mirror of
https://github.com/RPCSX/llvm.git
synced 2024-11-25 04:39:44 +00:00
Remove GCSE, ValueNumbering, and LoadValueNumbering. These have been deprecated for almost a year; it's finally time for them to go away.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@54822 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
35115f92e4
commit
3688f268cb
@ -1,35 +0,0 @@
|
||||
//===- llvm/Analysis/LoadValueNumbering.h - Value # Load Insts --*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file defines a value numbering pass that value #'s load instructions.
|
||||
// To do this, it finds lexically identical load instructions, and uses alias
|
||||
// analysis to determine which loads are guaranteed to produce the same value.
|
||||
//
|
||||
// This pass builds off of another value numbering pass to implement value
|
||||
// numbering for non-load instructions. It uses Alias Analysis so that it can
|
||||
// disambiguate the load instructions. The more powerful these base analyses
|
||||
// are, the more powerful the resultant analysis will be.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_ANALYSIS_LOAD_VALUE_NUMBERING_H
|
||||
#define LLVM_ANALYSIS_LOAD_VALUE_NUMBERING_H
|
||||
|
||||
namespace llvm {
|
||||
|
||||
class FunctionPass;
|
||||
|
||||
/// createLoadValueNumberingPass - Create and return a new pass that implements
|
||||
/// the ValueNumbering interface.
|
||||
///
|
||||
FunctionPass *createLoadValueNumberingPass();
|
||||
|
||||
} // End llvm namespace
|
||||
|
||||
#endif
|
@ -77,13 +77,6 @@ namespace llvm {
|
||||
//
|
||||
ModulePass *createAndersensPass();
|
||||
|
||||
//===--------------------------------------------------------------------===//
|
||||
//
|
||||
// createBasicVNPass - This pass walks SSA def-use chains to trivially
|
||||
// identify lexically identical expressions.
|
||||
//
|
||||
ImmutablePass *createBasicVNPass();
|
||||
|
||||
//===--------------------------------------------------------------------===//
|
||||
//
|
||||
// createProfileLoaderPass - This pass loads information from a profile dump
|
||||
|
@ -1,75 +0,0 @@
|
||||
//===- llvm/Analysis/ValueNumbering.h - Value #'ing Interface ---*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file defines the abstract ValueNumbering interface, which is used as the
|
||||
// common interface used by all clients of value numbering information, and
|
||||
// implemented by all value numbering implementations.
|
||||
//
|
||||
// Implementations of this interface must implement the various virtual methods,
|
||||
// which automatically provides functionality for the entire suite of client
|
||||
// APIs.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_ANALYSIS_VALUE_NUMBERING_H
|
||||
#define LLVM_ANALYSIS_VALUE_NUMBERING_H
|
||||
|
||||
#include <vector>
|
||||
#include "llvm/Pass.h"
|
||||
#include "llvm/System/IncludeFile.h"
|
||||
|
||||
namespace llvm {
|
||||
|
||||
class Value;
|
||||
class Instruction;
|
||||
|
||||
struct ValueNumbering {
|
||||
static char ID; // Class identification, replacement for typeinfo
|
||||
virtual ~ValueNumbering(); // We want to be subclassed
|
||||
|
||||
/// getEqualNumberNodes - Return nodes with the same value number as the
|
||||
/// specified Value. This fills in the argument vector with any equal values.
|
||||
///
|
||||
virtual void getEqualNumberNodes(Value *V1,
|
||||
std::vector<Value*> &RetVals) const = 0;
|
||||
|
||||
///===-------------------------------------------------------------------===//
|
||||
/// Interfaces to update value numbering analysis information as the client
|
||||
/// changes the program.
|
||||
///
|
||||
|
||||
/// deleteValue - This method should be called whenever an LLVM Value is
|
||||
/// deleted from the program, for example when an instruction is found to be
|
||||
/// redundant and is eliminated.
|
||||
///
|
||||
virtual void deleteValue(Value *V) {}
|
||||
|
||||
/// copyValue - This method should be used whenever a preexisting value in the
|
||||
/// program is copied or cloned, introducing a new value. Note that analysis
|
||||
/// implementations should tolerate clients that use this method to introduce
|
||||
/// the same value multiple times: if the analysis already knows about a
|
||||
/// value, it should ignore the request.
|
||||
///
|
||||
virtual void copyValue(Value *From, Value *To) {}
|
||||
|
||||
/// replaceWithNewValue - This method is the obvious combination of the two
|
||||
/// above, and it provided as a helper to simplify client code.
|
||||
///
|
||||
void replaceWithNewValue(Value *Old, Value *New) {
|
||||
copyValue(Old, New);
|
||||
deleteValue(Old);
|
||||
}
|
||||
};
|
||||
|
||||
} // End llvm namespace
|
||||
|
||||
// Force any file including this header to get the implementation as well
|
||||
FORCE_DEFINING_FILE_TO_BE_LINKED(BasicValueNumbering)
|
||||
|
||||
#endif
|
@ -18,7 +18,6 @@
|
||||
#include "llvm/Analysis/AliasSetTracker.h"
|
||||
#include "llvm/Analysis/FindUsedTypes.h"
|
||||
#include "llvm/Analysis/IntervalPartition.h"
|
||||
#include "llvm/Analysis/LoadValueNumbering.h"
|
||||
#include "llvm/Analysis/LoopVR.h"
|
||||
#include "llvm/Analysis/Passes.h"
|
||||
#include "llvm/Analysis/PostDominators.h"
|
||||
@ -50,7 +49,6 @@ namespace {
|
||||
(void) llvm::createStructRetPromotionPass();
|
||||
(void) llvm::createBasicAliasAnalysisPass();
|
||||
(void) llvm::createLibCallAliasAnalysisPass(0);
|
||||
(void) llvm::createBasicVNPass();
|
||||
(void) llvm::createBlockPlacementPass();
|
||||
(void) llvm::createBlockProfilerPass();
|
||||
(void) llvm::createBreakCriticalEdgesPass();
|
||||
@ -65,7 +63,6 @@ namespace {
|
||||
(void) llvm::createEdgeProfilerPass();
|
||||
(void) llvm::createFunctionInliningPass();
|
||||
(void) llvm::createFunctionProfilerPass();
|
||||
(void) llvm::createGCSEPass();
|
||||
(void) llvm::createGlobalDCEPass();
|
||||
(void) llvm::createGlobalOptimizerPass();
|
||||
(void) llvm::createGlobalsModRefPass();
|
||||
@ -77,7 +74,6 @@ namespace {
|
||||
(void) llvm::createInternalizePass(false);
|
||||
(void) llvm::createLCSSAPass();
|
||||
(void) llvm::createLICMPass();
|
||||
(void) llvm::createLoadValueNumberingPass();
|
||||
(void) llvm::createLoopExtractorPass();
|
||||
(void) llvm::createLoopSimplifyPass();
|
||||
(void) llvm::createLoopStrengthReducePass();
|
||||
|
@ -76,15 +76,6 @@ FunctionPass *createAggressiveDCEPass();
|
||||
//
|
||||
FunctionPass *createScalarReplAggregatesPass(signed Threshold = -1);
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// GCSE - This pass is designed to be a very quick global transformation that
|
||||
// eliminates global common subexpressions from a function. It does this by
|
||||
// examining the SSA value graph of the function, instead of doing slow
|
||||
// bit-vector computations.
