : Operand<i64> {
let PrintMethod = "printS20ImmOperand";
}
// Signed i32
def s32imm : Operand<i32> {
let PrintMethod = "printS32ImmOperand";
}
def s32imm64 : Operand<i64> {
let PrintMethod = "printS32ImmOperand";
}
// Unsigned i32
def u32imm : Operand<i32> {
let PrintMethod = "printU32ImmOperand";
}
def u32imm64 : Operand<i64> {
let PrintMethod = "printU32ImmOperand";
}
def imm_pcrel : Operand<i64> {
let PrintMethod = "printPCRelImmOperand";
}
//===----------------------------------------------------------------------===//
// SystemZ Operand Definitions.
//===----------------------------------------------------------------------===//
// Address operands
// riaddr := reg + imm
def riaddr32 : Operand<i64>,
ComplexPattern<i64, 2, "SelectAddrRI12Only", []> {
let PrintMethod = "printRIAddrOperand";
let MIOperandInfo = (ops ADDR64:$base, u12imm:$disp);
}
def riaddr12 : Operand<i64>,
ComplexPattern<i64, 2, "SelectAddrRI12", []> {
let PrintMethod = "printRIAddrOperand";
let MIOperandInfo = (ops ADDR64:$base, u12imm64:$disp);
}
def riaddr : Operand<i64>,
ComplexPattern<i64, 2, "SelectAddrRI", []> {
let PrintMethod = "printRIAddrOperand";
let MIOperandInfo = (ops ADDR64:$base, s20imm64:$disp);
}
//===----------------------------------------------------------------------===//
// rriaddr := reg + reg + imm
def rriaddr12 : Operand<i64>,
ComplexPattern<i64, 3, "SelectAddrRRI12", [], []> {
let PrintMethod = "printRRIAddrOperand";
let MIOperandInfo = (ops ADDR64:$base, u12imm64:$disp, ADDR64:$index);
}
def rriaddr : Operand<i64>,
ComplexPattern<i64, 3, "SelectAddrRRI20", [], []> {
let PrintMethod = "printRRIAddrOperand";
let MIOperandInfo = (ops ADDR64:$base, s20imm64:$disp, ADDR64:$index);
}
def laaddr : Operand<i64>,
ComplexPattern<i64, 3, "SelectLAAddr", [add, sub, or, frameindex], []> {
let PrintMethod = "printRRIAddrOperand";
let MIOperandInfo = (ops ADDR64:$base, s20imm64:$disp, ADDR64:$index);
}

View File

@ -1,143 +0,0 @@
//===- SystemZRegisterInfo.cpp - SystemZ Register Information -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the SystemZ implementation of the TargetRegisterInfo class.
//
//===----------------------------------------------------------------------===//
#include "SystemZ.h"
#include "SystemZInstrInfo.h"
#include "SystemZMachineFunctionInfo.h"
#include "SystemZRegisterInfo.h"
#include "SystemZSubtarget.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/ADT/BitVector.h"
#define GET_REGINFO_TARGET_DESC
#include "SystemZGenRegisterInfo.inc"
using namespace llvm;
SystemZRegisterInfo::SystemZRegisterInfo(SystemZTargetMachine &tm,
const SystemZInstrInfo &tii)
: SystemZGenRegisterInfo(0), TM(tm), TII(tii) {
}
const unsigned*
SystemZRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
static const unsigned CalleeSavedRegs[] = {
SystemZ::R6D, SystemZ::R7D, SystemZ::R8D, SystemZ::R9D,
SystemZ::R10D, SystemZ::R11D, SystemZ::R12D, SystemZ::R13D,
SystemZ::R14D, SystemZ::R15D,
SystemZ::F8L, SystemZ::F9L, SystemZ::F10L, SystemZ::F11L,
SystemZ::F12L, SystemZ::F13L, SystemZ::F14L, SystemZ::F15L,
0
};
return CalleeSavedRegs;
}
BitVector SystemZRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
BitVector Reserved(getNumRegs());
const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
if (TFI->hasFP(MF)) {
// R11D is the frame pointer. Reserve all aliases.
Reserved.set(SystemZ::R11D);
Reserved.set(SystemZ::R11W);
Reserved.set(SystemZ::R10P);
Reserved.set(SystemZ::R10Q);
}
Reserved.set(SystemZ::R14D);
Reserved.set(SystemZ::R15D);
Reserved.set(SystemZ::R14W);
Reserved.set(SystemZ::R15W);
Reserved.set(SystemZ::R14P);
Reserved.set(SystemZ::R14Q);
return Reserved;
}
const TargetRegisterClass*
SystemZRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
const TargetRegisterClass *B,
unsigned Idx) const {
switch(Idx) {
// Exact sub-classes don't exist for the other sub-register indexes.
default: return 0;
case SystemZ::subreg_32bit:
if (B == SystemZ::ADDR32RegisterClass)
return A->getSize() == 8 ? SystemZ::ADDR64RegisterClass : 0;
return A;
}
}
void SystemZRegisterInfo::
eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const {
MBB.erase(I);
}
void
SystemZRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
int SPAdj, RegScavenger *RS) const {
assert(SPAdj == 0 && "Unxpected");
unsigned i = 0;
MachineInstr &MI = *II;
MachineFunction &MF = *MI.getParent()->getParent();
const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
while (!MI.getOperand(i).isFI()) {
++i;
assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
}
int FrameIndex = MI.getOperand(i).getIndex();
unsigned BasePtr = (TFI->hasFP(MF) ? SystemZ::R11D : SystemZ::R15D);
// This must be part of a rri or ri operand memory reference. Replace the
// FrameIndex with base register with BasePtr. Add an offset to the
// displacement field.
MI.getOperand(i).ChangeToRegister(BasePtr, false);
// Offset is a either 12-bit unsigned or 20-bit signed integer.
// FIXME: handle "too long" displacements.
int Offset =
TFI->getFrameIndexOffset(MF, FrameIndex) + MI.getOperand(i+1).getImm();
// Check whether displacement is too long to fit into 12 bit zext field.
MI.setDesc(TII.getMemoryInstr(MI.getOpcode(), Offset));
MI.getOperand(i+1).ChangeToImmediate(Offset);
}
unsigned
SystemZRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
assert(0 && "What is the frame register");
return 0;
}
unsigned SystemZRegisterInfo::getEHExceptionRegister() const {
assert(0 && "What is the exception register");
return 0;
}
unsigned SystemZRegisterInfo::getEHHandlerRegister() const {
assert(0 && "What is the exception handler register");
return 0;
}

View File

@ -1,60 +0,0 @@
//===-- SystemZRegisterInfo.h - SystemZ Register Information ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the SystemZ implementation of the TargetRegisterInfo class.
//
//===----------------------------------------------------------------------===//
#ifndef SystemZREGISTERINFO_H
#define SystemZREGISTERINFO_H
#include "llvm/Target/TargetRegisterInfo.h"
#define GET_REGINFO_HEADER
#include "SystemZGenRegisterInfo.inc"
namespace llvm {
class SystemZSubtarget;
class SystemZInstrInfo;
class Type;
struct SystemZRegisterInfo : public SystemZGenRegisterInfo {
SystemZTargetMachine &TM;
const SystemZInstrInfo &TII;
SystemZRegisterInfo(SystemZTargetMachine &tm, const SystemZInstrInfo &tii);
/// Code Generation virtual methods...
const unsigned *getCalleeSavedRegs(const MachineFunction *MF = 0) const;
BitVector getReservedRegs(const MachineFunction &MF) const;
const TargetRegisterClass*
getMatchingSuperRegClass(const TargetRegisterClass *A,
const TargetRegisterClass *B, unsigned Idx) const;
void eliminateCallFramePseudoInstr(MachineFunction &MF,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const;
void eliminateFrameIndex(MachineBasicBlock::iterator II,
int SPAdj, RegScavenger *RS = NULL) const;
// Debug information queries.
unsigned getFrameRegister(const MachineFunction &MF) const;
// Exception handling queries.
unsigned getEHExceptionRegister() const;
unsigned getEHHandlerRegister() const;
};
} // end namespace llvm
#endif

