mirror of
https://github.com/RPCSX/llvm.git
synced 2025-01-23 20:57:21 +00:00
Start of expression analysis support
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
ba7cf16dbb
commit
369bbeb62c
60
include/llvm/Analysis/Expressions.h
Normal file
60
include/llvm/Analysis/Expressions.h
Normal file
@ -0,0 +1,60 @@
|
||||
//===- llvm/Analysis/Expressions.h - Expression Analysis Utils ---*- C++ -*--=//
|
||||
//
|
||||
// This file defines a package of expression analysis utilties:
|
||||
//
|
||||
// ClassifyExpression: Analyze an expression to determine the complexity of the
|
||||
// expression, and which other variables it depends on.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_ANALYSIS_EXPRESSIONS_H
|
||||
#define LLVM_ANALYSIS_EXPRESSIONS_H
|
||||
|
||||
#include <assert.h>
|
||||
class Value;
|
||||
class ConstPoolInt;
|
||||
struct ExprAnalysisResult;
|
||||
|
||||
// ClassifyExpression: Analyze an expression to determine the complexity of the
|
||||
// expression, and which other values it depends on.
|
||||
//
|
||||
ExprAnalysisResult ClassifyExpression(Value *Expr);
|
||||
|
||||
// ExprAnalysisResult - Represent an expression of the form CONST*VAR+CONST
|
||||
// or simpler. The expression form that yields the least information about the
|
||||
// expression is just the Linear form with no offset.
|
||||
//
|
||||
struct ExprAnalysisResult {
|
||||
enum ExpressionType {
|
||||
Constant, // Expr is a simple constant, Offset is value
|
||||
Linear, // Expr is linear expr, Value is Var+Offset
|
||||
ScaledLinear, // Expr is scaled linear exp, Value is Scale*Var+Offset
|
||||
} ExprType;
|
||||
|
||||
const ConstPoolInt *Offset; // Offset of expr, or null if 0
|
||||
Value *Var; // Var referenced, if Linear or above (null if 0)
|
||||
const ConstPoolInt *Scale; // Scale of var if ScaledLinear expr (null if 1)
|
||||
|
||||
inline ExprAnalysisResult(const ConstPoolInt *CPV = 0) {
|
||||
Offset = CPV; Var = 0; Scale = 0;
|
||||
ExprType = Constant;
|
||||
}
|
||||
inline ExprAnalysisResult(Value *Val) {
|
||||
Var = Val; Offset = Scale = 0;
|
||||
ExprType = Var ? Linear : Constant;
|
||||
}
|
||||
inline ExprAnalysisResult(const ConstPoolInt *scale, Value *var,
|
||||
const ConstPoolInt *offset) {
|
||||
assert(!(Scale && !Var) && "Can't have scaled nonvariable!");
|
||||
Scale = scale; Var = var; Offset = offset;
|
||||
ExprType = Scale ? ScaledLinear : (Var ? Linear : Constant);
|
||||
}
|
||||
|
||||
|
||||
private:
|
||||
friend ExprAnalysisResult ClassifyExpression(Value *);
|
||||
inline ExprAnalysisResult operator+(const ConstPoolInt *Offset);
|
||||
|
||||
};
|
||||
|
||||
#endif
|
207
lib/Analysis/Expressions.cpp
Normal file
207
lib/Analysis/Expressions.cpp
Normal file
@ -0,0 +1,207 @@
|
||||
//===- Expressions.cpp - Expression Analysis Utilities ----------------------=//
|
||||
//
|
||||
// This file defines a package of expression analysis utilties:
|
||||
//
|
||||
// ClassifyExpression: Analyze an expression to determine the complexity of the
|
||||
// expression, and which other variables it depends on.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Analysis/Expressions.h"
|
||||
#include "llvm/Optimizations/ConstantHandling.h"
|
||||
#include "llvm/ConstantPool.h"
|
||||
#include "llvm/Method.h"
|
||||
#include "llvm/BasicBlock.h"
|
||||
|
||||
using namespace opt; // Get all the constant handling stuff
|
||||
|
||||
// getIntegralConstant - Wrapper around the ConstPoolInt member of the same
|
||||
// name. This method first checks to see if the desired constant is already in
|
||||
// the constant pool. If it is, it is quickly recycled, otherwise a new one
|
||||
// is allocated and added to the constant pool.
|
||||
//
|
||||
static ConstPoolInt *getIntegralConstant(ConstantPool &CP, unsigned char V,
|
||||
const Type *Ty) {
|
||||
// FIXME: Lookup prexisting constant in table!
|
||||
|
||||
ConstPoolInt *CPI = ConstPoolInt::get(Ty, V);
|
||||
CP.insert(CPI);
|
||||
return CPI;
|
||||
}
|
||||
|
||||
static ConstPoolUInt *getUnsignedConstant(ConstantPool &CP, uint64_t V) {
|
||||
// FIXME: Lookup prexisting constant in table!