|
||||
//
|
||||
FunctionPass *createGCSEPass();
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// InductionVariableSimplify - Transform induction variables in a program to all
|
||||
|
@ -1,530 +0,0 @@
|
||||
//===- LoadValueNumbering.cpp - Load Value #'ing Implementation -*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file implements a value numbering pass that value numbers load and call
|
||||
// instructions. To do this, it finds lexically identical load instructions,
|
||||
// and uses alias analysis to determine which loads are guaranteed to produce
|
||||
// the same value. To value number call instructions, it looks for calls to
|
||||
// functions that do not write to memory which do not have intervening
|
||||
// instructions that clobber the memory that is read from.
|
||||
//
|
||||
// This pass builds off of another value numbering pass to implement value
|
||||
// numbering for non-load and non-call instructions. It uses Alias Analysis so
|
||||
// that it can disambiguate the load instructions. The more powerful these base
|
||||
// analyses are, the more powerful the resultant value numbering will be.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Analysis/LoadValueNumbering.h"
|
||||
#include "llvm/Constants.h"
|
||||
#include "llvm/Function.h"
|
||||
#include "llvm/Instructions.h"
|
||||
#include "llvm/Pass.h"
|
||||
#include "llvm/Type.h"
|
||||
#include "llvm/Analysis/ValueNumbering.h"
|
||||
#include "llvm/Analysis/AliasAnalysis.h"
|
||||
#include "llvm/Analysis/Dominators.h"
|
||||
#include "llvm/Support/CFG.h"
|
||||
#include "llvm/Support/Compiler.h"
|
||||
#include "llvm/Target/TargetData.h"
|
||||
#include <set>
|
||||
#include <algorithm>
|
||||
using namespace llvm;
|
||||
|
||||
namespace {
|
||||
// FIXME: This should not be a FunctionPass.
|
||||
struct VISIBILITY_HIDDEN LoadVN : public FunctionPass, public ValueNumbering {
|
||||
static char ID; // Class identification, replacement for typeinfo
|
||||
LoadVN() : FunctionPass((intptr_t)&ID) {}
|
||||
|
||||
/// Pass Implementation stuff. This doesn't do any analysis.
|
||||
///
|
||||
bool runOnFunction(Function &) { return false; }
|
||||
|
||||
/// getAnalysisUsage - Does not modify anything. It uses Value Numbering
|
||||
/// and Alias Analysis.
|
||||
///
|
||||
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
|
||||
|
||||
/// getEqualNumberNodes - Return nodes with the same value number as the
|
||||
/// specified Value. This fills in the argument vector with any equal
|
||||
/// values.
|
||||
///
|
||||
virtual void getEqualNumberNodes(Value *V1,
|
||||
std::vector<Value*> &RetVals) const;
|
||||
|
||||
/// deleteValue - This method should be called whenever an LLVM Value is
|
||||
/// deleted from the program, for example when an instruction is found to be
|
||||
/// redundant and is eliminated.
|
||||
///
|
||||
virtual void deleteValue(Value *V) {
|
||||
getAnalysis<AliasAnalysis>().deleteValue(V);
|
||||
}
|
||||
|
||||
/// copyValue - This method should be used whenever a preexisting value in
|
||||
/// the program is copied or cloned, introducing a new value. Note that
|
||||
/// analysis implementations should tolerate clients that use this method to
|
||||
/// introduce the same value multiple times: if the analysis already knows
|
||||
/// about a value, it should ignore the request.
|
||||
///
|
||||
virtual void copyValue(Value *From, Value *To) {
|
||||
getAnalysis<AliasAnalysis>().copyValue(From, To);
|
||||
}
|
||||
|
||||
/// getCallEqualNumberNodes - Given a call instruction, find other calls
|
||||
/// that have the same value number.
|
||||
void getCallEqualNumberNodes(CallInst *CI,
|
||||
std::vector<Value*> &RetVals) const;
|
||||
};
|
||||
}
|
||||
|
||||
char LoadVN::ID = 0;
|
||||
// Register this pass...
|
||||
static RegisterPass<LoadVN>
|
||||
X("load-vn", "Load Value Numbering", false, true);
|
||||
|
||||
// Declare that we implement the ValueNumbering interface
|
||||
static RegisterAnalysisGroup<ValueNumbering> Y(X);
|
||||
|
||||
FunctionPass *llvm::createLoadValueNumberingPass() { return new LoadVN(); }
|
||||
|
||||
|
||||
/// getAnalysisUsage - Does not modify anything. It uses Value Numbering and
|
||||
/// Alias Analysis.
|
||||
///
|
||||
void LoadVN::getAnalysisUsage(AnalysisUsage &AU) const {
|
||||
AU.setPreservesAll();
|
||||
AU.addRequiredTransitive<AliasAnalysis>();
|
||||
AU.addRequired<ValueNumbering>();
|
||||
AU.addRequiredTransitive<DominatorTree>();
|
||||
AU.addRequiredTransitive<TargetData>();
|
||||
}
|
||||
|
||||
static bool isPathTransparentTo(BasicBlock *CurBlock, BasicBlock *Dom,
|
||||
Value *Ptr, unsigned Size, AliasAnalysis &AA,
|
||||
std::set<BasicBlock*> &Visited,
|
||||
std::map<BasicBlock*, bool> &TransparentBlocks){
|
||||
// If we have already checked out this path, or if we reached our destination,
|
||||
// stop searching, returning success.
|
||||
if (CurBlock == Dom || !Visited.insert(CurBlock).second)
|
||||
return true;
|
||||
|
||||
// Check whether this block is known transparent or not.
|
||||
std::map<BasicBlock*, bool>::iterator TBI =
|
||||
TransparentBlocks.find(CurBlock);
|
||||
|
||||
if (TBI == TransparentBlocks.end()) {
|
||||
// If this basic block can modify the memory location, then the path is not
|
||||
// transparent!
|
||||
if (AA.canBasicBlockModify(*CurBlock, Ptr, Size)) {
|
||||
TransparentBlocks.insert(TBI, std::make_pair(CurBlock, false));
|
||||
return false;
|
||||
}
|
||||
TransparentBlocks.insert(TBI, std::make_pair(CurBlock, true));
|
||||
} else if (!TBI->second)
|
||||
// This block is known non-transparent, so that path can't be either.
|
||||
return false;
|
||||
|
||||
// The current block is known to be transparent. The entire path is
|
||||
// transparent if all of the predecessors paths to the parent is also
|
||||
// transparent to the memory location.