View File

@ -1,205 +0,0 @@
//===- SystemZRegisterInfo.td - The PowerPC Register File ------*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//
//===----------------------------------------------------------------------===//
class SystemZReg<string n> : Register<n> {
let Namespace = "SystemZ";
}
class SystemZRegWithSubregs<string n, list<Register> subregs>
: RegisterWithSubRegs<n, subregs> {
let Namespace = "SystemZ";
}
// We identify all our registers with a 4-bit ID, for consistency's sake.
// GPR32 - Lower 32 bits of one of the 16 64-bit general-purpose registers
class GPR32<bits<4> num, string n> : SystemZReg<n> {
field bits<4> Num = num;
}
// GPR64 - One of the 16 64-bit general-purpose registers
class GPR64<bits<4> num, string n, list<Register> subregs,
list<Register> aliases = []>
: SystemZRegWithSubregs<n, subregs> {
field bits<4> Num = num;
let Aliases = aliases;
}
// GPR128 - 8 even-odd register pairs
class GPR128<bits<4> num, string n, list<Register> subregs,
list<Register> aliases = []>
: SystemZRegWithSubregs<n, subregs> {
field bits<4> Num = num;
let Aliases = aliases;
}
// FPRS - Lower 32 bits of one of the 16 64-bit floating-point registers
class FPRS<bits<4> num, string n> : SystemZReg<n> {
field bits<4> Num = num;
}
// FPRL - One of the 16 64-bit floating-point registers
class FPRL<bits<4> num, string n, list<Register> subregs>
: SystemZRegWithSubregs<n, subregs> {
field bits<4> Num = num;
}
let Namespace = "SystemZ" in {
def subreg_32bit : SubRegIndex;
def subreg_odd32 : SubRegIndex;
def subreg_even : SubRegIndex;
def subreg_odd : SubRegIndex;
}
// General-purpose registers
def R0W : GPR32< 0, "r0">;
def R1W : GPR32< 1, "r1">;
def R2W : GPR32< 2, "r2">;
def R3W : GPR32< 3, "r3">;
def R4W : GPR32< 4, "r4">;
def R5W : GPR32< 5, "r5">;
def R6W : GPR32< 6, "r6">;
def R7W : GPR32< 7, "r7">;
def R8W : GPR32< 8, "r8">;
def R9W : GPR32< 9, "r9">;
def R10W : GPR32<10, "r10">;
def R11W : GPR32<11, "r11">;
def R12W : GPR32<12, "r12">;
def R13W : GPR32<13, "r13">;
def R14W : GPR32<14, "r14">;
def R15W : GPR32<15, "r15">;
let SubRegIndices = [subreg_32bit] in {
def R0D : GPR64< 0, "r0", [R0W]>, DwarfRegNum<[0]>;
def R1D : GPR64< 1, "r1", [R1W]>, DwarfRegNum<[1]>;
def R2D : GPR64< 2, "r2", [R2W]>, DwarfRegNum<[2]>;
def R3D : GPR64< 3, "r3", [R3W]>, DwarfRegNum<[3]>;
def R4D : GPR64< 4, "r4", [R4W]>, DwarfRegNum<[4]>;
def R5D : GPR64< 5, "r5", [R5W]>, DwarfRegNum<[5]>;
def R6D : GPR64< 6, "r6", [R6W]>, DwarfRegNum<[6]>;
def R7D : GPR64< 7, "r7", [R7W]>, DwarfRegNum<[7]>;
def R8D : GPR64< 8, "r8", [R8W]>, DwarfRegNum<[8]>;
def R9D : GPR64< 9, "r9", [R9W]>, DwarfRegNum<[9]>;
def R10D : GPR64<10, "r10", [R10W]>, DwarfRegNum<[10]>;
def R11D : GPR64<11, "r11", [R11W]>, DwarfRegNum<[11]>;
def R12D : GPR64<12, "r12", [R12W]>, DwarfRegNum<[12]>;
def R13D : GPR64<13, "r13", [R13W]>, DwarfRegNum<[13]>;
def R14D : GPR64<14, "r14", [R14W]>, DwarfRegNum<[14]>;
def R15D : GPR64<15, "r15", [R15W]>, DwarfRegNum<[15]>;
}
// Register pairs
let SubRegIndices = [subreg_32bit, subreg_odd32] in {
def R0P : GPR64< 0, "r0", [R0W, R1W], [R0D, R1D]>;
def R2P : GPR64< 2, "r2", [R2W, R3W], [R2D, R3D]>;
def R4P : GPR64< 4, "r4", [R4W, R5W], [R4D, R5D]>;
def R6P : GPR64< 6, "r6", [R6W, R7W], [R6D, R7D]>;
def R8P : GPR64< 8, "r8", [R8W, R9W], [R8D, R9D]>;
def R10P : GPR64<10, "r10", [R10W, R11W], [R10D, R11D]>;
def R12P : GPR64<12, "r12", [R12W, R13W], [R12D, R13D]>;
def R14P : GPR64<14, "r14", [R14W, R15W], [R14D, R15D]>;
}
let SubRegIndices = [subreg_even, subreg_odd],
CompositeIndices = [(subreg_odd32 subreg_odd, subreg_32bit)] in {
def R0Q : GPR128< 0, "r0", [R0D, R1D], [R0P]>;
def R2Q : GPR128< 2, "r2", [R2D, R3D], [R2P]>;
def R4Q : GPR128< 4, "r4", [R4D, R5D], [R4P]>;
def R6Q : GPR128< 6, "r6", [R6D, R7D], [R6P]>;
def R8Q : GPR128< 8, "r8", [R8D, R9D], [R8P]>;
def R10Q : GPR128<10, "r10", [R10D, R11D], [R10P]>;
def R12Q : GPR128<12, "r12", [R12D, R13D], [R12P]>;
def R14Q : GPR128<14, "r14", [R14D, R15D], [R14P]>;
}
// Floating-point registers
def F0S : FPRS< 0, "f0">, DwarfRegNum<[16]>;
def F1S : FPRS< 1, "f1">, DwarfRegNum<[17]>;
def F2S : FPRS< 2, "f2">, DwarfRegNum<[18]>;
def F3S : FPRS< 3, "f3">, DwarfRegNum<[19]>;
def F4S : FPRS< 4, "f4">, DwarfRegNum<[20]>;
def F5S : FPRS< 5, "f5">, DwarfRegNum<[21]>;
def F6S : FPRS< 6, "f6">, DwarfRegNum<[22]>;
def F7S : FPRS< 7, "f7">, DwarfRegNum<[23]>;
def F8S : FPRS< 8, "f8">, DwarfRegNum<[24]>;
def F9S : FPRS< 9, "f9">, DwarfRegNum<[25]>;
def F10S : FPRS<10, "f10">, DwarfRegNum<[26]>;
def F11S : FPRS<11, "f11">, DwarfRegNum<[27]>;
def F12S : FPRS<12, "f12">, DwarfRegNum<[28]>;
def F13S : FPRS<13, "f13">, DwarfRegNum<[29]>;
def F14S : FPRS<14, "f14">, DwarfRegNum<[30]>;
def F15S : FPRS<15, "f15">, DwarfRegNum<[31]>;
let SubRegIndices = [subreg_32bit] in {
def F0L : FPRL< 0, "f0", [F0S]>;
def F1L : FPRL< 1, "f1", [F1S]>;
def F2L : FPRL< 2, "f2", [F2S]>;
def F3L : FPRL< 3, "f3", [F3S]>;
def F4L : FPRL< 4, "f4", [F4S]>;
def F5L : FPRL< 5, "f5", [F5S]>;
def F6L : FPRL< 6, "f6", [F6S]>;
def F7L : FPRL< 7, "f7", [F7S]>;
def F8L : FPRL< 8, "f8", [F8S]>;
def F9L : FPRL< 9, "f9", [F9S]>;
def F10L : FPRL<10, "f10", [F10S]>;
def F11L : FPRL<11, "f11", [F11S]>;
def F12L : FPRL<12, "f12", [F12S]>;
def F13L : FPRL<13, "f13", [F13S]>;
def F14L : FPRL<14, "f14", [F14S]>;
def F15L : FPRL<15, "f15", [F15S]>;
}
// Status register
def PSW : SystemZReg<"psw">;
/// Register classes.
/// Allocate the callee-saved R6-R12 backwards. That way they can be saved
/// together with R14 and R15 in one prolog instruction.
def GR32 : RegisterClass<"SystemZ", [i32], 32, (add (sequence "R%uW", 0, 5),
(sequence "R%uW", 15, 6))>;
/// Registers used to generate address. Everything except R0.
def ADDR32 : RegisterClass<"SystemZ", [i32], 32, (sub GR32, R0W)>;
def GR64 : RegisterClass<"SystemZ", [i64], 64, (add (sequence "R%uD", 0, 5),
(sequence "R%uD", 15, 6))> {
let SubRegClasses = [(GR32 subreg_32bit)];
}
def ADDR64 : RegisterClass<"SystemZ", [i64], 64, (sub GR64, R0D)> {
let SubRegClasses = [(ADDR32 subreg_32bit)];
}
// Even-odd register pairs
def GR64P : RegisterClass<"SystemZ", [v2i32], 64, (add R0P, R2P, R4P,
R12P, R10P, R8P, R6P,
R14P)> {
let SubRegClasses = [(GR32 subreg_32bit, subreg_odd32)];
}
def GR128 : RegisterClass<"SystemZ", [v2i64], 128, (add R0Q, R2Q, R4Q,
R12Q, R10Q, R8Q, R6Q,
R14Q)> {
let SubRegClasses = [(GR32 subreg_32bit, subreg_odd32),
(GR64 subreg_even, subreg_odd)];
}
def FP32 : RegisterClass<"SystemZ", [f32], 32, (sequence "F%uS", 0, 15)>;
def FP64 : RegisterClass<"SystemZ", [f64], 64, (sequence "F%uL", 0, 15)> {
let SubRegClasses = [(FP32 subreg_32bit)];
}
// Status flags registers.
def CCR : RegisterClass<"SystemZ", [i64], 64, (add PSW)> {
let CopyCost = -1; // Don't allow copying of status registers.
}

View File

@ -1,23 +0,0 @@
//===-- SystemZSelectionDAGInfo.cpp - SystemZ SelectionDAG Info -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the SystemZSelectionDAGInfo class.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "systemz-selectiondag-info"
#include "SystemZTargetMachine.h"
using namespace llvm;
SystemZSelectionDAGInfo::SystemZSelectionDAGInfo(const SystemZTargetMachine &TM)
: TargetSelectionDAGInfo(TM) {
}
SystemZSelectionDAGInfo::~SystemZSelectionDAGInfo() {
}

View File

@ -1,31 +0,0 @@
//===-- SystemZSelectionDAGInfo.h - SystemZ SelectionDAG Info ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the SystemZ subclass for TargetSelectionDAGInfo.
//
//===----------------------------------------------------------------------===//
#ifndef SYSTEMZSELECTIONDAGINFO_H
#define SYSTEMZSELECTIONDAGINFO_H
#include "llvm/Target/TargetSelectionDAGInfo.h"
namespace llvm {
class SystemZTargetMachine;
class SystemZSelectionDAGInfo : public TargetSelectionDAGInfo {
public:
explicit SystemZSelectionDAGInfo(const SystemZTargetMachine &TM);
~SystemZSelectionDAGInfo();
};
}
#endif

View File

@ -1,54 +0,0 @@
//===- SystemZSubtarget.cpp - SystemZ Subtarget Information -------*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the SystemZ specific subclass of TargetSubtargetInfo.
//
//===----------------------------------------------------------------------===//
#include "SystemZSubtarget.h"
#include "SystemZ.h"
#include "llvm/GlobalValue.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/TargetRegistry.h"
#define GET_SUBTARGETINFO_TARGET_DESC
#define GET_SUBTARGETINFO_CTOR
#include "SystemZGenSubtargetInfo.inc"
using namespace llvm;
SystemZSubtarget::SystemZSubtarget(const std::string &TT,
const std::string &CPU,
const std::string &FS):
SystemZGenSubtargetInfo(TT, CPU, FS), HasZ10Insts(false) {
std::string CPUName = CPU;
if (CPUName.empty())
CPUName = "z9";
// Parse features string.
ParseSubtargetFeatures(CPUName, FS);
}
/// True if accessing the GV requires an extra load.
bool SystemZSubtarget::GVRequiresExtraLoad(const GlobalValue* GV,
const TargetMachine& TM,
bool isDirectCall) const {
if (TM.getRelocationModel() == Reloc::PIC_) {
// Extra load is needed for all externally visible.
if (isDirectCall)
return false;
if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
return false;
return true;
}
return false;
}

View File

@ -1,48 +0,0 @@
//==-- SystemZSubtarget.h - Define Subtarget for the SystemZ ---*- C++ -*--===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the SystemZ specific subclass of TargetSubtargetInfo.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TARGET_SystemZ_SUBTARGET_H
#define LLVM_TARGET_SystemZ_SUBTARGET_H
#include "llvm/Target/TargetSubtargetInfo.h"
#include <string>
#define GET_SUBTARGETINFO_HEADER
#include "SystemZGenSubtargetInfo.inc"
namespace llvm {
class GlobalValue;
class StringRef;
class TargetMachine;
class SystemZSubtarget : public SystemZGenSubtargetInfo {
bool HasZ10Insts;
public:
/// This constructor initializes the data members to match that
/// of the specified triple.
///
SystemZSubtarget(const std::string &TT, const std::string &CPU,
const std::string &FS);
/// ParseSubtargetFeatures - Parses features string setting specified
/// subtarget options. Definition of function is auto generated by tblgen.
void ParseSubtargetFeatures(StringRef CPU, StringRef FS);
bool isZ10() const { return HasZ10Insts; }
bool GVRequiresExtraLoad(const GlobalValue* GV, const TargetMachine& TM,
bool isDirectCall) const;
};
} // End llvm namespace
#endif // LLVM_TARGET_SystemZ_SUBTARGET_H

View File

@ -1,40 +0,0 @@
//===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "SystemZTargetMachine.h"
#include "SystemZ.h"
#include "llvm/PassManager.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;
extern "C" void LLVMInitializeSystemZTarget() {
// Register the target.
RegisterTargetMachine<SystemZTargetMachine> X(TheSystemZTarget);
}
/// SystemZTargetMachine ctor - Create an ILP64 architecture model
///
SystemZTargetMachine::SystemZTargetMachine(const Target &T,
StringRef TT, StringRef CPU,
StringRef FS, Reloc::Model RM,
CodeModel::Model CM)
: LLVMTargetMachine(T, TT, CPU, FS, RM, CM),
Subtarget(TT, CPU, FS),
DataLayout("E-p:64:64:64-i8:8:16-i16:16:16-i32:32:32-i64:64:64-f32:32:32"
"-f64:64:64-f128:128:128-a0:16:16-n32:64"),
InstrInfo(*this), TLInfo(*this), TSInfo(*this),
FrameLowering(Subtarget) {
}
bool SystemZTargetMachine::addInstSelector(PassManagerBase &PM,
CodeGenOpt::Level OptLevel) {
// Install an instruction selector.
PM.add(createSystemZISelDag(*this, OptLevel));
return false;
}

View File

@ -1,68 +0,0 @@
//==- SystemZTargetMachine.h - Define TargetMachine for SystemZ ---*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the SystemZ specific subclass of TargetMachine.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TARGET_SYSTEMZ_TARGETMACHINE_H
#define LLVM_TARGET_SYSTEMZ_TARGETMACHINE_H
#include "SystemZInstrInfo.h"
#include "SystemZISelLowering.h"
#include "SystemZFrameLowering.h"
#include "SystemZSelectionDAGInfo.h"
#include "SystemZRegisterInfo.h"
#include "SystemZSubtarget.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/Target/TargetMachine.h"
namespace llvm {
/// SystemZTargetMachine
///
class SystemZTargetMachine : public LLVMTargetMachine {
SystemZSubtarget Subtarget;
const TargetData DataLayout; // Calculates type size & alignment
SystemZInstrInfo InstrInfo;
SystemZTargetLowering TLInfo;
SystemZSelectionDAGInfo TSInfo;
SystemZFrameLowering FrameLowering;
public:
SystemZTargetMachine(const Target &T, StringRef TT,
StringRef CPU, StringRef FS,
Reloc::Model RM, CodeModel::Model CM);
virtual const TargetFrameLowering *getFrameLowering() const {
return &FrameLowering;
}
virtual const SystemZInstrInfo *getInstrInfo() const { return &InstrInfo; }
virtual const TargetData *getTargetData() const { return &DataLayout;}
virtual const SystemZSubtarget *getSubtargetImpl() const { return &Subtarget; }
virtual const SystemZRegisterInfo *getRegisterInfo() const {
return &InstrInfo.getRegisterInfo();
}
virtual const SystemZTargetLowering *getTargetLowering() const {
return &TLInfo;
}
virtual const SystemZSelectionDAGInfo* getSelectionDAGInfo() const {
return &TSInfo;
}
virtual bool addInstSelector(PassManagerBase &PM, CodeGenOpt::Level OptLevel);
}; // SystemZTargetMachine.
} // end namespace llvm
#endif // LLVM_TARGET_SystemZ_TARGETMACHINE_H

View File

@ -1,13 +0,0 @@
include_directories( ${CMAKE_CURRENT_BINARY_DIR}/.. ${CMAKE_CURRENT_SOURCE_DIR}/.. )
add_llvm_library(LLVMSystemZInfo
SystemZTargetInfo.cpp
)
add_llvm_library_dependencies(LLVMSystemZInfo
LLVMMC
LLVMSupport
LLVMTarget
)
add_dependencies(LLVMSystemZInfo SystemZCommonTableGen)

