Special case simple binary operator X op C

This avoid generating a register to hold C, which in turn speeds up the
  register allocator by a lot: ~9% on 164.gzip and ~17% on 256.bzip2.  This
  also speeds up other passes.  This also speeds up execution of the program
  marginally, and makes the asm much easier to read. :)


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@6626 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2003-06-05 18:28:55 +00:00
parent 76594014f2
commit 35333e16ee
2 changed files with 114 additions and 58 deletions

View File

@ -983,36 +983,64 @@ void ISel::emitSimpleBinaryOperation(MachineBasicBlock *BB,
Value *Op0, Value *Op1,
unsigned OperatorClass,unsigned TargetReg){
unsigned Class = getClassB(Op0->getType());
static const unsigned OpcodeTab[][4] = {
// Arithmetic operators
{ X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, X86::FpADD }, // ADD
{ X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, X86::FpSUB }, // SUB
// Bitwise operators
{ X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
{ X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
{ X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
};
bool isLong = false;
if (Class == cLong) {
isLong = true;
Class = cInt; // Bottom 32 bits are handled just like ints
}
unsigned Opcode = OpcodeTab[OperatorClass][Class];
assert(Opcode && "Floating point arguments to logical inst?");
unsigned Op0r = getReg(Op0, BB, IP);
unsigned Op1r = getReg(Op1, BB, IP);
BMI(BB, IP, Opcode, 2, TargetReg).addReg(Op0r).addReg(Op1r);
if (isLong) { // Handle the upper 32 bits of long values...
static const unsigned TopTab[] = {
X86::ADCrr32, X86::SBBrr32, X86::ANDrr32, X86::ORrr32, X86::XORrr32
if (!isa<ConstantInt>(Op1) || Class == cLong) {
static const unsigned OpcodeTab[][4] = {
// Arithmetic operators
{ X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, X86::FpADD }, // ADD
{ X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, X86::FpSUB }, // SUB
// Bitwise operators
{ X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
{ X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
{ X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
};
BMI(BB, IP, TopTab[OperatorClass], 2,
TargetReg+1).addReg(Op0r+1).addReg(Op1r+1);
bool isLong = false;
if (Class == cLong) {
isLong = true;
Class = cInt; // Bottom 32 bits are handled just like ints
}
unsigned Opcode = OpcodeTab[OperatorClass][Class];
assert(Opcode && "Floating point arguments to logical inst?");
unsigned Op0r = getReg(Op0, BB, IP);
unsigned Op1r = getReg(Op1, BB, IP);
BMI(BB, IP, Opcode, 2, TargetReg).addReg(Op0r).addReg(Op1r);
if (isLong) { // Handle the upper 32 bits of long values...
static const unsigned TopTab[] = {
X86::ADCrr32, X86::SBBrr32, X86::ANDrr32, X86::ORrr32, X86::XORrr32
};
BMI(BB, IP, TopTab[OperatorClass], 2,
TargetReg+1).addReg(Op0r+1).addReg(Op1r+1);
}
} else {
// Special case: op Reg, <const>
ConstantInt *Op1C = cast<ConstantInt>(Op1);
static const unsigned OpcodeTab[][3] = {
// Arithmetic operators
{ X86::ADDri8, X86::ADDri16, X86::ADDri32 }, // ADD
{ X86::SUBri8, X86::SUBri16, X86::SUBri32 }, // SUB
// Bitwise operators
{ X86::ANDri8, X86::ANDri16, X86::ANDri32 }, // AND
{ X86:: ORri8, X86:: ORri16, X86:: ORri32 }, // OR
{ X86::XORri8, X86::XORri16, X86::XORri32 }, // XOR
};
assert(Class < 3 && "General code handles 64-bit integer types!");
unsigned Opcode = OpcodeTab[OperatorClass][Class];
unsigned Op0r = getReg(Op0, BB, IP);
uint64_t Op1v;
if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(Op1C))
Op1v = CSI->getValue();
else
Op1v = cast<ConstantUInt>(Op1C)->getValue();
// Mask off any upper bits of the constant, if there are any...
Op1v &= (1ULL << (8 << Class)) - 1;
BMI(BB, IP, Opcode, 2, TargetReg).addReg(Op0r).addZImm(Op1v);
}
}