|
||||
for (pred_iterator PI = pred_begin(CurBlock), E = pred_end(CurBlock);
|
||||
PI != E; ++PI)
|
||||
if (!isPathTransparentTo(*PI, Dom, Ptr, Size, AA, Visited,
|
||||
TransparentBlocks))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
/// getCallEqualNumberNodes - Given a call instruction, find other calls that
|
||||
/// have the same value number.
|
||||
void LoadVN::getCallEqualNumberNodes(CallInst *CI,
|
||||
std::vector<Value*> &RetVals) const {
|
||||
Function *CF = CI->getCalledFunction();
|
||||
if (CF == 0) return; // Indirect call.
|
||||
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
|
||||
AliasAnalysis::ModRefBehavior MRB = AA.getModRefBehavior(CI);
|
||||
if (MRB != AliasAnalysis::DoesNotAccessMemory &&
|
||||
MRB != AliasAnalysis::OnlyReadsMemory)
|
||||
return; // Nothing we can do for now.
|
||||
|
||||
// Scan all of the arguments of the function, looking for one that is not
|
||||
// global. In particular, we would prefer to have an argument or instruction
|
||||
// operand to chase the def-use chains of.
|
||||
Value *Op = CF;
|
||||
for (User::op_iterator i = CI->op_begin() + 1, e = CI->op_end(); i != e; ++i)
|
||||
if (isa<Argument>(*i) ||
|
||||
isa<Instruction>(*i)) {
|
||||
Op = *i;
|
||||
break;
|
||||
}
|
||||
|
||||
// Identify all lexically identical calls in this function.
|
||||
std::vector<CallInst*> IdenticalCalls;
|
||||
|
||||
Function *CIFunc = CI->getParent()->getParent();
|
||||
for (Value::use_iterator UI = Op->use_begin(), E = Op->use_end(); UI != E;
|
||||
++UI)
|
||||
if (CallInst *C = dyn_cast<CallInst>(*UI))
|
||||
if (C->getNumOperands() == CI->getNumOperands() &&
|
||||
C->getOperand(0) == CI->getOperand(0) &&
|
||||
C->getParent()->getParent() == CIFunc && C != CI) {
|
||||
bool AllOperandsEqual = true;
|
||||
for (User::op_iterator i = CI->op_begin() + 1, j = C->op_begin() + 1,
|
||||
e = CI->op_end(); i != e; ++i, ++j)
|
||||
if (*j != *i) {
|
||||
AllOperandsEqual = false;
|
||||
break;
|
||||
}
|
||||
|
||||
if (AllOperandsEqual)
|
||||
IdenticalCalls.push_back(C);
|
||||
}
|
||||
|
||||
if (IdenticalCalls.empty()) return;
|
||||
|
||||
// Eliminate duplicates, which could occur if we chose a value that is passed
|
||||
// into a call site multiple times.
|
||||
std::sort(IdenticalCalls.begin(), IdenticalCalls.end());
|
||||
IdenticalCalls.erase(std::unique(IdenticalCalls.begin(),IdenticalCalls.end()),
|
||||
IdenticalCalls.end());
|
||||
|
||||
// If the call reads memory, we must make sure that there are no stores
|
||||
// between the calls in question.
|
||||
//
|
||||
// FIXME: This should use mod/ref information. What we really care about it
|
||||
// whether an intervening instruction could modify memory that is read, not
|
||||
// ANY memory.
|
||||
//
|
||||
if (MRB == AliasAnalysis::OnlyReadsMemory) {
|
||||
DominatorTree &DT = getAnalysis<DominatorTree>();
|
||||
BasicBlock *CIBB = CI->getParent();
|
||||
for (unsigned i = 0; i != IdenticalCalls.size(); ++i) {
|
||||
CallInst *C = IdenticalCalls[i];
|
||||
bool CantEqual = false;
|
||||
|
||||
if (DT.dominates(CIBB, C->getParent())) {
|
||||
// FIXME: we currently only handle the case where both calls are in the
|
||||
// same basic block.
|
||||
if (CIBB != C->getParent()) {
|
||||
CantEqual = true;
|
||||
} else {
|
||||
Instruction *First = CI, *Second = C;
|
||||
if (!DT.dominates(CI, C))
|
||||
std::swap(First, Second);
|
||||
|
||||
// Scan the instructions between the calls, checking for stores or
|
||||
// calls to dangerous functions.
|
||||
BasicBlock::iterator I = First;
|
||||
for (++First; I != BasicBlock::iterator(Second); ++I) {
|
||||
if (isa<StoreInst>(I)) {
|
||||
// FIXME: We could use mod/ref information to make this much
|
||||
// better!
|
||||
CantEqual = true;
|
||||
break;
|
||||
} else if (CallInst *CI = dyn_cast<CallInst>(I)) {
|
||||
if (!AA.onlyReadsMemory(CI)) {
|
||||
CantEqual = true;
|
||||
break;
|
||||
}
|
||||
} else if (I->mayWriteToMemory()) {
|
||||
CantEqual = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} else if (DT.dominates(C->getParent(), CIBB)) {
|
||||
// FIXME: We could implement this, but we don't for now.
|
||||
CantEqual = true;
|
||||
} else {
|
||||
// FIXME: if one doesn't dominate the other, we can't tell yet.
|
||||
CantEqual = true;
|
||||
}
|
||||
|
||||
|
||||
if (CantEqual) {
|
||||
// This call does not produce the same value as the one in the query.
|
||||
std::swap(IdenticalCalls[i--], IdenticalCalls.back());
|
||||
IdenticalCalls.pop_back();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Any calls that are identical and not destroyed will produce equal values!
|
||||
for (unsigned i = 0, e = IdenticalCalls.size(); i != e; ++i)
|
||||
RetVals.push_back(IdenticalCalls[i]);
|
||||
}
|
||||
|
||||
// getEqualNumberNodes - Return nodes with the same value number as the
|
||||
// specified Value. This fills in the argument vector with any equal values.
|
||||
//
|
||||
void LoadVN::getEqualNumberNodes(Value *V,
|
||||
std::vector<Value*> &RetVals) const {
|
||||
// If the alias analysis has any must alias information to share with us, we
|
||||
// can definitely use it.
|
||||
if (isa<PointerType>(V->getType()))
|
||||
getAnalysis<AliasAnalysis>().getMustAliases(V, RetVals);
|
||||
|
||||
if (!isa<LoadInst>(V)) {
|
||||
if (CallInst *CI = dyn_cast<CallInst>(V))
|
||||
getCallEqualNumberNodes(CI, RetVals);
|
||||
|
||||
// Not a load instruction? Just chain to the base value numbering
|
||||
// implementation to satisfy the request...
|
||||
assert(&getAnalysis<ValueNumbering>() != (ValueNumbering*)this &&
|
||||
"getAnalysis() returned this!");
|
||||
|
||||
return getAnalysis<ValueNumbering>().getEqualNumberNodes(V, RetVals);
|
||||
}
|
||||
|
||||
// Volatile loads cannot be replaced with the value of other loads.