View File

@ -1,15 +0,0 @@
##===- lib/Target/SystemZ/TargetInfo/Makefile --------------*- Makefile -*-===##
#
# The LLVM Compiler Infrastructure
#
# This file is distributed under the University of Illinois Open Source
# License. See LICENSE.TXT for details.
#
##===----------------------------------------------------------------------===##
LEVEL = ../../../..
LIBRARYNAME = LLVMSystemZInfo
# Hack: we need to include 'main' target directory to grab private headers
CPPFLAGS = -I$(PROJ_OBJ_DIR)/.. -I$(PROJ_SRC_DIR)/..
include $(LEVEL)/Makefile.common

View File

@ -1,19 +0,0 @@
//===-- SystemZTargetInfo.cpp - SystemZ Target Implementation -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "SystemZ.h"
#include "llvm/Module.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;
Target llvm::TheSystemZTarget;
extern "C" void LLVMInitializeSystemZTargetInfo() {
RegisterTarget<Triple::systemz> X(TheSystemZTarget, "systemz", "SystemZ");
}

View File

@ -301,7 +301,6 @@ AC_CACHE_CHECK([target architecture],[llvm_cv_target_arch],
mips-*) llvm_cv_target_arch="Mips" ;;
xcore-*) llvm_cv_target_arch="XCore" ;;
msp430-*) llvm_cv_target_arch="MSP430" ;;
s390x-*) llvm_cv_target_arch="SystemZ" ;;
bfin-*) llvm_cv_target_arch="Blackfin" ;;
mblaze-*) llvm_cv_target_arch="MBlaze" ;;
ptx-*) llvm_cv_target_arch="PTX" ;;
@ -438,7 +437,6 @@ else
Mips) AC_SUBST(TARGET_HAS_JIT,1) ;;
XCore) AC_SUBST(TARGET_HAS_JIT,0) ;;
MSP430) AC_SUBST(TARGET_HAS_JIT,0) ;;
SystemZ) AC_SUBST(TARGET_HAS_JIT,0) ;;
Blackfin) AC_SUBST(TARGET_HAS_JIT,0) ;;
MBlaze) AC_SUBST(TARGET_HAS_JIT,0) ;;
PTX) AC_SUBST(TARGET_HAS_JIT,0) ;;
@ -552,13 +550,13 @@ TARGETS_TO_BUILD=""
AC_ARG_ENABLE([targets],AS_HELP_STRING([--enable-targets],
[Build specific host targets: all or target1,target2,... Valid targets are:
host, x86, x86_64, sparc, powerpc, alpha, arm, mips, spu,
xcore, msp430, systemz, blackfin, ptx, cbe, and cpp (default=all)]),,
xcore, msp430, blackfin, ptx, cbe, and cpp (default=all)]),,
enableval=all)
if test "$enableval" = host-only ; then
enableval=host
fi
case "$enableval" in
all) TARGETS_TO_BUILD="X86 Sparc PowerPC Alpha ARM Mips CellSPU XCore MSP430 SystemZ Blackfin CBackend CppBackend MBlaze PTX" ;;
all) TARGETS_TO_BUILD="X86 Sparc PowerPC Alpha ARM Mips CellSPU XCore MSP430 Blackfin CBackend CppBackend MBlaze PTX" ;;
*)for a_target in `echo $enableval|sed -e 's/,/ /g' ` ; do
case "$a_target" in
x86) TARGETS_TO_BUILD="X86 $TARGETS_TO_BUILD" ;;
@ -571,7 +569,6 @@ case "$enableval" in
spu) TARGETS_TO_BUILD="CellSPU $TARGETS_TO_BUILD" ;;
xcore) TARGETS_TO_BUILD="XCore $TARGETS_TO_BUILD" ;;
msp430) TARGETS_TO_BUILD="MSP430 $TARGETS_TO_BUILD" ;;
systemz) TARGETS_TO_BUILD="SystemZ $TARGETS_TO_BUILD" ;;
blackfin) TARGETS_TO_BUILD="Blackfin $TARGETS_TO_BUILD" ;;
cbe) TARGETS_TO_BUILD="CBackend $TARGETS_TO_BUILD" ;;
cpp) TARGETS_TO_BUILD="CppBackend $TARGETS_TO_BUILD" ;;
@ -589,7 +586,6 @@ case "$enableval" in
CellSPU|SPU) TARGETS_TO_BUILD="CellSPU $TARGETS_TO_BUILD" ;;
XCore) TARGETS_TO_BUILD="XCore $TARGETS_TO_BUILD" ;;
MSP430) TARGETS_TO_BUILD="MSP430 $TARGETS_TO_BUILD" ;;
s390x) TARGETS_TO_BUILD="SystemZ $TARGETS_TO_BUILD" ;;
Blackfin) TARGETS_TO_BUILD="Blackfin $TARGETS_TO_BUILD" ;;
PTX) TARGETS_TO_BUILD="PTX $TARGETS_TO_BUILD" ;;
*) AC_MSG_ERROR([Can not set target to build]) ;;

View File

@ -1402,7 +1402,7 @@ Optional Features:
--enable-targets Build specific host targets: all or
target1,target2,... Valid targets are: host, x86,
x86_64, sparc, powerpc, alpha, arm, mips, spu,
xcore, msp430, systemz, blackfin, ptx, cbe, and cpp
xcore, msp430, blackfin, ptx, cbe, and cpp
(default=all)
--enable-cbe-printf-a Enable C Backend output with hex floating point via
%a (default is YES)
@ -3845,7 +3845,6 @@ else
mips-*) llvm_cv_target_arch="Mips" ;;
xcore-*) llvm_cv_target_arch="XCore" ;;
msp430-*) llvm_cv_target_arch="MSP430" ;;
s390x-*) llvm_cv_target_arch="SystemZ" ;;
bfin-*) llvm_cv_target_arch="Blackfin" ;;
mblaze-*) llvm_cv_target_arch="MBlaze" ;;
ptx-*) llvm_cv_target_arch="PTX" ;;
@ -5049,8 +5048,6 @@ else
XCore) TARGET_HAS_JIT=0
;;
MSP430) TARGET_HAS_JIT=0
;;
SystemZ) TARGET_HAS_JIT=0
;;
Blackfin) TARGET_HAS_JIT=0
;;
@ -5242,7 +5239,7 @@ if test "$enableval" = host-only ; then
enableval=host
fi
case "$enableval" in
all) TARGETS_TO_BUILD="X86 Sparc PowerPC Alpha ARM Mips CellSPU XCore MSP430 SystemZ Blackfin CBackend CppBackend MBlaze PTX" ;;
all) TARGETS_TO_BUILD="X86 Sparc PowerPC Alpha ARM Mips CellSPU XCore MSP430 Blackfin CBackend CppBackend MBlaze PTX" ;;
*)for a_target in `echo $enableval|sed -e 's/,/ /g' ` ; do
case "$a_target" in
x86) TARGETS_TO_BUILD="X86 $TARGETS_TO_BUILD" ;;
@ -5255,7 +5252,6 @@ case "$enableval" in
spu) TARGETS_TO_BUILD="CellSPU $TARGETS_TO_BUILD" ;;
xcore) TARGETS_TO_BUILD="XCore $TARGETS_TO_BUILD" ;;
msp430) TARGETS_TO_BUILD="MSP430 $TARGETS_TO_BUILD" ;;
systemz) TARGETS_TO_BUILD="SystemZ $TARGETS_TO_BUILD" ;;
blackfin) TARGETS_TO_BUILD="Blackfin $TARGETS_TO_BUILD" ;;
cbe) TARGETS_TO_BUILD="CBackend $TARGETS_TO_BUILD" ;;
cpp) TARGETS_TO_BUILD="CppBackend $TARGETS_TO_BUILD" ;;
@ -5273,7 +5269,6 @@ case "$enableval" in
CellSPU|SPU) TARGETS_TO_BUILD="CellSPU $TARGETS_TO_BUILD" ;;
XCore) TARGETS_TO_BUILD="XCore $TARGETS_TO_BUILD" ;;
MSP430) TARGETS_TO_BUILD="MSP430 $TARGETS_TO_BUILD" ;;
s390x) TARGETS_TO_BUILD="SystemZ $TARGETS_TO_BUILD" ;;
Blackfin) TARGETS_TO_BUILD="Blackfin $TARGETS_TO_BUILD" ;;
PTX) TARGETS_TO_BUILD="PTX $TARGETS_TO_BUILD" ;;
*) { { echo "$as_me:$LINENO: error: Can not set target to build" >&5

View File

@ -1,6 +0,0 @@
; RUN: llc < %s -march=systemz
define void @foo() {
entry:
ret void
}

View File

@ -1,6 +0,0 @@
; RUN: llc < %s -march=systemz
define i64 @foo(i64 %a, i64 %b) {
entry:
ret i64 %b
}

View File

@ -1,49 +0,0 @@
; RUN: llc < %s -march=systemz | grep lghi | count 1
; RUN: llc < %s -march=systemz | grep llill | count 1
; RUN: llc < %s -march=systemz | grep llilh | count 1
; RUN: llc < %s -march=systemz | grep llihl | count 1
; RUN: llc < %s -march=systemz | grep llihh | count 1
; RUN: llc < %s -march=systemz | grep lgfi | count 1
; RUN: llc < %s -march=systemz | grep llilf | count 1
; RUN: llc < %s -march=systemz | grep llihf | count 1
define i64 @foo1() {
entry:
ret i64 1
}
define i64 @foo2() {
entry:
ret i64 65535
}
define i64 @foo3() {
entry:
ret i64 131072
}
define i64 @foo4() {
entry:
ret i64 8589934592
}
define i64 @foo5() {
entry:
ret i64 562949953421312
}
define i64 @foo6() {
entry:
ret i64 65537
}
define i64 @foo7() {
entry:
ret i64 4294967295
}
define i64 @foo8() {
entry:
ret i64 281483566645248
}

View File

@ -1,133 +0,0 @@
; RUN: llc < %s -march=systemz | FileCheck %s
define signext i32 @foo1(i32 %a, i32 *%b, i64 %idx) {
; CHECK: foo1:
; CHECK: a %r2, 4(%r1,%r3)
entry:
%idx2 = add i64 %idx, 1 ; <i64> [#uses=1]
%ptr = getelementptr i32* %b, i64 %idx2 ; <i32*> [#uses=1]
%c = load i32* %ptr
%d = add i32 %a, %c
ret i32 %d
}
define signext i32 @foo2(i32 %a, i32 *%b, i64 %idx) {
; CHECK: foo2:
; CHECK: ay %r2, -4(%r1,%r3)
entry:
%idx2 = add i64 %idx, -1 ; <i64> [#uses=1]
%ptr = getelementptr i32* %b, i64 %idx2 ; <i32*> [#uses=1]
%c = load i32* %ptr
%d = add i32 %a, %c
ret i32 %d
}
define signext i64 @foo3(i64 %a, i64 *%b, i64 %idx) {
; CHECK: foo3:
; CHECK: ag %r2, 8(%r1,%r3)
entry:
%idx2 = add i64 %idx, 1 ; <i64> [#uses=1]
%ptr = getelementptr i64* %b, i64 %idx2 ; <i64*> [#uses=1]
%c = load i64* %ptr
%d = add i64 %a, %c
ret i64 %d
}
define signext i32 @foo4(i32 %a, i32 *%b, i64 %idx) {
; CHECK: foo4:
; CHECK: n %r2, 4(%r1,%r3)
entry:
%idx2 = add i64 %idx, 1 ; <i64> [#uses=1]
%ptr = getelementptr i32* %b, i64 %idx2 ; <i32*> [#uses=1]
%c = load i32* %ptr
%d = and i32 %a, %c
ret i32 %d
}
define signext i32 @foo5(i32 %a, i32 *%b, i64 %idx) {
; CHECK: foo5:
; CHECK: ny %r2, -4(%r1,%r3)
entry:
%idx2 = add i64 %idx, -1 ; <i64> [#uses=1]
%ptr = getelementptr i32* %b, i64 %idx2 ; <i32*> [#uses=1]
%c = load i32* %ptr
%d = and i32 %a, %c
ret i32 %d
}
define signext i64 @foo6(i64 %a, i64 *%b, i64 %idx) {
; CHECK: foo6:
; CHECK: ng %r2, 8(%r1,%r3)
entry:
%idx2 = add i64 %idx, 1 ; <i64> [#uses=1]
%ptr = getelementptr i64* %b, i64 %idx2 ; <i64*> [#uses=1]
%c = load i64* %ptr
%d = and i64 %a, %c
ret i64 %d
}
define signext i32 @foo7(i32 %a, i32 *%b, i64 %idx) {
; CHECK: foo7:
; CHECK: o %r2, 4(%r1,%r3)
entry:
%idx2 = add i64 %idx, 1 ; <i64> [#uses=1]
%ptr = getelementptr i32* %b, i64 %idx2 ; <i32*> [#uses=1]
%c = load i32* %ptr
%d = or i32 %a, %c
ret i32 %d
}
define signext i32 @foo8(i32 %a, i32 *%b, i64 %idx) {
; CHECK: foo8:
; CHECK: oy %r2, -4(%r1,%r3)
entry:
%idx2 = add i64 %idx, -1 ; <i64> [#uses=1]
%ptr = getelementptr i32* %b, i64 %idx2 ; <i32*> [#uses=1]
%c = load i32* %ptr
%d = or i32 %a, %c
ret i32 %d
}
define signext i64 @foo9(i64 %a, i64 *%b, i64 %idx) {
; CHECK: foo9:
; CHECK: og %r2, 8(%r1,%r3)
entry:
%idx2 = add i64 %idx, 1 ; <i64> [#uses=1]
%ptr = getelementptr i64* %b, i64 %idx2 ; <i64*> [#uses=1]
%c = load i64* %ptr
%d = or i64 %a, %c
ret i64 %d
}
define signext i32 @foo10(i32 %a, i32 *%b, i64 %idx) {
; CHECK: foo10:
; CHECK: x %r2, 4(%r1,%r3)
entry:
%idx2 = add i64 %idx, 1 ; <i64> [#uses=1]
%ptr = getelementptr i32* %b, i64 %idx2 ; <i32*> [#uses=1]
%c = load i32* %ptr
%d = xor i32 %a, %c
ret i32 %d
}
define signext i32 @foo11(i32 %a, i32 *%b, i64 %idx) {
; CHECK: foo11:
; CHECK: xy %r2, -4(%r1,%r3)
entry:
%idx2 = add i64 %idx, -1 ; <i64> [#uses=1]
%ptr = getelementptr i32* %b, i64 %idx2 ; <i32*> [#uses=1]
%c = load i32* %ptr
%d = xor i32 %a, %c
ret i32 %d
}
define signext i64 @foo12(i64 %a, i64 *%b, i64 %idx) {
; CHECK: foo12:
; CHECK: xg %r2, 8(%r1,%r3)
entry:
%idx2 = add i64 %idx, 1 ; <i64> [#uses=1]
%ptr = getelementptr i64* %b, i64 %idx2 ; <i64*> [#uses=1]
%c = load i64* %ptr
%d = xor i64 %a, %c
ret i64 %d
}