|
||||
|
||||
ConstPoolUInt *CPUI = new ConstPoolUInt(Type::ULongTy, V);
|
||||
CP.insert(CPUI);
|
||||
return CPUI;
|
||||
}
|
||||
|
||||
|
||||
// Add - Helper function to make later code simpler. Basically it just adds
|
||||
// the two constants together, inserts the result into the constant pool, and
|
||||
// returns it. Of course life is not simple, and this is no exception. Factors
|
||||
// that complicate matters:
|
||||
// 1. Either argument may be null. If this is the case, the null argument is
|
||||
// treated as either 0 (if DefOne = false) or 1 (if DefOne = true)
|
||||
// 2. Types get in the way. We want to do arithmetic operations without
|
||||
// regard for the underlying types. It is assumed that the constants are
|
||||
// integral constants. The new value takes the type of the left argument.
|
||||
// 3. If DefOne is true, a null return value indicates a value of 1, if DefOne
|
||||
// is false, a null return value indicates a value of 0.
|
||||
//
|
||||
inline const ConstPoolInt *Add(ConstantPool &CP, const ConstPoolInt *Arg1,
|
||||
const ConstPoolInt *Arg2, bool DefOne = false) {
|
||||
if (DefOne == false) { // Handle degenerate cases first...
|
||||
if (Arg1 == 0) return Arg2; // Also handles case of Arg1 == Arg2 == 0
|
||||
if (Arg2 == 0) return Arg1;
|
||||
} else { // These aren't degenerate... :(
|
||||
if (Arg1 == 0 && Arg2 == 0) return getIntegralConstant(CP, 2, Type::UIntTy);
|
||||
if (Arg1 == 0) Arg1 = getIntegralConstant(CP, 1, Arg2->getType());
|
||||
if (Arg2 == 0) Arg2 = getIntegralConstant(CP, 1, Arg2->getType());
|
||||
}
|
||||
|
||||
assert(Arg1 && Arg2 && "No null arguments should exist now!");
|
||||
|
||||
// FIXME: Make types compatible!
|
||||
|
||||
// Actually perform the computation now!
|
||||
ConstPoolVal *Result = *Arg1 + *Arg2;
|
||||
assert(Result && Result->getType()->isIntegral() && "Couldn't perform add!");
|
||||
ConstPoolInt *ResultI = (ConstPoolInt*)Result;
|
||||
|
||||
// Check to see if the result is one of the special cases that we want to
|
||||
// recognize...
|
||||
if (ResultI->equals(DefOne ? 1 : 0)) {
|
||||
// Yes it is, simply delete the constant and return null.
|
||||
delete ResultI;
|
||||
return 0;
|
||||
}
|
||||
|
||||
CP.insert(ResultI);
|
||||
return ResultI;
|
||||
}
|
||||
|
||||
|
||||
ExprAnalysisResult ExprAnalysisResult::operator+(const ConstPoolInt *NewOff) {
|
||||
if (NewOff == 0) return *this; // No change!
|
||||
|
||||
ConstantPool &CP = (ConstantPool&)NewOff->getParent()->getConstantPool();
|
||||
return ExprAnalysisResult(Scale, Var, Add(CP, Offset, NewOff));
|
||||
}
|
||||
|
||||
|
||||
// Mult - Helper function to make later code simpler. Basically it just
|
||||
// multiplies the two constants together, inserts the result into the constant
|
||||
// pool, and returns it. Of course life is not simple, and this is no
|
||||
// exception. Factors that complicate matters:
|
||||
// 1. Either argument may be null. If this is the case, the null argument is
|
||||
// treated as either 0 (if DefOne = false) or 1 (if DefOne = true)
|
||||
// 2. Types get in the way. We want to do arithmetic operations without
|
||||
// regard for the underlying types. It is assumed that the constants are
|
||||
// integral constants.
|
||||
// 3. If DefOne is true, a null return value indicates a value of 1, if DefOne
|
||||
// is false, a null return value indicates a value of 0.
|
||||
//
|
||||
inline const ConstPoolInt *Mult(ConstantPool &CP, const ConstPoolInt *Arg1,
|
||||
const ConstPoolInt *Arg2, bool DefOne = false) {
|
||||
if (DefOne == false) { // Handle degenerate cases first...
|
||||
if (Arg1 == 0 || Arg2 == 0) return 0; // 0 * x == 0
|
||||
} else { // These aren't degenerate... :(
|
||||
if (Arg1 == 0) return Arg2; // Also handles case of Arg1 == Arg2 == 0
|
||||
if (Arg2 == 0) return Arg1;
|
||||
}
|
||||
assert(Arg1 && Arg2 && "No null arguments should exist now!");
|
||||
|
||||
// FIXME: Make types compatible!
|
||||
|
||||
// Actually perform the computation now!