|
||||
LoadInst *LI = cast<LoadInst>(V);
|
||||
if (LI->isVolatile())
|
||||
return getAnalysis<ValueNumbering>().getEqualNumberNodes(V, RetVals);
|
||||
|
||||
Value *LoadPtr = LI->getOperand(0);
|
||||
BasicBlock *LoadBB = LI->getParent();
|
||||
Function *F = LoadBB->getParent();
|
||||
|
||||
// Find out how many bytes of memory are loaded by the load instruction...
|
||||
unsigned LoadSize = getAnalysis<TargetData>().getTypeStoreSize(LI->getType());
|
||||
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
|
||||
|
||||
// Figure out if the load is invalidated from the entry of the block it is in
|
||||
// until the actual instruction. This scans the block backwards from LI. If
|
||||
// we see any candidate load or store instructions, then we know that the
|
||||
// candidates have the same value # as LI.
|
||||
bool LoadInvalidatedInBBBefore = false;
|
||||
for (BasicBlock::iterator I = LI; I != LoadBB->begin(); ) {
|
||||
--I;
|
||||
if (I == LoadPtr) {
|
||||
// If we run into an allocation of the value being loaded, then the
|
||||
// contents are not initialized.
|
||||
if (isa<AllocationInst>(I))
|
||||
RetVals.push_back(UndefValue::get(LI->getType()));
|
||||
|
||||
// Otherwise, since this is the definition of what we are loading, this
|
||||
// loaded value cannot occur before this block.
|
||||
LoadInvalidatedInBBBefore = true;
|
||||
break;
|
||||
} else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
|
||||
// If this instruction is a candidate load before LI, we know there are no
|
||||
// invalidating instructions between it and LI, so they have the same
|
||||
// value number.
|
||||
if (LI->getOperand(0) == LoadPtr && !LI->isVolatile())
|
||||
RetVals.push_back(I);
|
||||
}
|
||||
|
||||
if (AA.getModRefInfo(I, LoadPtr, LoadSize) & AliasAnalysis::Mod) {
|
||||
// If the invalidating instruction is a store, and its in our candidate
|
||||
// set, then we can do store-load forwarding: the load has the same value
|
||||
// # as the stored value.
|
||||
if (StoreInst *SI = dyn_cast<StoreInst>(I))
|
||||
if (SI->getOperand(1) == LoadPtr)
|
||||
RetVals.push_back(I->getOperand(0));
|
||||
|
||||
LoadInvalidatedInBBBefore = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Figure out if the load is invalidated between the load and the exit of the
|
||||
// block it is defined in. While we are scanning the current basic block, if
|
||||
// we see any candidate loads, then we know they have the same value # as LI.
|
||||
//
|
||||
bool LoadInvalidatedInBBAfter = false;
|
||||
{
|
||||
BasicBlock::iterator I = LI;
|
||||
for (++I; I != LoadBB->end(); ++I) {
|
||||
// If this instruction is a load, then this instruction returns the same
|
||||
// value as LI.
|
||||
if (isa<LoadInst>(I) && cast<LoadInst>(I)->getOperand(0) == LoadPtr)
|
||||
RetVals.push_back(I);
|
||||
|
||||
if (AA.getModRefInfo(I, LoadPtr, LoadSize) & AliasAnalysis::Mod) {
|
||||
LoadInvalidatedInBBAfter = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If the pointer is clobbered on entry and on exit to the function, there is
|
||||
// no need to do any global analysis at all.
|
||||
if (LoadInvalidatedInBBBefore && LoadInvalidatedInBBAfter)
|
||||
return;
|
||||
|
||||
// Now that we know the value is not neccesarily killed on entry or exit to
|
||||
// the BB, find out how many load and store instructions (to this location)
|
||||
// live in each BB in the function.
|
||||
//
|
||||
std::map<BasicBlock*, unsigned> CandidateLoads;
|
||||
std::set<BasicBlock*> CandidateStores;
|
||||
|
||||
for (Value::use_iterator UI = LoadPtr->use_begin(), UE = LoadPtr->use_end();
|
||||
UI != UE; ++UI)
|
||||
if (LoadInst *Cand = dyn_cast<LoadInst>(*UI)) {// Is a load of source?
|
||||
if (Cand->getParent()->getParent() == F && // In the same function?
|
||||
// Not in LI's block?
|
||||
Cand->getParent() != LoadBB && !Cand->isVolatile())
|
||||
++CandidateLoads[Cand->getParent()]; // Got one.
|
||||
} else if (StoreInst *Cand = dyn_cast<StoreInst>(*UI)) {
|
||||
if (Cand->getParent()->getParent() == F && !Cand->isVolatile() &&
|
||||
Cand->getOperand(1) == LoadPtr) // It's a store THROUGH the ptr.
|
||||
CandidateStores.insert(Cand->getParent());
|
||||
}
|
||||
|
||||
// Get dominators.
|
||||
DominatorTree &DT = getAnalysis<DominatorTree>();
|
||||
|
||||
// TransparentBlocks - For each basic block the load/store is alive across,
|
||||
// figure out if the pointer is invalidated or not. If it is invalidated, the
|
||||
// boolean is set to false, if it's not it is set to true. If we don't know
|
||||
// yet, the entry is not in the map.
|
||||
std::map<BasicBlock*, bool> TransparentBlocks;
|
||||
|
||||
// Loop over all of the basic blocks that also load the value. If the value
|
||||
// is live across the CFG from the source to destination blocks, and if the
|
||||
// value is not invalidated in either the source or destination blocks, add it
|
||||
// to the equivalence sets.
|
||||
for (std::map<BasicBlock*, unsigned>::iterator
|
||||
I = CandidateLoads.begin(), E = CandidateLoads.end(); I != E; ++I) {
|
||||
bool CantEqual = false;
|
||||
|
||||
// Right now we only can handle cases where one load dominates the other.
|
||||
// FIXME: generalize this!
|
||||
BasicBlock *BB1 = I->first, *BB2 = LoadBB;
|
||||
if (DT.dominates(BB1, BB2)) {
|
||||
// The other load dominates LI. If the loaded value is killed entering
|
||||
// the LoadBB block, we know the load is not live.
|
||||
if (LoadInvalidatedInBBBefore)
|
||||
CantEqual = true;
|
||||
} else if (DT.dominates(BB2, BB1)) {
|
||||
std::swap(BB1, BB2); // Canonicalize
|
||||
// LI dominates the other load. If the loaded value is killed exiting
|
||||
// the LoadBB block, we know the load is not live.
|
||||
if (LoadInvalidatedInBBAfter)
|
||||
CantEqual = true;
|
||||
} else {
|
||||
// None of these loads can VN the same.
|
||||
CantEqual = true;
|
||||
}
|
||||
|
||||
if (!CantEqual) {
|
||||
// Ok, at this point, we know that BB1 dominates BB2, and that there is
|
||||
// nothing in the LI block that kills the loaded value. Check to see if
|
||||
// the value is live across the CFG.