View File

@ -1,6 +0,0 @@
; RUN: llc < %s -march=systemz
define i64 @foo(i64 %a, i64 %b) {
entry:
%c = add i64 %a, %b
ret i64 %c
}

View File

@ -1,6 +0,0 @@
; RUN: llc < %s -march=systemz
define i64 @foo(i64 %a, i64 %b) {
entry:
%c = add i64 %a, 1
ret i64 %c
}

View File

@ -1,7 +0,0 @@
; RUN: llc < %s -march=systemz
define i64 @foo(i64 %a, i64 %b) {
entry:
%c = and i64 %a, %b
ret i64 %c
}

View File

@ -1,28 +0,0 @@
; RUN: llc < %s -march=systemz | grep ngr | count 4
; RUN: llc < %s -march=systemz | grep llilh | count 1
; RUN: llc < %s -march=systemz | grep llihl | count 1
; RUN: llc < %s -march=systemz | grep llihh | count 1
define i64 @foo1(i64 %a, i64 %b) {
entry:
%c = and i64 %a, 1
ret i64 %c
}
define i64 @foo2(i64 %a, i64 %b) {
entry:
%c = and i64 %a, 131072
ret i64 %c
}
define i64 @foo3(i64 %a, i64 %b) {
entry:
%c = and i64 %a, 8589934592
ret i64 %c
}
define i64 @foo4(i64 %a, i64 %b) {
entry:
%c = and i64 %a, 562949953421312
ret i64 %c
}

View File

@ -1,7 +0,0 @@
; RUN: llc < %s -march=systemz | grep lcgr | count 1
define i64 @foo(i64 %a) {
entry:
%c = sub i64 0, %a
ret i64 %c
}

View File

@ -1,6 +0,0 @@
; RUN: llc < %s -march=systemz
define i64 @foo(i64 %a, i64 %b) {
entry:
%c = or i64 %a, %b
ret i64 %c
}

View File

@ -1,28 +0,0 @@
; RUN: llc < %s -march=systemz | grep oill | count 1
; RUN: llc < %s -march=systemz | grep oilh | count 1
; RUN: llc < %s -march=systemz | grep oihl | count 1
; RUN: llc < %s -march=systemz | grep oihh | count 1
define i64 @foo1(i64 %a, i64 %b) {
entry:
%c = or i64 %a, 1
ret i64 %c
}
define i64 @foo2(i64 %a, i64 %b) {
entry:
%c = or i64 %a, 131072
ret i64 %c
}
define i64 @foo3(i64 %a, i64 %b) {
entry:
%c = or i64 %a, 8589934592
ret i64 %c
}
define i64 @foo4(i64 %a, i64 %b) {
entry:
%c = or i64 %a, 562949953421312
ret i64 %c
}

View File

@ -1,7 +0,0 @@
; RUN: llc < %s -march=systemz
define i64 @foo(i64 %a, i64 %b) {
entry:
%c = sub i64 %a, %b
ret i64 %c
}

View File

@ -1,7 +0,0 @@
; RUN: llc < %s -march=systemz
define i64 @foo(i64 %a, i64 %b) {
entry:
%c = sub i64 %a, 1
ret i64 %c
}

View File

@ -1,6 +0,0 @@
; RUN: llc < %s -march=systemz
define i64 @foo(i64 %a, i64 %b) {
entry:
%c = xor i64 %a, %b
ret i64 %c
}

View File

@ -1,6 +0,0 @@
; RUN: llc < %s -march=systemz
define i64 @foo(i64 %a, i64 %b) {
entry:
%c = xor i64 %a, 1
ret i64 %c
}

View File

@ -1,42 +0,0 @@
; RUN: llc < %s -march=systemz | grep ahi | count 3
; RUN: llc < %s -march=systemz | grep afi | count 3
; RUN: llc < %s -march=systemz | grep lgfr | count 4
; RUN: llc < %s -march=systemz | grep llgfr | count 2
define i32 @foo1(i32 %a, i32 %b) {
entry:
%c = add i32 %a, 1
ret i32 %c
}
define i32 @foo2(i32 %a, i32 %b) {
entry:
%c = add i32 %a, 131072
ret i32 %c
}
define zeroext i32 @foo3(i32 %a, i32 %b) {
entry:
%c = add i32 %a, 1
ret i32 %c
}
define zeroext i32 @foo4(i32 %a, i32 %b) {
entry:
%c = add i32 %a, 131072
ret i32 %c
}
define signext i32 @foo5(i32 %a, i32 %b) {
entry:
%c = add i32 %a, 1
ret i32 %c
}
define signext i32 @foo6(i32 %a, i32 %b) {
entry:
%c = add i32 %a, 131072
ret i32 %c
}

View File

@ -1,22 +0,0 @@
; RUN: llc < %s -march=systemz | grep ar | count 3
; RUN: llc < %s -march=systemz | grep lgfr | count 2
; RUN: llc < %s -march=systemz | grep llgfr | count 1
define i32 @foo(i32 %a, i32 %b) {
entry:
%c = add i32 %a, %b
ret i32 %c
}
define zeroext i32 @foo1(i32 %a, i32 %b) {
entry:
%c = add i32 %a, %b
ret i32 %c
}
define signext i32 @foo2(i32 %a, i32 %b) {
entry:
%c = add i32 %a, %b
ret i32 %c
}

View File

@ -1,38 +0,0 @@
; RUN: llc < %s -march=systemz | grep ngr | count 6
define i32 @foo1(i32 %a, i32 %b) {
entry:
%c = and i32 %a, 1
ret i32 %c
}
define i32 @foo2(i32 %a, i32 %b) {
entry:
%c = and i32 %a, 131072
ret i32 %c
}
define zeroext i32 @foo3(i32 %a, i32 %b) {
entry:
%c = and i32 %a, 1
ret i32 %c
}
define signext i32 @foo4(i32 %a, i32 %b) {
entry:
%c = and i32 %a, 131072
ret i32 %c
}
define zeroext i32 @foo5(i32 %a, i32 %b) {
entry:
%c = and i32 %a, 1
ret i32 %c
}
define signext i32 @foo6(i32 %a, i32 %b) {
entry:
%c = and i32 %a, 131072
ret i32 %c
}

View File

@ -1,21 +0,0 @@
; RUN: llc < %s -march=systemz | grep ngr | count 3
; RUN: llc < %s -march=systemz | grep nihf | count 1
define i32 @foo(i32 %a, i32 %b) {
entry:
%c = and i32 %a, %b
ret i32 %c
}
define zeroext i32 @foo1(i32 %a, i32 %b) {
entry:
%c = and i32 %a, %b
ret i32 %c
}
define signext i32 @foo2(i32 %a, i32 %b) {
entry:
%c = and i32 %a, %b
ret i32 %c
}

View File

@ -1,19 +0,0 @@
; RUN: llc < %s -march=systemz | grep lgr | count 2
; RUN: llc < %s -march=systemz | grep nihf | count 1
; RUN: llc < %s -march=systemz | grep lgfr | count 1
define i32 @foo(i32 %a, i32 %b) {
entry:
ret i32 %b
}
define zeroext i32 @foo1(i32 %a, i32 %b) {
entry:
ret i32 %b
}
define signext i32 @foo2(i32 %a, i32 %b) {
entry:
ret i32 %b
}

View File

@ -1,42 +0,0 @@
; RUN: llc < %s -march=systemz | grep lghi | count 2
; RUN: llc < %s -march=systemz | grep llill | count 1
; RUN: llc < %s -march=systemz | grep llilh | count 1
; RUN: llc < %s -march=systemz | grep lgfi | count 1
; RUN: llc < %s -march=systemz | grep llilf | count 2
define i32 @foo1() {
entry:
ret i32 1
}
define i32 @foo2() {
entry:
ret i32 65535
}
define i32 @foo3() {
entry:
ret i32 131072
}
define i32 @foo4() {
entry:
ret i32 65537
}
define i32 @foo5() {
entry:
ret i32 4294967295
}
define zeroext i32 @foo6() {
entry:
ret i32 4294967295
}
define signext i32 @foo7() {
entry:
ret i32 4294967295
}

View File

@ -1,8 +0,0 @@
; RUN: llc < %s -march=systemz | grep lcr | count 1
define i32 @foo(i32 %a) {
entry:
%c = sub i32 0, %a
ret i32 %c
}

View File

@ -1,60 +0,0 @@
; RUN: llc < %s -march=systemz | grep oill | count 3
; RUN: llc < %s -march=systemz | grep oilh | count 3
; RUN: llc < %s -march=systemz | grep oilf | count 3
; RUN: llc < %s -march=systemz | grep llgfr | count 3
; RUN: llc < %s -march=systemz | grep lgfr | count 6
define i32 @foo1(i32 %a, i32 %b) {
entry:
%c = or i32 %a, 1
ret i32 %c
}
define i32 @foo2(i32 %a, i32 %b) {
entry:
%c = or i32 %a, 131072
ret i32 %c
}
define i32 @foo7(i32 %a, i32 %b) {
entry:
%c = or i32 %a, 123456
ret i32 %c
}
define zeroext i32 @foo3(i32 %a, i32 %b) {
entry:
%c = or i32 %a, 1
ret i32 %c
}
define zeroext i32 @foo8(i32 %a, i32 %b) {
entry:
%c = or i32 %a, 123456
ret i32 %c
}
define signext i32 @foo4(i32 %a, i32 %b) {
entry:
%c = or i32 %a, 131072
ret i32 %c
}
define zeroext i32 @foo5(i32 %a, i32 %b) {
entry:
%c = or i32 %a, 1
ret i32 %c
}
define signext i32 @foo6(i32 %a, i32 %b) {
entry:
%c = or i32 %a, 131072
ret i32 %c
}
define signext i32 @foo9(i32 %a, i32 %b) {
entry:
%c = or i32 %a, 123456
ret i32 %c
}

View File

@ -1,23 +0,0 @@
; RUN: llc < %s -march=systemz | grep ogr | count 3
; RUN: llc < %s -march=systemz | grep nihf | count 1
; RUN: llc < %s -march=systemz | grep lgfr | count 1
define i32 @foo(i32 %a, i32 %b) {
entry:
%c = or i32 %a, %b
ret i32 %c
}
define zeroext i32 @foo1(i32 %a, i32 %b) {
entry:
%c = or i32 %a, %b
ret i32 %c
}
define signext i32 @foo2(i32 %a, i32 %b) {
entry:
%c = or i32 %a, %b
ret i32 %c
}