|
||||
ConstPoolVal *Result = *Arg1 * *Arg2;
|
||||
assert(Result && Result->getType()->isIntegral() && "Couldn't perform mult!");
|
||||
ConstPoolInt *ResultI = (ConstPoolInt*)Result;
|
||||
|
||||
// Check to see if the result is one of the special cases that we want to
|
||||
// recognize...
|
||||
if (ResultI->equals(DefOne ? 1 : 0)) {
|
||||
// Yes it is, simply delete the constant and return null.
|
||||
delete ResultI;
|
||||
return 0;
|
||||
}
|
||||
|
||||
CP.insert(ResultI);
|
||||
return ResultI;
|
||||
}
|
||||
|
||||
|
||||
// ClassifyExpression: Analyze an expression to determine the complexity of the
|
||||
// expression, and which other values it depends on.
|
||||
//
|
||||
// Note that this analysis cannot get into infinite loops because it treats PHI
|
||||
// nodes as being an unknown linear expression.
|
||||
//
|
||||
ExprAnalysisResult ClassifyExpression(Value *Expr) {
|
||||
assert(Expr != 0 && "Can't classify a null expression!");
|
||||
switch (Expr->getValueType()) {
|
||||
case Value::InstructionVal: break; // Instruction... hmmm... investigate.
|
||||
case Value::TypeVal: case Value::BasicBlockVal:
|
||||
case Value::MethodVal: case Value::ModuleVal:
|
||||
assert(0 && "Unexpected expression type to classify!");
|
||||
case Value::MethodArgumentVal: // Method arg: nothing known, return var
|
||||
return Expr;
|
||||
case Value::ConstantVal: // Constant value, just return constant
|
||||
ConstPoolVal *CPV = Expr->castConstantAsserting();
|
||||
if (CPV->getType()->isIntegral()) { // It's an integral constant!
|
||||
ConstPoolInt *CPI = (ConstPoolInt*)Expr;
|
||||
return ExprAnalysisResult(CPI->equals(0) ? 0 : (ConstPoolInt*)Expr);
|
||||
}
|
||||
return Expr;
|
||||
}
|
||||
|
||||
Instruction *I = Expr->castInstructionAsserting();
|
||||
ConstantPool &CP = I->getParent()->getParent()->getConstantPool();
|
||||
|
||||
switch (I->getOpcode()) { // Handle each instruction type seperately
|
||||
case Instruction::Add: {
|
||||
ExprAnalysisResult LeftTy (ClassifyExpression(I->getOperand(0)));
|
||||
ExprAnalysisResult RightTy(ClassifyExpression(I->getOperand(1)));
|
||||
if (LeftTy.ExprType > RightTy.ExprType)
|
||||
swap(LeftTy, RightTy); // Make left be simpler than right
|
||||
|
||||
switch (LeftTy.ExprType) {
|
||||
case ExprAnalysisResult::Constant:
|
||||
return RightTy + LeftTy.Offset;
|
||||
case ExprAnalysisResult::Linear: // RHS side must be linear or scaled
|
||||
case ExprAnalysisResult::ScaledLinear: // RHS must be scaled
|
||||
if (LeftTy.Var != RightTy.Var) // Are they the same variables?
|
||||
return ExprAnalysisResult(I); // if not, we don't know anything!
|
||||
|
||||
const ConstPoolInt *NewScale = Add(CP, LeftTy.Scale, RightTy.Scale,true);
|
||||
const ConstPoolInt *NewOffset = Add(CP, LeftTy.Offset, RightTy.Offset);
|
||||
return ExprAnalysisResult(NewScale, LeftTy.Var, NewOffset);
|
||||
}
|
||||
} // end case Instruction::Add
|
||||
|
||||
case Instruction::Shl: {
|
||||
ExprAnalysisResult RightTy(ClassifyExpression(I->getOperand(1)));
|
||||
if (RightTy.ExprType != ExprAnalysisResult::Constant)
|
||||
break; // TODO: Can get some info if it's (<unsigned> X + <offset>)
|
||||
|
||||
ExprAnalysisResult LeftTy (ClassifyExpression(I->getOperand(0)));
|
||||
if (RightTy.Offset == 0) return LeftTy; // shl x, 0 = x
|
||||
assert(RightTy.Offset->getType() == Type::UByteTy &&
|
||||
"Shift amount must always be a unsigned byte!");
|
||||
uint64_t ShiftAmount = ((ConstPoolUInt*)RightTy.Offset)->getValue();
|
||||
ConstPoolUInt *Multiplier = getUnsignedConstant(CP, 1ULL << ShiftAmount);
|
||||
|
||||
return ExprAnalysisResult(Mult(CP, LeftTy.Scale, Multiplier, true),
|
||||
LeftTy.Var,
|
||||
Mult(CP, LeftTy.Offset, Multiplier));
|
||||
} // end case Instruction::Shl
|
||||
|
||||
// TODO: Handle CAST, SUB, MULT (at least!)
|
||||
|
||||
} // end switch
|
||||
|
||||
// Otherwise, I don't know anything about this value!
|
||||
return ExprAnalysisResult(I);
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user