|
||||
std::set<BasicBlock*> Visited;
|
||||
for (pred_iterator PI = pred_begin(BB2), E = pred_end(BB2); PI!=E; ++PI)
|
||||
if (!isPathTransparentTo(*PI, BB1, LoadPtr, LoadSize, AA,
|
||||
Visited, TransparentBlocks)) {
|
||||
// None of these loads can VN the same.
|
||||
CantEqual = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// If the loads can equal so far, scan the basic block that contains the
|
||||
// loads under consideration to see if they are invalidated in the block.
|
||||
// For any loads that are not invalidated, add them to the equivalence
|
||||
// set!
|
||||
if (!CantEqual) {
|
||||
unsigned NumLoads = I->second;
|
||||
if (BB1 == LoadBB) {
|
||||
// If LI dominates the block in question, check to see if any of the
|
||||
// loads in this block are invalidated before they are reached.
|
||||
for (BasicBlock::iterator BBI = I->first->begin(); ; ++BBI) {
|
||||
if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
|
||||
if (LI->getOperand(0) == LoadPtr && !LI->isVolatile()) {
|
||||
// The load is in the set!
|
||||
RetVals.push_back(BBI);
|
||||
if (--NumLoads == 0) break; // Found last load to check.
|
||||
}
|
||||
} else if (AA.getModRefInfo(BBI, LoadPtr, LoadSize)
|
||||
& AliasAnalysis::Mod) {
|
||||
// If there is a modifying instruction, nothing below it will value
|
||||
// # the same.
|
||||
break;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// If the block dominates LI, make sure that the loads in the block are
|
||||
// not invalidated before the block ends.
|
||||
BasicBlock::iterator BBI = I->first->end();
|
||||
while (1) {
|
||||
--BBI;
|
||||
if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
|
||||
if (LI->getOperand(0) == LoadPtr && !LI->isVolatile()) {
|
||||
// The load is the same as this load!
|
||||
RetVals.push_back(BBI);
|
||||
if (--NumLoads == 0) break; // Found all of the laods.
|
||||
}
|
||||
} else if (AA.getModRefInfo(BBI, LoadPtr, LoadSize)
|
||||
& AliasAnalysis::Mod) {
|
||||
// If there is a modifying instruction, nothing above it will value
|
||||
// # the same.
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Handle candidate stores. If the loaded location is clobbered on entrance
|
||||
// to the LoadBB, no store outside of the LoadBB can value number equal, so
|
||||
// quick exit.
|
||||
if (LoadInvalidatedInBBBefore)
|
||||
return;
|
||||
|
||||
// Stores in the load-bb are handled above.
|
||||
CandidateStores.erase(LoadBB);
|
||||
|
||||
for (std::set<BasicBlock*>::iterator I = CandidateStores.begin(),
|
||||
E = CandidateStores.end(); I != E; ++I)
|
||||
if (DT.dominates(*I, LoadBB)) {
|
||||
BasicBlock *StoreBB = *I;
|
||||
|
||||
// Check to see if the path from the store to the load is transparent
|
||||
// w.r.t. the memory location.
|
||||
bool CantEqual = false;
|
||||
std::set<BasicBlock*> Visited;
|
||||
for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
|
||||
PI != E; ++PI)
|
||||
if (!isPathTransparentTo(*PI, StoreBB, LoadPtr, LoadSize, AA,
|
||||
Visited, TransparentBlocks)) {
|
||||
// None of these stores can VN the same.
|
||||
CantEqual = true;
|
||||
break;
|
||||
}
|
||||
Visited.clear();
|
||||
if (!CantEqual) {
|
||||
// Okay, the path from the store block to the load block is clear, and
|
||||
// we know that there are no invalidating instructions from the start
|
||||
// of the load block to the load itself. Now we just scan the store
|
||||
// block.
|
||||
|
||||
BasicBlock::iterator BBI = StoreBB->end();
|
||||
while (1) {
|
||||
assert(BBI != StoreBB->begin() &&
|
||||
"There is a store in this block of the pointer, but the store"
|
||||
" doesn't mod the address being stored to?? Must be a bug in"
|
||||
" the alias analysis implementation!");
|
||||
--BBI;
|
||||
if (AA.getModRefInfo(BBI, LoadPtr, LoadSize) & AliasAnalysis::Mod) {
|
||||
// If the invalidating instruction is one of the candidates,
|
||||
// then it provides the value the load loads.
|
||||
if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
|
||||
if (SI->getOperand(1) == LoadPtr)
|
||||
RetVals.push_back(SI->getOperand(0));
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
@ -1,286 +0,0 @@
|
||||
//===- ValueNumbering.cpp - Value #'ing Implementation ----------*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file implements the non-abstract Value Numbering methods as well as a
|
||||
// default implementation for the analysis group.
|
||||
//
|
||||
// The ValueNumbering analysis pass is mostly deprecated. It is only used by the
|
||||
// Global Common Subexpression Elimination pass, which is deprecated by the
|
||||
// Global Value Numbering pass (which does its value numbering on its own).
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Analysis/Passes.h"
|
||||
#include "llvm/Analysis/ValueNumbering.h"
|
||||
#include "llvm/Support/InstVisitor.h"
|
||||
#include "llvm/BasicBlock.h"
|
||||
#include "llvm/Instructions.h"
|
||||
#include "llvm/Pass.h"
|
||||
#include "llvm/Type.h"
|
||||
#include "llvm/Support/Compiler.h"
|
||||
using namespace llvm;
|
||||
|
||||
char ValueNumbering::ID = 0;
|
||||
// Register the ValueNumbering interface, providing a nice name to refer to.
|
||||
static RegisterAnalysisGroup<ValueNumbering> V("Value Numbering");
|
||||
|
||||
/// ValueNumbering destructor: DO NOT move this to the header file for
|
||||
/// ValueNumbering or else clients of the ValueNumbering class may not depend on
|
||||
/// the ValueNumbering.o file in the current .a file, causing alias analysis
|
||||
/// support to not be included in the tool correctly!
|
||||
///
|
||||
ValueNumbering::~ValueNumbering() {}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Basic ValueNumbering Pass Implementation
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Because of the way .a files work, the implementation of the BasicVN class
|
||||
// MUST be in the ValueNumbering file itself, or else we run the risk of
|
||||
// ValueNumbering being used, but the default implementation not being linked
|
||||
// into the tool that uses it. As such, we register and implement the class
|
||||
// here.
|
||||
//
|
||||
|
||||
namespace {
|
||||
/// BasicVN - This class is the default implementation of the ValueNumbering
|
||||
/// interface. It walks the SSA def-use chains to trivially identify
|
||||
/// lexically identical expressions. This does not require any ahead of time
|
||||
/// analysis, so it is a very fast default implementation.