View File

@ -1,42 +0,0 @@
; RUN: llc < %s -march=systemz | grep ahi | count 3
; RUN: llc < %s -march=systemz | grep afi | count 3
; RUN: llc < %s -march=systemz | grep lgfr | count 4
; RUN: llc < %s -march=systemz | grep llgfr | count 2
define i32 @foo1(i32 %a, i32 %b) {
entry:
%c = sub i32 %a, 1
ret i32 %c
}
define i32 @foo2(i32 %a, i32 %b) {
entry:
%c = sub i32 %a, 131072
ret i32 %c
}
define zeroext i32 @foo3(i32 %a, i32 %b) {
entry:
%c = sub i32 %a, 1
ret i32 %c
}
define signext i32 @foo4(i32 %a, i32 %b) {
entry:
%c = sub i32 %a, 131072
ret i32 %c
}
define zeroext i32 @foo5(i32 %a, i32 %b) {
entry:
%c = sub i32 %a, 1
ret i32 %c
}
define signext i32 @foo6(i32 %a, i32 %b) {
entry:
%c = sub i32 %a, 131072
ret i32 %c
}

View File

@ -1,22 +0,0 @@
; RUN: llc < %s -march=systemz | grep sr | count 3
; RUN: llc < %s -march=systemz | grep llgfr | count 1
; RUN: llc < %s -march=systemz | grep lgfr | count 2
define i32 @foo(i32 %a, i32 %b) {
entry:
%c = sub i32 %a, %b
ret i32 %c
}
define zeroext i32 @foo1(i32 %a, i32 %b) {
entry:
%c = sub i32 %a, %b
ret i32 %c
}
define signext i32 @foo2(i32 %a, i32 %b) {
entry:
%c = sub i32 %a, %b
ret i32 %c
}

View File

@ -1,58 +0,0 @@
; RUN: llc < %s -march=systemz | grep xilf | count 9
; RUN: llc < %s -march=systemz | grep llgfr | count 3
; RUN: llc < %s -march=systemz | grep lgfr | count 6
define i32 @foo1(i32 %a, i32 %b) {
entry:
%c = xor i32 %a, 1
ret i32 %c
}
define i32 @foo2(i32 %a, i32 %b) {
entry:
%c = xor i32 %a, 131072
ret i32 %c
}
define i32 @foo7(i32 %a, i32 %b) {
entry:
%c = xor i32 %a, 123456
ret i32 %c
}
define zeroext i32 @foo3(i32 %a, i32 %b) {
entry:
%c = xor i32 %a, 1
ret i32 %c
}
define zeroext i32 @foo8(i32 %a, i32 %b) {
entry:
%c = xor i32 %a, 123456
ret i32 %c
}
define signext i32 @foo4(i32 %a, i32 %b) {
entry:
%c = xor i32 %a, 131072
ret i32 %c
}
define zeroext i32 @foo5(i32 %a, i32 %b) {
entry:
%c = xor i32 %a, 1
ret i32 %c
}
define signext i32 @foo6(i32 %a, i32 %b) {
entry:
%c = xor i32 %a, 131072
ret i32 %c
}
define signext i32 @foo9(i32 %a, i32 %b) {
entry:
%c = xor i32 %a, 123456
ret i32 %c
}

View File

@ -1,23 +0,0 @@
; RUN: llc < %s -march=systemz | grep xgr | count 3
; RUN: llc < %s -march=systemz | grep nihf | count 1
; RUN: llc < %s -march=systemz | grep lgfr | count 1
define i32 @foo(i32 %a, i32 %b) {
entry:
%c = xor i32 %a, %b
ret i32 %c
}
define zeroext i32 @foo1(i32 %a, i32 %b) {
entry:
%c = xor i32 %a, %b
ret i32 %c
}
define signext i32 @foo2(i32 %a, i32 %b) {
entry:
%c = xor i32 %a, %b
ret i32 %c
}

View File

@ -1,121 +0,0 @@
; RUN: llc < %s -march=systemz | grep sra | count 6
; RUN: llc < %s -march=systemz | grep srag | count 3
; RUN: llc < %s -march=systemz | grep srl | count 6
; RUN: llc < %s -march=systemz | grep srlg | count 3
; RUN: llc < %s -march=systemz | grep sll | count 6
; RUN: llc < %s -march=systemz | grep sllg | count 3
define signext i32 @foo1(i32 %a, i32 %idx) nounwind readnone {
entry:
%add = add i32 %idx, 1 ; <i32> [#uses=1]
%shr = ashr i32 %a, %add ; <i32> [#uses=1]
ret i32 %shr
}
define signext i32 @foo2(i32 %a, i32 %idx) nounwind readnone {
entry:
%add = add i32 %idx, 1 ; <i32> [#uses=1]
%shr = shl i32 %a, %add ; <i32> [#uses=1]
ret i32 %shr
}
define signext i32 @foo3(i32 %a, i32 %idx) nounwind readnone {
entry:
%add = add i32 %idx, 1 ; <i32> [#uses=1]
%shr = lshr i32 %a, %add ; <i32> [#uses=1]
ret i32 %shr
}
define signext i64 @foo4(i64 %a, i64 %idx) nounwind readnone {
entry:
%add = add i64 %idx, 1 ; <i64> [#uses=1]
%shr = ashr i64 %a, %add ; <i64> [#uses=1]
ret i64 %shr
}
define signext i64 @foo5(i64 %a, i64 %idx) nounwind readnone {
entry:
%add = add i64 %idx, 1 ; <i64> [#uses=1]
%shr = shl i64 %a, %add ; <i64> [#uses=1]
ret i64 %shr
}
define signext i64 @foo6(i64 %a, i64 %idx) nounwind readnone {
entry:
%add = add i64 %idx, 1 ; <i64> [#uses=1]
%shr = lshr i64 %a, %add ; <i64> [#uses=1]
ret i64 %shr
}
define signext i32 @foo7(i32 %a, i32 %idx) nounwind readnone {
entry:
%shr = ashr i32 %a, 1
ret i32 %shr
}
define signext i32 @foo8(i32 %a, i32 %idx) nounwind readnone {
entry:
%shr = shl i32 %a, 1
ret i32 %shr
}
define signext i32 @foo9(i32 %a, i32 %idx) nounwind readnone {
entry:
%shr = lshr i32 %a, 1
ret i32 %shr
}
define signext i32 @foo10(i32 %a, i32 %idx) nounwind readnone {
entry:
%shr = ashr i32 %a, %idx
ret i32 %shr
}
define signext i32 @foo11(i32 %a, i32 %idx) nounwind readnone {
entry:
%shr = shl i32 %a, %idx
ret i32 %shr
}
define signext i32 @foo12(i32 %a, i32 %idx) nounwind readnone {
entry:
%shr = lshr i32 %a, %idx
ret i32 %shr
}
define signext i64 @foo13(i64 %a, i64 %idx) nounwind readnone {
entry:
%shr = ashr i64 %a, 1
ret i64 %shr
}
define signext i64 @foo14(i64 %a, i64 %idx) nounwind readnone {
entry:
%shr = shl i64 %a, 1
ret i64 %shr
}
define signext i64 @foo15(i64 %a, i64 %idx) nounwind readnone {
entry:
%shr = lshr i64 %a, 1
ret i64 %shr
}
define signext i64 @foo16(i64 %a, i64 %idx) nounwind readnone {
entry:
%shr = ashr i64 %a, %idx
ret i64 %shr
}
define signext i64 @foo17(i64 %a, i64 %idx) nounwind readnone {
entry:
%shr = shl i64 %a, %idx
ret i64 %shr
}
define signext i64 @foo18(i64 %a, i64 %idx) nounwind readnone {
entry:
%shr = lshr i64 %a, %idx
ret i64 %shr
}

View File

@ -1,11 +0,0 @@
; RUN: llc < %s | grep lay | count 1
target datalayout = "E-p:64:64:64-i1:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-f128:128:128"
target triple = "s390x-unknown-linux-gnu"
define i64* @foo(i64* %a, i64 %idx) nounwind readnone {
entry:
%add.ptr.sum = add i64 %idx, 1 ; <i64> [#uses=1]
%add.ptr2 = getelementptr i64* %a, i64 %add.ptr.sum ; <i64*> [#uses=1]
ret i64* %add.ptr2
}

View File

@ -1,50 +0,0 @@
; RUN: llc < %s -mattr=+z10 | grep mvghi | count 1
; RUN: llc < %s -mattr=+z10 | grep mvhi | count 1
; RUN: llc < %s -mattr=+z10 | grep mvhhi | count 1
; RUN: llc < %s | grep mvi | count 2
; RUN: llc < %s | grep mviy | count 1
target datalayout = "E-p:64:64:64-i1:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-f128:128:128"
target triple = "s390x-unknown-linux-gnu"
define void @foo1(i64* nocapture %a, i64 %idx) nounwind {
entry:
%add.ptr = getelementptr i64* %a, i64 1 ; <i64*> [#uses=1]
store i64 1, i64* %add.ptr
ret void
}
define void @foo2(i32* nocapture %a, i64 %idx) nounwind {
entry:
%add.ptr = getelementptr i32* %a, i64 1 ; <i32*> [#uses=1]
store i32 2, i32* %add.ptr
ret void
}
define void @foo3(i16* nocapture %a, i64 %idx) nounwind {
entry:
%add.ptr = getelementptr i16* %a, i64 1 ; <i16*> [#uses=1]
store i16 3, i16* %add.ptr
ret void
}
define void @foo4(i8* nocapture %a, i64 %idx) nounwind {
entry:
%add.ptr = getelementptr i8* %a, i64 1 ; <i8*> [#uses=1]
store i8 4, i8* %add.ptr
ret void
}
define void @foo5(i8* nocapture %a, i64 %idx) nounwind {
entry:
%add.ptr = getelementptr i8* %a, i64 -1 ; <i8*> [#uses=1]
store i8 4, i8* %add.ptr
ret void
}
define void @foo6(i16* nocapture %a, i64 %idx) nounwind {
entry:
%add.ptr = getelementptr i16* %a, i64 -1 ; <i16*> [#uses=1]
store i16 3, i16* %add.ptr
ret void
}

View File

@ -1,44 +0,0 @@
; RUN: llc < %s | grep ly | count 2
; RUN: llc < %s | grep sty | count 2
; RUN: llc < %s | grep {l %} | count 2
; RUN: llc < %s | grep {st %} | count 2
target datalayout = "E-p:64:64:64-i8:8:16-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-f128:128:128-a0:16:16"
target triple = "s390x-ibm-linux"
define void @foo1(i32* nocapture %foo, i32* nocapture %bar) nounwind {
entry:
%tmp1 = load i32* %foo ; <i32> [#uses=1]
store i32 %tmp1, i32* %bar
ret void
}
define void @foo2(i32* nocapture %foo, i32* nocapture %bar, i64 %idx) nounwind {
entry:
%add.ptr = getelementptr i32* %foo, i64 1 ; <i32*> [#uses=1]
%tmp1 = load i32* %add.ptr ; <i32> [#uses=1]
%add.ptr3.sum = add i64 %idx, 1 ; <i64> [#uses=1]
%add.ptr5 = getelementptr i32* %bar, i64 %add.ptr3.sum ; <i32*> [#uses=1]
store i32 %tmp1, i32* %add.ptr5
ret void
}
define void @foo3(i32* nocapture %foo, i32* nocapture %bar, i64 %idx) nounwind {
entry:
%sub.ptr = getelementptr i32* %foo, i64 -1 ; <i32*> [#uses=1]
%tmp1 = load i32* %sub.ptr ; <i32> [#uses=1]
%sub.ptr3.sum = add i64 %idx, -1 ; <i64> [#uses=1]
%add.ptr = getelementptr i32* %bar, i64 %sub.ptr3.sum ; <i32*> [#uses=1]
store i32 %tmp1, i32* %add.ptr
ret void
}
define void @foo4(i32* nocapture %foo, i32* nocapture %bar, i64 %idx) nounwind {
entry:
%add.ptr = getelementptr i32* %foo, i64 8192 ; <i32*> [#uses=1]
%tmp1 = load i32* %add.ptr ; <i32> [#uses=1]
%add.ptr3.sum = add i64 %idx, 8192 ; <i64> [#uses=1]
%add.ptr5 = getelementptr i32* %bar, i64 %add.ptr3.sum ; <i32*> [#uses=1]
store i32 %tmp1, i32* %add.ptr5
ret void
}