View File

@ -983,36 +983,64 @@ void ISel::emitSimpleBinaryOperation(MachineBasicBlock *BB,
Value *Op0, Value *Op1,
unsigned OperatorClass,unsigned TargetReg){
unsigned Class = getClassB(Op0->getType());
static const unsigned OpcodeTab[][4] = {
// Arithmetic operators
{ X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, X86::FpADD }, // ADD
{ X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, X86::FpSUB }, // SUB
// Bitwise operators
{ X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
{ X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
{ X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
};
bool isLong = false;
if (Class == cLong) {
isLong = true;
Class = cInt; // Bottom 32 bits are handled just like ints
}
unsigned Opcode = OpcodeTab[OperatorClass][Class];
assert(Opcode && "Floating point arguments to logical inst?");
unsigned Op0r = getReg(Op0, BB, IP);
unsigned Op1r = getReg(Op1, BB, IP);
BMI(BB, IP, Opcode, 2, TargetReg).addReg(Op0r).addReg(Op1r);
if (isLong) { // Handle the upper 32 bits of long values...
static const unsigned TopTab[] = {
X86::ADCrr32, X86::SBBrr32, X86::ANDrr32, X86::ORrr32, X86::XORrr32
if (!isa<ConstantInt>(Op1) || Class == cLong) {
static const unsigned OpcodeTab[][4] = {
// Arithmetic operators
{ X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, X86::FpADD }, // ADD
{ X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, X86::FpSUB }, // SUB
// Bitwise operators
{ X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
{ X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
{ X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
};
BMI(BB, IP, TopTab[OperatorClass], 2,
TargetReg+1).addReg(Op0r+1).addReg(Op1r+1);
bool isLong = false;
if (Class == cLong) {
isLong = true;
Class = cInt; // Bottom 32 bits are handled just like ints
}
unsigned Opcode = OpcodeTab[OperatorClass][Class];
assert(Opcode && "Floating point arguments to logical inst?");
unsigned Op0r = getReg(Op0, BB, IP);
unsigned Op1r = getReg(Op1, BB, IP);
BMI(BB, IP, Opcode, 2, TargetReg).addReg(Op0r).addReg(Op1r);
if (isLong) { // Handle the upper 32 bits of long values...
static const unsigned TopTab[] = {
X86::ADCrr32, X86::SBBrr32, X86::ANDrr32, X86::ORrr32, X86::XORrr32
};
BMI(BB, IP, TopTab[OperatorClass], 2,
TargetReg+1).addReg(Op0r+1).addReg(Op1r+1);
}
} else {
// Special case: op Reg, <const>
ConstantInt *Op1C = cast<ConstantInt>(Op1);
static const unsigned OpcodeTab[][3] = {
// Arithmetic operators
{ X86::ADDri8, X86::ADDri16, X86::ADDri32 }, // ADD
{ X86::SUBri8, X86::SUBri16, X86::SUBri32 }, // SUB
// Bitwise operators
{ X86::ANDri8, X86::ANDri16, X86::ANDri32 }, // AND
{ X86:: ORri8, X86:: ORri16, X86:: ORri32 }, // OR
{ X86::XORri8, X86::XORri16, X86::XORri32 }, // XOR
};
assert(Class < 3 && "General code handles 64-bit integer types!");
unsigned Opcode = OpcodeTab[OperatorClass][Class];
unsigned Op0r = getReg(Op0, BB, IP);
uint64_t Op1v;
if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(Op1C))
Op1v = CSI->getValue();
else
Op1v = cast<ConstantUInt>(Op1C)->getValue();
// Mask off any upper bits of the constant, if there are any...
Op1v &= (1ULL << (8 << Class)) - 1;
BMI(BB, IP, Opcode, 2, TargetReg).addReg(Op0r).addZImm(Op1v);
}
}