|
||||
///
|
||||
struct VISIBILITY_HIDDEN BasicVN
|
||||
: public ImmutablePass, public ValueNumbering {
|
||||
static char ID; // Class identification, replacement for typeinfo
|
||||
BasicVN() : ImmutablePass((intptr_t)&ID) {}
|
||||
|
||||
/// getEqualNumberNodes - Return nodes with the same value number as the
|
||||
/// specified Value. This fills in the argument vector with any equal
|
||||
/// values.
|
||||
///
|
||||
/// This is where our implementation is.
|
||||
///
|
||||
virtual void getEqualNumberNodes(Value *V1,
|
||||
std::vector<Value*> &RetVals) const;
|
||||
};
|
||||
}
|
||||
|
||||
char BasicVN::ID = 0;
|
||||
// Register this pass...
|
||||
static RegisterPass<BasicVN>
|
||||
X("basicvn", "Basic Value Numbering (default GVN impl)", false, true);
|
||||
|
||||
// Declare that we implement the ValueNumbering interface
|
||||
static RegisterAnalysisGroup<ValueNumbering, true> Y(X);
|
||||
|
||||
namespace {
|
||||
/// BVNImpl - Implement BasicVN in terms of a visitor class that
|
||||
/// handles the different types of instructions as appropriate.
|
||||
///
|
||||
struct VISIBILITY_HIDDEN BVNImpl : public InstVisitor<BVNImpl> {
|
||||
std::vector<Value*> &RetVals;
|
||||
explicit BVNImpl(std::vector<Value*> &RV) : RetVals(RV) {}
|
||||
|
||||
void visitCastInst(CastInst &I);
|
||||
void visitGetElementPtrInst(GetElementPtrInst &I);
|
||||
void visitCmpInst(CmpInst &I);
|
||||
|
||||
void handleBinaryInst(Instruction &I);
|
||||
void visitBinaryOperator(Instruction &I) { handleBinaryInst(I); }
|
||||
void visitShiftInst(Instruction &I) { handleBinaryInst(I); }
|
||||
void visitExtractElementInst(Instruction &I) { handleBinaryInst(I); }
|
||||
|
||||
void handleTernaryInst(Instruction &I);
|
||||
void visitSelectInst(Instruction &I) { handleTernaryInst(I); }
|
||||
void visitInsertElementInst(Instruction &I) { handleTernaryInst(I); }
|
||||
void visitShuffleVectorInst(Instruction &I) { handleTernaryInst(I); }
|
||||
void visitInstruction(Instruction &) {
|
||||
// Cannot value number calls or terminator instructions.
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
ImmutablePass *llvm::createBasicVNPass() { return new BasicVN(); }
|
||||
|
||||
// getEqualNumberNodes - Return nodes with the same value number as the
|
||||
// specified Value. This fills in the argument vector with any equal values.
|
||||
//
|
||||
void BasicVN::getEqualNumberNodes(Value *V, std::vector<Value*> &RetVals) const{
|
||||
assert(V->getType() != Type::VoidTy &&
|
||||
"Can only value number non-void values!");
|
||||
// We can only handle the case where I is an instruction!
|
||||
if (Instruction *I = dyn_cast<Instruction>(V))
|
||||
BVNImpl(RetVals).visit(I);
|
||||
}
|
||||
|
||||
void BVNImpl::visitCastInst(CastInst &CI) {
|
||||
Instruction &I = (Instruction&)CI;
|
||||
Value *Op = I.getOperand(0);
|
||||
Function *F = I.getParent()->getParent();
|
||||
|
||||
for (Value::use_iterator UI = Op->use_begin(), UE = Op->use_end();
|
||||
UI != UE; ++UI)
|
||||
if (CastInst *Other = dyn_cast<CastInst>(*UI))
|
||||
// Check that the opcode is the same
|
||||
if (Other->getOpcode() == Instruction::CastOps(I.getOpcode()) &&
|
||||
// Check that the destination types are the same
|
||||
Other->getType() == I.getType() &&
|
||||
// Is it embedded in the same function? (This could be false if LHS
|
||||
// is a constant or global!)
|
||||
Other->getParent()->getParent() == F &&
|
||||
// Check to see if this new cast is not I.
|
||||
Other != &I) {
|
||||
// These instructions are identical. Add to list...
|
||||
RetVals.push_back(Other);
|
||||
}
|
||||
}
|
||||
|
||||
void BVNImpl::visitCmpInst(CmpInst &CI1) {
|
||||
Value *LHS = CI1.getOperand(0);
|
||||
for (Value::use_iterator UI = LHS->use_begin(), UE = LHS->use_end();
|
||||
UI != UE; ++UI)
|
||||
if (CmpInst *CI2 = dyn_cast<CmpInst>(*UI))
|
||||
// Check to see if this compare instruction is not CI, but same opcode,
|
||||
// same predicate, and in the same function.
|
||||
if (CI2 != &CI1 && CI2->getOpcode() == CI1.getOpcode() &&
|
||||
CI2->getPredicate() == CI1.getPredicate() &&
|
||||
CI2->getParent()->getParent() == CI1.getParent()->getParent())
|
||||
// If the operands are the same
|
||||
if ((CI2->getOperand(0) == CI1.getOperand(0) &&
|
||||
CI2->getOperand(1) == CI1.getOperand(1)) ||
|
||||
// Or the compare is commutative and the operands are reversed
|
||||
(CI1.isCommutative() &&
|
||||
CI2->getOperand(0) == CI1.getOperand(1) &&
|
||||
CI2->getOperand(1) == CI1.getOperand(0)))
|
||||
// Then the instructiosn are identical, add to list.
|
||||
RetVals.push_back(CI2);
|
||||
}
|
||||
|
||||
|
||||
|
||||
// isIdenticalBinaryInst - Return true if the two binary instructions are
|
||||
// identical.
|
||||
//
|
||||
static inline bool isIdenticalBinaryInst(const Instruction &I1,
|
||||
const Instruction *I2) {
|
||||
// Is it embedded in the same function? (This could be false if LHS
|
||||
// is a constant or global!)
|
||||
if (I1.getOpcode() != I2->getOpcode() ||
|
||||
I1.getParent()->getParent() != I2->getParent()->getParent())
|
||||
return false;
|
||||
|
||||
// If they are CmpInst instructions, check their predicates
|
||||
if (CmpInst *CI1 = dyn_cast<CmpInst>(&const_cast<Instruction&>(I1)))
|
||||
if (CI1->getPredicate() != cast<CmpInst>(I2)->getPredicate())
|
||||
return false;
|
||||
|
||||
// They are identical if both operands are the same!
|
||||
if (I1.getOperand(0) == I2->getOperand(0) &&
|
||||
I1.getOperand(1) == I2->getOperand(1))
|
||||
return true;
|
||||
|
||||
// If the instruction is commutative, the instruction can match if the
|
||||
// operands are swapped!
|
||||
//
|
||||
if ((I1.getOperand(0) == I2->getOperand(1) &&
|
||||
I1.getOperand(1) == I2->getOperand(0)) &&
|
||||
I1.isCommutative())
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
// isIdenticalTernaryInst - Return true if the two ternary instructions are
|
||||
// identical.