View File

@ -1,85 +0,0 @@
; RUN: llc < %s | grep {sthy.%} | count 2
; RUN: llc < %s | grep {lhy.%} | count 2
; RUN: llc < %s | grep {lh.%} | count 6
; RUN: llc < %s | grep {sth.%} | count 2
target datalayout = "E-p:64:64:64-i8:8:16-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-f128:128:128-a0:16:16"
target triple = "s390x-ibm-linux"
define void @foo1(i16* nocapture %foo, i16* nocapture %bar) nounwind {
entry:
%tmp1 = load i16* %foo ; <i16> [#uses=1]
store i16 %tmp1, i16* %bar
ret void
}
define void @foo2(i16* nocapture %foo, i16* nocapture %bar, i64 %idx) nounwind {
entry:
%add.ptr = getelementptr i16* %foo, i64 1 ; <i16*> [#uses=1]
%tmp1 = load i16* %add.ptr ; <i16> [#uses=1]
%add.ptr3.sum = add i64 %idx, 1 ; <i64> [#uses=1]
%add.ptr5 = getelementptr i16* %bar, i64 %add.ptr3.sum ; <i16*> [#uses=1]
store i16 %tmp1, i16* %add.ptr5
ret void
}
define void @foo3(i16* nocapture %foo, i16* nocapture %bar, i64 %idx) nounwind {
entry:
%sub.ptr = getelementptr i16* %foo, i64 -1 ; <i16*> [#uses=1]
%tmp1 = load i16* %sub.ptr ; <i16> [#uses=1]
%sub.ptr3.sum = add i64 %idx, -1 ; <i64> [#uses=1]
%add.ptr = getelementptr i16* %bar, i64 %sub.ptr3.sum ; <i16*> [#uses=1]
store i16 %tmp1, i16* %add.ptr
ret void
}
define void @foo4(i16* nocapture %foo, i16* nocapture %bar, i64 %idx) nounwind {
entry:
%add.ptr = getelementptr i16* %foo, i64 8192 ; <i16*> [#uses=1]
%tmp1 = load i16* %add.ptr ; <i16> [#uses=1]
%add.ptr3.sum = add i64 %idx, 8192 ; <i64> [#uses=1]
%add.ptr5 = getelementptr i16* %bar, i64 %add.ptr3.sum ; <i16*> [#uses=1]
store i16 %tmp1, i16* %add.ptr5
ret void
}
define void @foo5(i16* nocapture %foo, i32* nocapture %bar) nounwind {
entry:
%tmp1 = load i16* %foo ; <i16> [#uses=1]
%conv = sext i16 %tmp1 to i32 ; <i32> [#uses=1]
store i32 %conv, i32* %bar
ret void
}
define void @foo6(i16* nocapture %foo, i32* nocapture %bar, i64 %idx) nounwind {
entry:
%add.ptr = getelementptr i16* %foo, i64 1 ; <i16*> [#uses=1]
%tmp1 = load i16* %add.ptr ; <i16> [#uses=1]
%conv = sext i16 %tmp1 to i32 ; <i32> [#uses=1]
%add.ptr3.sum = add i64 %idx, 1 ; <i64> [#uses=1]
%add.ptr5 = getelementptr i32* %bar, i64 %add.ptr3.sum ; <i32*> [#uses=1]
store i32 %conv, i32* %add.ptr5
ret void
}
define void @foo7(i16* nocapture %foo, i32* nocapture %bar, i64 %idx) nounwind {
entry:
%sub.ptr = getelementptr i16* %foo, i64 -1 ; <i16*> [#uses=1]
%tmp1 = load i16* %sub.ptr ; <i16> [#uses=1]
%conv = sext i16 %tmp1 to i32 ; <i32> [#uses=1]
%sub.ptr3.sum = add i64 %idx, -1 ; <i64> [#uses=1]
%add.ptr = getelementptr i32* %bar, i64 %sub.ptr3.sum ; <i32*> [#uses=1]
store i32 %conv, i32* %add.ptr
ret void
}
define void @foo8(i16* nocapture %foo, i32* nocapture %bar, i64 %idx) nounwind {
entry:
%add.ptr = getelementptr i16* %foo, i64 8192 ; <i16*> [#uses=1]
%tmp1 = load i16* %add.ptr ; <i16> [#uses=1]
%conv = sext i16 %tmp1 to i32 ; <i32> [#uses=1]
%add.ptr3.sum = add i64 %idx, 8192 ; <i64> [#uses=1]
%add.ptr5 = getelementptr i32* %bar, i64 %add.ptr3.sum ; <i32*> [#uses=1]
store i32 %conv, i32* %add.ptr5
ret void
}

View File

@ -1,75 +0,0 @@
; RUN: llc < %s -march=systemz | not grep aghi
; RUN: llc < %s -march=systemz | grep llgf | count 1
; RUN: llc < %s -march=systemz | grep llgh | count 1
; RUN: llc < %s -march=systemz | grep llgc | count 1
; RUN: llc < %s -march=systemz | grep lgf | count 2
; RUN: llc < %s -march=systemz | grep lgh | count 2
; RUN: llc < %s -march=systemz | grep lgb | count 1
target datalayout = "E-p:64:64:64-i1:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-f128:128:128"
target triple = "s390x-unknown-linux-gnu"
define zeroext i64 @foo1(i64* nocapture %a, i64 %idx) nounwind readonly {
entry:
%add.ptr.sum = add i64 %idx, 1 ; <i64> [#uses=1]
%add.ptr2 = getelementptr i64* %a, i64 %add.ptr.sum ; <i64*> [#uses=1]
%tmp3 = load i64* %add.ptr2 ; <i64> [#uses=1]
ret i64 %tmp3
}
define zeroext i32 @foo2(i32* nocapture %a, i64 %idx) nounwind readonly {
entry:
%add.ptr.sum = add i64 %idx, 1 ; <i64> [#uses=1]
%add.ptr2 = getelementptr i32* %a, i64 %add.ptr.sum ; <i32*> [#uses=1]
%tmp3 = load i32* %add.ptr2 ; <i32> [#uses=1]
ret i32 %tmp3
}
define zeroext i16 @foo3(i16* nocapture %a, i64 %idx) nounwind readonly {
entry:
%add.ptr.sum = add i64 %idx, 1 ; <i64> [#uses=1]
%add.ptr2 = getelementptr i16* %a, i64 %add.ptr.sum ; <i16*> [#uses=1]
%tmp3 = load i16* %add.ptr2 ; <i16> [#uses=1]
ret i16 %tmp3
}
define zeroext i8 @foo4(i8* nocapture %a, i64 %idx) nounwind readonly {
entry:
%add.ptr.sum = add i64 %idx, 1 ; <i64> [#uses=1]
%add.ptr2 = getelementptr i8* %a, i64 %add.ptr.sum ; <i8*> [#uses=1]
%tmp3 = load i8* %add.ptr2 ; <i8> [#uses=1]
ret i8 %tmp3
}
define signext i64 @foo5(i64* nocapture %a, i64 %idx) nounwind readonly {
entry:
%add.ptr.sum = add i64 %idx, 1 ; <i64> [#uses=1]
%add.ptr2 = getelementptr i64* %a, i64 %add.ptr.sum ; <i64*> [#uses=1]
%tmp3 = load i64* %add.ptr2 ; <i64> [#uses=1]
ret i64 %tmp3
}
define signext i32 @foo6(i32* nocapture %a, i64 %idx) nounwind readonly {
entry:
%add.ptr.sum = add i64 %idx, 1 ; <i64> [#uses=1]
%add.ptr2 = getelementptr i32* %a, i64 %add.ptr.sum ; <i32*> [#uses=1]
%tmp3 = load i32* %add.ptr2 ; <i32> [#uses=1]
ret i32 %tmp3
}
define signext i16 @foo7(i16* nocapture %a, i64 %idx) nounwind readonly {
entry:
%add.ptr.sum = add i64 %idx, 1 ; <i64> [#uses=1]
%add.ptr2 = getelementptr i16* %a, i64 %add.ptr.sum ; <i16*> [#uses=1]
%tmp3 = load i16* %add.ptr2 ; <i16> [#uses=1]
ret i16 %tmp3
}
define signext i8 @foo8(i8* nocapture %a, i64 %idx) nounwind readonly {
entry:
%add.ptr.sum = add i64 %idx, 1 ; <i64> [#uses=1]
%add.ptr2 = getelementptr i8* %a, i64 %add.ptr.sum ; <i8*> [#uses=1]
%tmp3 = load i8* %add.ptr2 ; <i8> [#uses=1]
ret i8 %tmp3
}

View File

@ -1,79 +0,0 @@
; RUN: llc < %s | not grep aghi
; RUN: llc < %s | FileCheck %s
target datalayout = "E-p:64:64:64-i1:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-f128:128:128"
target triple = "s390x-unknown-linux-gnu"
define void @foo1(i64* nocapture %a, i64 %idx, i64 %val) nounwind {
entry:
; CHECK: foo1:
; CHECK: stg %r4, 8(%r1,%r2)
%add.ptr.sum = add i64 %idx, 1 ; <i64> [#uses=1]
%add.ptr2 = getelementptr i64* %a, i64 %add.ptr.sum ; <i64*> [#uses=1]
store i64 %val, i64* %add.ptr2
ret void
}
define void @foo2(i32* nocapture %a, i64 %idx, i32 %val) nounwind {
entry:
; CHECK: foo2:
; CHECK: st %r4, 4(%r1,%r2)
%add.ptr.sum = add i64 %idx, 1 ; <i64> [#uses=1]
%add.ptr2 = getelementptr i32* %a, i64 %add.ptr.sum ; <i32*> [#uses=1]
store i32 %val, i32* %add.ptr2
ret void
}
define void @foo3(i16* nocapture %a, i64 %idx, i16 zeroext %val) nounwind {
entry:
; CHECK: foo3:
; CHECK: sth %r4, 2(%r1,%r2)
%add.ptr.sum = add i64 %idx, 1 ; <i64> [#uses=1]
%add.ptr2 = getelementptr i16* %a, i64 %add.ptr.sum ; <i16*> [#uses=1]
store i16 %val, i16* %add.ptr2
ret void
}
define void @foo4(i8* nocapture %a, i64 %idx, i8 zeroext %val) nounwind {
entry:
; CHECK: foo4:
; CHECK: stc %r4, 1(%r3,%r2)
%add.ptr.sum = add i64 %idx, 1 ; <i64> [#uses=1]
%add.ptr2 = getelementptr i8* %a, i64 %add.ptr.sum ; <i8*> [#uses=1]
store i8 %val, i8* %add.ptr2
ret void
}
define void @foo5(i8* nocapture %a, i64 %idx, i64 %val) nounwind {
entry:
; CHECK: foo5:
; CHECK: stc %r4, 1(%r3,%r2)
%add.ptr.sum = add i64 %idx, 1 ; <i64> [#uses=1]
%add.ptr2 = getelementptr i8* %a, i64 %add.ptr.sum ; <i8*> [#uses=1]
%conv = trunc i64 %val to i8 ; <i8> [#uses=1]
store i8 %conv, i8* %add.ptr2
ret void
}
define void @foo6(i16* nocapture %a, i64 %idx, i64 %val) nounwind {
entry:
; CHECK: foo6:
; CHECK: sth %r4, 2(%r1,%r2)
%add.ptr.sum = add i64 %idx, 1 ; <i64> [#uses=1]
%add.ptr2 = getelementptr i16* %a, i64 %add.ptr.sum ; <i16*> [#uses=1]
%conv = trunc i64 %val to i16 ; <i16> [#uses=1]
store i16 %conv, i16* %add.ptr2
ret void
}
define void @foo7(i32* nocapture %a, i64 %idx, i64 %val) nounwind {
entry:
; CHECK: foo7:
; CHECK: st %r4, 4(%r1,%r2)
%add.ptr.sum = add i64 %idx, 1 ; <i64> [#uses=1]
%add.ptr2 = getelementptr i32* %a, i64 %add.ptr.sum ; <i32*> [#uses=1]
%conv = trunc i64 %val to i32 ; <i32> [#uses=1]
store i32 %conv, i32* %add.ptr2
ret void
}

View File

@ -1,17 +0,0 @@
; RUN: llc < %s | grep 168 | count 1
; RUN: llc < %s | grep 160 | count 3
; RUN: llc < %s | grep 328 | count 1
target datalayout = "E-p:64:64:64-i1:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-f128:128:128"
target triple = "s390x-unknown-linux-gnu"
define i64 @foo(i64 %b, i64 %c, i64 %d, i64 %e, i64 %f, i64 %g) nounwind {
entry:
%a = alloca i64, align 8 ; <i64*> [#uses=3]
store i64 %g, i64* %a
call void @bar(i64* %a) nounwind
%tmp1 = load i64* %a ; <i64> [#uses=1]
ret i64 %tmp1
}
declare void @bar(i64*)