|
||||
//
|
||||
static inline bool isIdenticalTernaryInst(const Instruction &I1,
|
||||
const Instruction *I2) {
|
||||
// Is it embedded in the same function? (This could be false if LHS
|
||||
// is a constant or global!)
|
||||
if (I1.getParent()->getParent() != I2->getParent()->getParent())
|
||||
return false;
|
||||
|
||||
// They are identical if all operands are the same!
|
||||
return I1.getOperand(0) == I2->getOperand(0) &&
|
||||
I1.getOperand(1) == I2->getOperand(1) &&
|
||||
I1.getOperand(2) == I2->getOperand(2);
|
||||
}
|
||||
|
||||
|
||||
|
||||
void BVNImpl::handleBinaryInst(Instruction &I) {
|
||||
Value *LHS = I.getOperand(0);
|
||||
|
||||
for (Value::use_iterator UI = LHS->use_begin(), UE = LHS->use_end();
|
||||
UI != UE; ++UI)
|
||||
if (Instruction *Other = dyn_cast<Instruction>(*UI))
|
||||
// Check to see if this new binary operator is not I, but same operand...
|
||||
if (Other != &I && isIdenticalBinaryInst(I, Other)) {
|
||||
// These instructions are identical. Handle the situation.
|
||||
RetVals.push_back(Other);
|
||||
}
|
||||
}
|
||||
|
||||
// IdenticalComplexInst - Return true if the two instructions are the same, by
|
||||
// using a brute force comparison. This is useful for instructions with an
|
||||
// arbitrary number of arguments.
|
||||
//
|
||||
static inline bool IdenticalComplexInst(const Instruction *I1,
|
||||
const Instruction *I2) {
|
||||
assert(I1->getOpcode() == I2->getOpcode());
|
||||
// Equal if they are in the same function...
|
||||
return I1->getParent()->getParent() == I2->getParent()->getParent() &&
|
||||
// And return the same type...
|
||||
I1->getType() == I2->getType() &&
|
||||
// And have the same number of operands...
|
||||
I1->getNumOperands() == I2->getNumOperands() &&
|
||||
// And all of the operands are equal.
|
||||
std::equal(I1->op_begin(), I1->op_end(), I2->op_begin());
|
||||
}
|
||||
|
||||
void BVNImpl::visitGetElementPtrInst(GetElementPtrInst &I) {
|
||||
Value *Op = I.getOperand(0);
|
||||
|
||||
// Try to pick a local operand if possible instead of a constant or a global
|
||||
// that might have a lot of uses.
|
||||
for (User::op_iterator i = I.op_begin() + 1, e = I.op_end(); i != e; ++i)
|
||||
if (isa<Instruction>(*i) || isa<Argument>(*i)) {
|
||||
Op = *i;
|
||||
break;
|
||||
}
|
||||
|
||||
for (Value::use_iterator UI = Op->use_begin(), UE = Op->use_end();
|
||||
UI != UE; ++UI)
|
||||
if (GetElementPtrInst *Other = dyn_cast<GetElementPtrInst>(*UI))
|
||||
// Check to see if this new getelementptr is not I, but same operand...
|
||||
if (Other != &I && IdenticalComplexInst(&I, Other)) {
|
||||
// These instructions are identical. Handle the situation.
|
||||
RetVals.push_back(Other);
|
||||
}
|
||||
}
|
||||
|
||||
void BVNImpl::handleTernaryInst(Instruction &I) {
|
||||
Value *Op0 = I.getOperand(0);
|
||||
Instruction *OtherInst;
|
||||
|
||||
for (Value::use_iterator UI = Op0->use_begin(), UE = Op0->use_end();
|
||||
UI != UE; ++UI)
|
||||
if ((OtherInst = dyn_cast<Instruction>(*UI)) &&
|
||||
OtherInst->getOpcode() == I.getOpcode()) {
|
||||
// Check to see if this new select is not I, but has the same operands.
|
||||
if (OtherInst != &I && isIdenticalTernaryInst(I, OtherInst)) {
|
||||
// These instructions are identical. Handle the situation.
|
||||
RetVals.push_back(OtherInst);
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Ensure that users of ValueNumbering.h will link with this file
|
||||
DEFINING_FILE_FOR(BasicValueNumbering)
|
@ -1,205 +0,0 @@
|
||||
//===-- GCSE.cpp - SSA-based Global Common Subexpression Elimination ------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This pass is designed to be a very quick global transformation that
|
||||
// eliminates global common subexpressions from a function. It does this by
|
||||
// using an existing value numbering analysis pass to identify the common
|
||||
// subexpressions, eliminating them when possible.
|
||||
//
|
||||
// This pass is deprecated by the Global Value Numbering pass (which does a
|
||||
// better job with its own value numbering).
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#define DEBUG_TYPE "gcse"
|
||||
#include "llvm/Transforms/Scalar.h"
|
||||
#include "llvm/Instructions.h"
|
||||
#include "llvm/Function.h"
|
||||
#include "llvm/Type.h"
|
||||
#include "llvm/Analysis/ConstantFolding.h"
|
||||
#include "llvm/Analysis/Dominators.h"
|
||||
#include "llvm/Analysis/ValueNumbering.h"
|
||||
#include "llvm/ADT/DepthFirstIterator.h"
|
||||
#include "llvm/ADT/Statistic.h"
|
||||
#include "llvm/Support/Compiler.h"
|
||||
#include <algorithm>
|
||||
using namespace llvm;
|
||||
|
||||
STATISTIC(NumInstRemoved, "Number of instructions removed");
|
||||
STATISTIC(NumLoadRemoved, "Number of loads removed");
|
||||
STATISTIC(NumCallRemoved, "Number of calls removed");
|
||||
STATISTIC(NumNonInsts , "Number of instructions removed due "
|
||||
"to non-instruction values");
|
||||
STATISTIC(NumArgsRepl , "Number of function arguments replaced "
|
||||
"with constant values");
|
||||
namespace {
|
||||
struct VISIBILITY_HIDDEN GCSE : public FunctionPass {
|
||||
static char ID; // Pass identification, replacement for typeid
|
||||
GCSE() : FunctionPass((intptr_t)&ID) {}
|
||||
|
||||
virtual bool runOnFunction(Function &F);
|
||||
|
||||
private:
|
||||
void ReplaceInstructionWith(Instruction *I, Value *V);
|
||||
|
||||
// This transformation requires dominator and immediate dominator info
|
||||
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
||||
AU.setPreservesCFG();
|
||||
AU.addRequired<DominatorTree>();
|
||||
AU.addRequired<ValueNumbering>();
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
char GCSE::ID = 0;
|
||||
static RegisterPass<GCSE>
|
||||
X("gcse", "Global Common Subexpression Elimination");
|
||||
|
||||
// createGCSEPass - The public interface to this file...