View File

@ -1,16 +0,0 @@
; RUN: llc < %s | grep 160 | count 1
; RUN: llc < %s | grep 168 | count 1
target datalayout = "E-p:64:64:64-i1:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-f128:128:128"
target triple = "s390x-unknown-linux-gnu"
define i64 @foo(i64 %a, i64 %b, i64 %c, i64 %d, i64 %e, i64 %f, i64* %g) nounwind readnone {
entry:
ret i64 %f
}
define i64 @bar(i64 %a, i64 %b, i64 %c, i64 %d, i64 %e, i64 %f, i64* %g) nounwind readnone {
entry:
%conv = ptrtoint i64* %g to i64 ; <i64> [#uses=1]
ret i64 %conv
}

View File

@ -1,13 +0,0 @@
; RUN: llc < %s | grep 160 | count 1
; RUN: llc < %s | grep 328 | count 1
; RUN: llc < %s | grep 168 | count 1
target datalayout = "E-p:64:64:64-i1:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-f128:128:128"
target triple = "s390x-unknown-linux-gnu"
define noalias i64* @foo(i64 %a, i64 %b, i64 %c, i64 %d, i64 %e, i64 %f) nounwind readnone {
entry:
%g = alloca i64, align 8 ; <i64*> [#uses=1]
%add.ptr = getelementptr i64* %g, i64 %f ; <i64*> [#uses=1]
ret i64* %add.ptr
}

View File

@ -1,12 +0,0 @@
; RUN: llc < %s
target datalayout = "E-p:64:64:64-i1:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-f128:128:128"
target triple = "s390x-unknown-linux-gnu"
define void @foo() nounwind {
entry:
tail call void @bar() nounwind
ret void
}
declare void @bar()

View File

@ -1,141 +0,0 @@
; RUN: llc < %s | grep je | count 1
; RUN: llc < %s | grep jne | count 1
; RUN: llc < %s | grep jhe | count 2
; RUN: llc < %s | grep jle | count 2
; RUN: llc < %s | grep jh | count 4
; RUN: llc < %s | grep jl | count 4
target datalayout = "E-p:64:64:64-i1:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-f128:128:128"
target triple = "s390x-unknown-linux-gnu"
define void @foo(i64 %a, i64 %b) nounwind {
entry:
%cmp = icmp ult i64 %a, %b ; <i1> [#uses=1]
br i1 %cmp, label %if.then, label %if.end
if.then: ; preds = %entry
tail call void @bar() nounwind
ret void
if.end: ; preds = %entry
ret void
}
declare void @bar()
define void @foo1(i64 %a, i64 %b) nounwind {
entry:
%cmp = icmp ugt i64 %a, %b ; <i1> [#uses=1]
br i1 %cmp, label %if.then, label %if.end
if.then: ; preds = %entry
tail call void @bar() nounwind
ret void
if.end: ; preds = %entry
ret void
}
define void @foo2(i64 %a, i64 %b) nounwind {
entry:
%cmp = icmp ugt i64 %a, %b ; <i1> [#uses=1]
br i1 %cmp, label %if.end, label %if.then
if.then: ; preds = %entry
tail call void @bar() nounwind
ret void
if.end: ; preds = %entry
ret void
}
define void @foo3(i64 %a, i64 %b) nounwind {
entry:
%cmp = icmp ult i64 %a, %b ; <i1> [#uses=1]
br i1 %cmp, label %if.end, label %if.then
if.then: ; preds = %entry
tail call void @bar() nounwind
ret void
if.end: ; preds = %entry
ret void
}
define void @foo4(i64 %a, i64 %b) nounwind {
entry:
%cmp = icmp eq i64 %a, %b ; <i1> [#uses=1]
br i1 %cmp, label %if.then, label %if.end
if.then: ; preds = %entry
tail call void @bar() nounwind
ret void
if.end: ; preds = %entry
ret void
}
define void @foo5(i64 %a, i64 %b) nounwind {
entry:
%cmp = icmp eq i64 %a, %b ; <i1> [#uses=1]
br i1 %cmp, label %if.end, label %if.then
if.then: ; preds = %entry
tail call void @bar() nounwind
ret void
if.end: ; preds = %entry
ret void
}
define void @foo6(i64 %a, i64 %b) nounwind {
entry:
%cmp = icmp slt i64 %a, %b ; <i1> [#uses=1]
br i1 %cmp, label %if.then, label %if.end
if.then: ; preds = %entry
tail call void @bar() nounwind
ret void
if.end: ; preds = %entry
ret void
}
define void @foo7(i64 %a, i64 %b) nounwind {
entry:
%cmp = icmp sgt i64 %a, %b ; <i1> [#uses=1]
br i1 %cmp, label %if.then, label %if.end
if.then: ; preds = %entry
tail call void @bar() nounwind
ret void
if.end: ; preds = %entry
ret void
}
define void @foo8(i64 %a, i64 %b) nounwind {
entry:
%cmp = icmp sgt i64 %a, %b ; <i1> [#uses=1]
br i1 %cmp, label %if.end, label %if.then
if.then: ; preds = %entry
tail call void @bar() nounwind
ret void
if.end: ; preds = %entry
ret void
}
define void @foo9(i64 %a, i64 %b) nounwind {
entry:
%cmp = icmp slt i64 %a, %b ; <i1> [#uses=1]
br i1 %cmp, label %if.end, label %if.then
if.then: ; preds = %entry
tail call void @bar() nounwind
ret void
if.end: ; preds = %entry
ret void
}

View File

@ -1,142 +0,0 @@
; RUN: llc < %s | grep je | count 1
; RUN: llc < %s | grep jne | count 1
; RUN: llc < %s | grep jhe | count 2
; RUN: llc < %s | grep jle | count 2
; RUN: llc < %s | grep jh | count 4
; RUN: llc < %s | grep jl | count 4
target datalayout = "E-p:64:64:64-i1:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-f128:128:128"
target triple = "s390x-unknown-linux-gnu"
define void @foo(i32 %a, i32 %b) nounwind {
entry:
%cmp = icmp ult i32 %a, %b ; <i1> [#uses=1]
br i1 %cmp, label %if.then, label %if.end
if.then: ; preds = %entry
tail call void @bar() nounwind
ret void
if.end: ; preds = %entry
ret void
}
declare void @bar()
define void @foo1(i32 %a, i32 %b) nounwind {
entry:
%cmp = icmp ugt i32 %a, %b ; <i1> [#uses=1]
br i1 %cmp, label %if.then, label %if.end
if.then: ; preds = %entry
tail call void @bar() nounwind
ret void
if.end: ; preds = %entry
ret void
}
define void @foo2(i32 %a, i32 %b) nounwind {
entry:
%cmp = icmp ugt i32 %a, %b ; <i1> [#uses=1]
br i1 %cmp, label %if.end, label %if.then
if.then: ; preds = %entry
tail call void @bar() nounwind
ret void
if.end: ; preds = %entry
ret void
}
define void @foo3(i32 %a, i32 %b) nounwind {
entry:
%cmp = icmp ult i32 %a, %b ; <i1> [#uses=1]
br i1 %cmp, label %if.end, label %if.then
if.then: ; preds = %entry
tail call void @bar() nounwind
ret void
if.end: ; preds = %entry
ret void
}
define void @foo4(i32 %a, i32 %b) nounwind {
entry:
%cmp = icmp eq i32 %a, %b ; <i1> [#uses=1]
br i1 %cmp, label %if.then, label %if.end
if.then: ; preds = %entry
tail call void @bar() nounwind
ret void
if.end: ; preds = %entry
ret void
}
define void @foo5(i32 %a, i32 %b) nounwind {
entry:
%cmp = icmp eq i32 %a, %b ; <i1> [#uses=1]
br i1 %cmp, label %if.end, label %if.then
if.then: ; preds = %entry
tail call void @bar() nounwind
ret void
if.end: ; preds = %entry
ret void
}
define void @foo6(i32 %a, i32 %b) nounwind {
entry:
%cmp = icmp slt i32 %a, %b ; <i1> [#uses=1]
br i1 %cmp, label %if.then, label %if.end
if.then: ; preds = %entry
tail call void @bar() nounwind
ret void
if.end: ; preds = %entry
ret void
}
define void @foo7(i32 %a, i32 %b) nounwind {
entry:
%cmp = icmp sgt i32 %a, %b ; <i1> [#uses=1]
br i1 %cmp, label %if.then, label %if.end
if.then: ; preds = %entry
tail call void @bar() nounwind
ret void
if.end: ; preds = %entry
ret void
}
define void @foo8(i32 %a, i32 %b) nounwind {
entry:
%cmp = icmp sgt i32 %a, %b ; <i1> [#uses=1]
br i1 %cmp, label %if.end, label %if.then
if.then: ; preds = %entry
tail call void @bar() nounwind
ret void
if.end: ; preds = %entry
ret void
}
define void @foo9(i32 %a, i32 %b) nounwind {
entry:
%cmp = icmp slt i32 %a, %b ; <i1> [#uses=1]
br i1 %cmp, label %if.end, label %if.then
if.then: ; preds = %entry
tail call void @bar() nounwind
ret void
if.end: ; preds = %entry
ret void
}

View File

@ -1,18 +0,0 @@
; RUN: llc < %s
target datalayout = "E-p:64:64:64-i1:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-f128:128:128"
target triple = "s390x-ibm-linux"
define void @foo() noreturn nounwind {
entry:
tail call void @baz() nounwind
br label %l1
l1: ; preds = %entry, %l1
tail call void @bar() nounwind
br label %l1
}
declare void @bar()
declare void @baz()

View File

@ -1,137 +0,0 @@
; RUN: llc < %s | grep cgfi | count 8
; RUN: llc < %s | grep clgfi | count 2
target datalayout = "E-p:64:64:64-i1:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-f128:128:128"
target triple = "s390x-unknown-linux-gnu"
define void @foo(i64 %a, i64 %b) nounwind {
entry:
%cmp = icmp eq i64 %a, 0 ; <i1> [#uses=1]
br i1 %cmp, label %if.then, label %if.end
if.then: ; preds = %entry
tail call void @bar() nounwind
ret void
if.end: ; preds = %entry
ret void
}
declare void @bar()
define void @foo1(i64 %a, i64 %b) nounwind {
entry:
%cmp = icmp ugt i64 %a, 1 ; <i1> [#uses=1]
br i1 %cmp, label %if.then, label %if.end
if.then: ; preds = %entry
tail call void @bar() nounwind
ret void
if.end: ; preds = %entry
ret void
}
define void @foo2(i64 %a, i64 %b) nounwind {
entry:
%cmp = icmp ugt i64 %a, 1 ; <i1> [#uses=1]
br i1 %cmp, label %if.end, label %if.then
if.then: ; preds = %entry
tail call void @bar() nounwind
ret void
if.end: ; preds = %entry
ret void
}
define void @foo3(i64 %a) nounwind {
entry:
%cmp = icmp eq i64 %a, 0 ; <i1> [#uses=1]
br i1 %cmp, label %if.end, label %if.then
if.then: ; preds = %entry
tail call void @bar() nounwind
ret void
if.end: ; preds = %entry
ret void
}
define void @foo4(i64 %a) nounwind {
entry:
%cmp = icmp eq i64 %a, 1 ; <i1> [#uses=1]
br i1 %cmp, label %if.then, label %if.end
if.then: ; preds = %entry
tail call void @bar() nounwind
ret void
if.end: ; preds = %entry
ret void
}
define void @foo5(i64 %a) nounwind {
entry:
%cmp = icmp eq i64 %a, 1 ; <i1> [#uses=1]
br i1 %cmp, label %if.end, label %if.then
if.then: ; preds = %entry
tail call void @bar() nounwind
ret void
if.end: ; preds = %entry
ret void
}
define void @foo6(i64 %a) nounwind {
entry:
%cmp = icmp slt i64 %a, 1 ; <i1> [#uses=1]
br i1 %cmp, label %if.then, label %if.end
if.then: ; preds = %entry
tail call void @bar() nounwind
ret void
if.end: ; preds = %entry
ret void
}
define void @foo7(i64 %a) nounwind {
entry:
%cmp = icmp sgt i64 %a, 1 ; <i1> [#uses=1]
br i1 %cmp, label %if.then, label %if.end
if.then: ; preds = %entry
tail call void @bar() nounwind
ret void
if.end: ; preds = %entry
ret void
}
define void @foo8(i64 %a) nounwind {
entry:
%cmp = icmp sgt i64 %a, 1 ; <i1> [#uses=1]
br i1 %cmp, label %if.end, label %if.then
if.then: ; preds = %entry
tail call void @bar() nounwind
ret void
if.end: ; preds = %entry
ret void
}
define void @foo9(i64 %a) nounwind {
entry:
%cmp = icmp slt i64 %a, 1 ; <i1> [#uses=1]
br i1 %cmp, label %if.end, label %if.then
if.then: ; preds = %entry
tail call void @bar() nounwind
ret void
if.end: ; preds = %entry
ret void
}