|
||||
FunctionPass *llvm::createGCSEPass() { return new GCSE(); }
|
||||
|
||||
// GCSE::runOnFunction - This is the main transformation entry point for a
|
||||
// function.
|
||||
//
|
||||
bool GCSE::runOnFunction(Function &F) {
|
||||
bool Changed = false;
|
||||
|
||||
// Get pointers to the analysis results that we will be using...
|
||||
DominatorTree &DT = getAnalysis<DominatorTree>();
|
||||
ValueNumbering &VN = getAnalysis<ValueNumbering>();
|
||||
|
||||
std::vector<Value*> EqualValues;
|
||||
|
||||
// Check for value numbers of arguments. If the value numbering
|
||||
// implementation can prove that an incoming argument is a constant or global
|
||||
// value address, substitute it, making the argument dead.
|
||||
for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
|
||||
if (!AI->use_empty()) {
|
||||
VN.getEqualNumberNodes(AI, EqualValues);
|
||||
if (!EqualValues.empty()) {
|
||||
for (unsigned i = 0, e = EqualValues.size(); i != e; ++i)
|
||||
if (isa<Constant>(EqualValues[i])) {
|
||||
AI->replaceAllUsesWith(EqualValues[i]);
|
||||
++NumArgsRepl;
|
||||
Changed = true;
|
||||
break;
|
||||
}
|
||||
EqualValues.clear();
|
||||
}
|
||||
}
|
||||
|
||||
// Traverse the CFG of the function in dominator order, so that we see each
|
||||
// instruction after we see its operands.
|
||||
for (df_iterator<DomTreeNode*> DI = df_begin(DT.getRootNode()),
|
||||
E = df_end(DT.getRootNode()); DI != E; ++DI) {
|
||||
BasicBlock *BB = DI->getBlock();
|
||||
|
||||
// Remember which instructions we've seen in this basic block as we scan.
|
||||
std::set<Instruction*> BlockInsts;
|
||||
|
||||
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
|
||||
Instruction *Inst = I++;
|
||||
|
||||
if (Constant *C = ConstantFoldInstruction(Inst)) {
|
||||
ReplaceInstructionWith(Inst, C);
|
||||
} else if (Inst->getType() != Type::VoidTy) {
|
||||
// If this instruction computes a value, try to fold together common
|
||||
// instructions that compute it.
|
||||
//
|
||||
VN.getEqualNumberNodes(Inst, EqualValues);
|
||||
|
||||
// If this instruction computes a value that is already computed
|
||||
// elsewhere, try to recycle the old value.
|
||||
if (!EqualValues.empty()) {
|
||||
if (Inst == &*BB->begin())
|
||||
I = BB->end();
|
||||
else {
|
||||
I = Inst; --I;
|
||||
}
|
||||
|
||||
// First check to see if we were able to value number this instruction
|
||||
// to a non-instruction value. If so, prefer that value over other
|
||||
// instructions which may compute the same thing.
|
||||
for (unsigned i = 0, e = EqualValues.size(); i != e; ++i)
|
||||
if (!isa<Instruction>(EqualValues[i])) {
|
||||
++NumNonInsts; // Keep track of # of insts repl with values
|
||||
|
||||
// Change all users of Inst to use the replacement and remove it
|
||||
// from the program.
|
||||
ReplaceInstructionWith(Inst, EqualValues[i]);
|
||||
Inst = 0;
|
||||
EqualValues.clear(); // don't enter the next loop
|
||||
break;
|
||||
}
|
||||
|
||||
// If there were no non-instruction values that this instruction
|
||||
// produces, find a dominating instruction that produces the same
|
||||
// value. If we find one, use it's value instead of ours.
|
||||
for (unsigned i = 0, e = EqualValues.size(); i != e; ++i) {
|
||||
Instruction *OtherI = cast<Instruction>(EqualValues[i]);
|
||||
bool Dominates = false;
|
||||
if (OtherI->getParent() == BB)
|
||||
Dominates = BlockInsts.count(OtherI);
|
||||
else
|
||||
Dominates = DT.dominates(OtherI->getParent(), BB);
|
||||
|
||||
if (Dominates) {
|
||||
// Okay, we found an instruction with the same value as this one
|
||||
// and that dominates this one. Replace this instruction with the
|
||||
// specified one.
|
||||
ReplaceInstructionWith(Inst, OtherI);
|
||||
Inst = 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
EqualValues.clear();
|
||||
|
||||
if (Inst) {
|
||||
I = Inst; ++I; // Deleted no instructions
|
||||
} else if (I == BB->end()) { // Deleted first instruction
|
||||
I = BB->begin();
|
||||
} else { // Deleted inst in middle of block.
|
||||
++I;
|
||||
}
|
||||
}
|
||||
|
||||
if (Inst)
|
||||
BlockInsts.insert(Inst);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// When the worklist is empty, return whether or not we changed anything...
|
||||
return Changed;
|
||||
}
|
||||
|
||||
|
||||
void GCSE::ReplaceInstructionWith(Instruction *I, Value *V) {
|
||||
if (isa<LoadInst>(I))
|
||||
++NumLoadRemoved; // Keep track of loads eliminated
|
||||
if (isa<CallInst>(I))
|
||||
++NumCallRemoved; // Keep track of calls eliminated
|
||||
++NumInstRemoved; // Keep track of number of insts eliminated
|
||||
|
||||
// Update value numbering
|
||||
getAnalysis<ValueNumbering>().deleteValue(I);
|
||||
|
||||
I->replaceAllUsesWith(V);
|
||||
|
||||
if (InvokeInst *II = dyn_cast<InvokeInst>(I)) {
|
||||
// Removing an invoke instruction requires adding a branch to the normal
|
||||
// destination and removing PHI node entries in the exception destination.
|
||||
BranchInst::Create(II->getNormalDest(), II);
|
||||
II->getUnwindDest()->removePredecessor(II->getParent());
|
||||
}
|
||||
|
||||
// Erase the instruction from the program.
|
||||
I->eraseFromParent();
|
||||
}
|
@ -13,7 +13,6 @@
|
||||
|
||||
#include "llvm/Module.h"
|
||||
#include "llvm/PassManager.h"
|
||||
#include "llvm/Analysis/LoadValueNumbering.h"
|
||||
#include "llvm/Analysis/Passes.h"
|
||||
#include "llvm/Analysis/LoopPass.h"
|
||||
#include "llvm/Analysis/Verifier.h"
|
||||
|
@ -31,7 +31,6 @@
|
||||
#include "llvm/Analysis/Passes.h"
|
||||
#include "llvm/Analysis/LoopPass.h"
|
||||
#include "llvm/Analysis/Verifier.h"
|
||||
#include "llvm/Analysis/LoadValueNumbering.h"
|
||||
#include "llvm/CodeGen/FileWriters.h"
|
||||
#include "llvm/Target/SubtargetFeature.h"
|
||||
#include "llvm/Target/TargetOptions.h"
|
||||
|
Loading…
Reference in New Issue
Block a user