View File

@ -1,139 +0,0 @@
; RUN: llc < %s | grep jl | count 3
; RUN: llc < %s | grep jh | count 3
; RUN: llc < %s | grep je | count 2
; RUN: llc < %s | grep jne | count 2
target datalayout = "E-p:64:64:64-i1:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-f128:128:128"
target triple = "s390x-unknown-linux-gnu"
define void @foo(i32 %a, i32 %b) nounwind {
entry:
%cmp = icmp eq i32 %a, 0 ; <i1> [#uses=1]
br i1 %cmp, label %if.then, label %if.end
if.then: ; preds = %entry
tail call void @bar() nounwind
ret void
if.end: ; preds = %entry
ret void
}
declare void @bar()
define void @foo1(i32 %a, i32 %b) nounwind {
entry:
%cmp = icmp ugt i32 %a, 1 ; <i1> [#uses=1]
br i1 %cmp, label %if.then, label %if.end
if.then: ; preds = %entry
tail call void @bar() nounwind
ret void
if.end: ; preds = %entry
ret void
}
define void @foo2(i32 %a, i32 %b) nounwind {
entry:
%cmp = icmp ugt i32 %a, 1 ; <i1> [#uses=1]
br i1 %cmp, label %if.end, label %if.then
if.then: ; preds = %entry
tail call void @bar() nounwind
ret void
if.end: ; preds = %entry
ret void
}
define void @foo3(i32 %a) nounwind {
entry:
%cmp = icmp eq i32 %a, 0 ; <i1> [#uses=1]
br i1 %cmp, label %if.end, label %if.then
if.then: ; preds = %entry
tail call void @bar() nounwind
ret void
if.end: ; preds = %entry
ret void
}
define void @foo4(i32 %a) nounwind {
entry:
%cmp = icmp eq i32 %a, 1 ; <i1> [#uses=1]
br i1 %cmp, label %if.then, label %if.end
if.then: ; preds = %entry
tail call void @bar() nounwind
ret void
if.end: ; preds = %entry
ret void
}
define void @foo5(i32 %a) nounwind {
entry:
%cmp = icmp eq i32 %a, 1 ; <i1> [#uses=1]
br i1 %cmp, label %if.end, label %if.then
if.then: ; preds = %entry
tail call void @bar() nounwind
ret void
if.end: ; preds = %entry
ret void
}
define void @foo6(i32 %a) nounwind {
entry:
%cmp = icmp slt i32 %a, 1 ; <i1> [#uses=1]
br i1 %cmp, label %if.then, label %if.end
if.then: ; preds = %entry
tail call void @bar() nounwind
ret void
if.end: ; preds = %entry
ret void
}
define void @foo7(i32 %a) nounwind {
entry:
%cmp = icmp sgt i32 %a, 1 ; <i1> [#uses=1]
br i1 %cmp, label %if.then, label %if.end
if.then: ; preds = %entry
tail call void @bar() nounwind
ret void
if.end: ; preds = %entry
ret void
}
define void @foo8(i32 %a) nounwind {
entry:
%cmp = icmp sgt i32 %a, 1 ; <i1> [#uses=1]
br i1 %cmp, label %if.end, label %if.then
if.then: ; preds = %entry
tail call void @bar() nounwind
ret void
if.end: ; preds = %entry
ret void
}
define void @foo9(i32 %a) nounwind {
entry:
%cmp = icmp slt i32 %a, 1 ; <i1> [#uses=1]
br i1 %cmp, label %if.end, label %if.then
if.then: ; preds = %entry
tail call void @bar() nounwind
ret void
if.end: ; preds = %entry
ret void
}

View File

@ -1,11 +0,0 @@
; RUN: llc < %s | grep clgr
target datalayout = "E-p:64:64:64-i1:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-f128:128:128"
target triple = "s390x-unknown-linux-gnu"
define i64 @foo(i64 %a, i64 %b) nounwind readnone {
entry:
%cmp = icmp ult i64 %a, %b ; <i1> [#uses=1]
%cond = select i1 %cmp, i64 %a, i64 %b ; <i64> [#uses=1]
ret i64 %cond
}

View File

@ -1,55 +0,0 @@
; RUN: llc < %s | grep dsgr | count 2
; RUN: llc < %s | grep dsgfr | count 2
; RUN: llc < %s | grep dlr | count 2
; RUN: llc < %s | grep dlgr | count 2
target datalayout = "E-p:64:64:64-i1:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-f128:128:128"
target triple = "s390x-unknown-linux-gnu"
define i64 @div(i64 %a, i64 %b) nounwind readnone {
entry:
%div = sdiv i64 %a, %b ; <i64> [#uses=1]
ret i64 %div
}
define i32 @div1(i32 %a, i32 %b) nounwind readnone {
entry:
%div = sdiv i32 %a, %b ; <i32> [#uses=1]
ret i32 %div
}
define i64 @div2(i64 %a, i64 %b) nounwind readnone {
entry:
%div = udiv i64 %a, %b ; <i64> [#uses=1]
ret i64 %div
}
define i32 @div3(i32 %a, i32 %b) nounwind readnone {
entry:
%div = udiv i32 %a, %b ; <i32> [#uses=1]
ret i32 %div
}
define i64 @rem(i64 %a, i64 %b) nounwind readnone {
entry:
%rem = srem i64 %a, %b ; <i64> [#uses=1]
ret i64 %rem
}
define i32 @rem1(i32 %a, i32 %b) nounwind readnone {
entry:
%rem = srem i32 %a, %b ; <i32> [#uses=1]
ret i32 %rem
}
define i64 @rem2(i64 %a, i64 %b) nounwind readnone {
entry:
%rem = urem i64 %a, %b ; <i64> [#uses=1]
ret i64 %rem
}
define i32 @rem3(i32 %a, i32 %b) nounwind readnone {
entry:
%rem = urem i32 %a, %b ; <i32> [#uses=1]
ret i32 %rem
}

View File

@ -1,64 +0,0 @@
; RUN: llc < %s | grep {dsgf.%} | count 2
; RUN: llc < %s | grep {dsg.%} | count 2
; RUN: llc < %s | grep {dl.%} | count 2
; RUN: llc < %s | grep dlg | count 2
target datalayout = "E-p:64:64:64-i1:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-f128:128:128"
target triple = "s390x-unknown-linux-gnu"
define i64 @div(i64 %a, i64* %b) nounwind readnone {
entry:
%b1 = load i64* %b
%div = sdiv i64 %a, %b1
ret i64 %div
}
define i64 @div1(i64 %a, i64* %b) nounwind readnone {
entry:
%b1 = load i64* %b
%div = udiv i64 %a, %b1
ret i64 %div
}
define i64 @rem(i64 %a, i64* %b) nounwind readnone {
entry:
%b1 = load i64* %b
%div = srem i64 %a, %b1
ret i64 %div
}
define i64 @rem1(i64 %a, i64* %b) nounwind readnone {
entry:
%b1 = load i64* %b
%div = urem i64 %a, %b1
ret i64 %div
}
define i32 @div2(i32 %a, i32* %b) nounwind readnone {
entry:
%b1 = load i32* %b
%div = sdiv i32 %a, %b1
ret i32 %div
}
define i32 @div3(i32 %a, i32* %b) nounwind readnone {
entry:
%b1 = load i32* %b
%div = udiv i32 %a, %b1
ret i32 %div
}
define i32 @rem2(i32 %a, i32* %b) nounwind readnone {
entry:
%b1 = load i32* %b
%div = srem i32 %a, %b1
ret i32 %div
}
define i32 @rem3(i32 %a, i32* %b) nounwind readnone {
entry:
%b1 = load i32* %b
%div = urem i32 %a, %b1
ret i32 %div
}

View File

@ -1,29 +0,0 @@
; RUN: llc < %s | grep msgr | count 2
; RUN: llc < %s | grep msr | count 2
target datalayout = "E-p:64:64:64-i1:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-f128:128:128"
target triple = "s390x-unknown-linux-gnu"
define i64 @foo(i64 %a, i64 %b) nounwind readnone {
entry:
%mul = mul i64 %b, %a ; <i64> [#uses=1]
ret i64 %mul
}
define i64 @foo2(i64 %a, i64 %b) nounwind readnone {
entry:
%mul = mul i64 %b, %a ; <i64> [#uses=1]
ret i64 %mul
}
define i32 @foo3(i32 %a, i32 %b) nounwind readnone {
entry:
%mul = mul i32 %b, %a ; <i32> [#uses=1]
ret i32 %mul
}
define i32 @foo4(i32 %a, i32 %b) nounwind readnone {
entry:
%mul = mul i32 %b, %a ; <i32> [#uses=1]
ret i32 %mul
}

View File

@ -1,14 +0,0 @@
; RUN: llc < %s
target datalayout = "E-p:64:64:64-i8:8:16-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-f128:128:128-a0:16:16"
target triple = "s390x-ibm-linux"
define void @foo(i64 %N) nounwind {
entry:
%N3 = trunc i64 %N to i32 ; <i32> [#uses=1]
%vla = alloca i8, i32 %N3, align 2 ; <i8*> [#uses=1]
call void @bar(i8* %vla) nounwind
ret void
}
declare void @bar(i8*)

View File

@ -1,23 +0,0 @@
; RUN: llc < %s | grep larl | count 3
target datalayout = "E-p:64:64:64-i1:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-f128:128:128"
target triple = "s390x-ibm-linux"
@bar = common global i64 0, align 8 ; <i64*> [#uses=3]
define i64 @foo() nounwind readonly {
entry:
%tmp = load i64* @bar ; <i64> [#uses=1]
ret i64 %tmp
}
define i64* @foo2() nounwind readnone {
entry:
ret i64* @bar
}
define i64* @foo3(i64 %idx) nounwind readnone {
entry:
%add.ptr.sum = add i64 %idx, 1 ; <i64> [#uses=1]
%add.ptr2 = getelementptr i64* @bar, i64 %add.ptr.sum ; <i64*> [#uses=1]
ret i64* %add.ptr2
}

View File

@ -1,39 +0,0 @@
; RUN: llc < %s -march=systemz | grep larl
define i32 @main(i32 %tmp158) {
entry:
switch i32 %tmp158, label %bb336 [
i32 -2147483648, label %bb338
i32 -2147483647, label %bb338
i32 -2147483646, label %bb338
i32 120, label %bb338
i32 121, label %bb339
i32 122, label %bb340
i32 123, label %bb341
i32 124, label %bb342
i32 125, label %bb343
i32 126, label %bb336
i32 1024, label %bb338
i32 0, label %bb338
i32 1, label %bb338
i32 2, label %bb338
i32 3, label %bb338
i32 4, label %bb338
i32 5, label %bb338
]
bb336:
ret i32 10
bb338:
ret i32 11
bb339:
ret i32 12
bb340:
ret i32 13
bb341:
ret i32 14
bb342:
ret i32 15
bb343:
ret i32 18
}

View File

@ -1,27 +0,0 @@
; RUN: llc < %s -relocation-model=pic | grep GOTENT | count 3
; RUN: llc < %s -relocation-model=pic | grep PLT | count 1
target datalayout = "E-p:64:64:64-i8:8:16-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-f128:128:128-a0:16:16"
target triple = "s390x-ibm-linux"
@ptr = external global void (...)* ; <void (...)**> [#uses=2]
define void @foo1() nounwind {
entry:
store void (...)* @func, void (...)** @ptr
ret void
}
declare void @func(...)
define void @foo2() nounwind {
entry:
tail call void (...)* @func() nounwind
ret void
}
define void @foo3() nounwind {
entry:
%tmp = load void (...)** @ptr ; <void (...)*> [#uses=1]
tail call void (...)* %tmp() nounwind
ret void
}

View File

@ -1,29 +0,0 @@
; RUN: llc < %s -relocation-model=pic | grep GOTENT | count 6
target datalayout = "E-p:64:64:64-i8:8:16-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-f128:128:128-a0:16:16"
target triple = "s390x-ibm-linux"
@src = external global i32 ; <i32*> [#uses=2]
@dst = external global i32 ; <i32*> [#uses=2]
@ptr = external global i32* ; <i32**> [#uses=2]
define void @foo1() nounwind {
entry:
%tmp = load i32* @src ; <i32> [#uses=1]
store i32 %tmp, i32* @dst
ret void
}
define void @foo2() nounwind {
entry:
store i32* @dst, i32** @ptr
ret void
}
define void @foo3() nounwind {
entry:
%tmp = load i32* @src ; <i32> [#uses=1]
%tmp1 = load i32** @ptr ; <i32*> [#uses=1]
%arrayidx = getelementptr i32* %tmp1, i64 1 ; <i32*> [#uses=1]
store i32 %tmp, i32* %arrayidx
ret void
}

Some files were not shown because too many files have changed in this diff Show More