Add a generic expansion transform: A op (B op' C) -> (A op B) op' (A op C)

if both A op B and A op C simplify.  This fires fairly often but doesn't
make that much difference.  On gcc-as-one-file it removes two "and"s and
turns one branch into a select.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122399 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Duncan Sands 2010-12-22 13:36:08 +00:00
parent fc7072c3c4
commit 37bf92b523
6 changed files with 152 additions and 71 deletions

View File

@ -290,11 +290,12 @@ private:
/// operators which are associative or commutative.
bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
/// SimplifyByFactorizing - This tries to simplify binary operations which
/// some other binary operation distributes over by factorizing out a common
/// term (eg "(A*B)+(A*C)" -> "A*(B+C)"). Returns the simplified value, or
/// null if no simplification was performed.
Instruction *SimplifyByFactorizing(BinaryOperator &I);
/// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
/// which some other binary operation distributes over either by factorizing
/// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
/// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
/// a win). Returns the simplified value, or null if it didn't simplify.
Value *SimplifyUsingDistributiveLaws(BinaryOperator &I);
/// SimplifyDemandedUseBits - Attempts to replace V with a simpler value
/// based on the demanded bits.

View File

@ -91,9 +91,10 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
I.hasNoUnsignedWrap(), TD))
return ReplaceInstUsesWith(I, V);
if (Instruction *NV = SimplifyByFactorizing(I)) // (A*B)+(A*C) -> A*(B+C)
return NV;
// (A*B)+(A*C) -> A*(B+C) etc
if (Value *V = SimplifyUsingDistributiveLaws(I))
return ReplaceInstUsesWith(I, V);
if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
// X + (signbit) --> X ^ signbit
@ -535,9 +536,10 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
I.hasNoUnsignedWrap(), TD))
return ReplaceInstUsesWith(I, V);
if (Instruction *NV = SimplifyByFactorizing(I)) // (A*B)-(A*C) -> A*(B-C)
return NV;
// (A*B)-(A*C) -> A*(B-C) etc
if (Value *V = SimplifyUsingDistributiveLaws(I))
return ReplaceInstUsesWith(I, V);
// If this is a 'B = x-(-A)', change to B = x+A. This preserves NSW/NUW.
if (Value *V = dyn_castNegVal(Op1)) {
BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);

View File

@ -984,8 +984,9 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
if (Value *V = SimplifyAndInst(Op0, Op1, TD))
return ReplaceInstUsesWith(I, V);
if (Instruction *NV = SimplifyByFactorizing(I)) // (A|B)&(A|C) -> A|(B&C)
return NV;
// (A|B)&(A|C) -> A|(B&C) etc
if (Value *V = SimplifyUsingDistributiveLaws(I))
return ReplaceInstUsesWith(I, V);
// See if we can simplify any instructions used by the instruction whose sole
// purpose is to compute bits we don't care about.
@ -1702,8 +1703,9 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
if (Value *V = SimplifyOrInst(Op0, Op1, TD))
return ReplaceInstUsesWith(I, V);
if (Instruction *NV = SimplifyByFactorizing(I)) // (A&B)|(A&C) -> A&(B|C)
return NV;
// (A&B)|(A&C) -> A&(B|C) etc
if (Value *V = SimplifyUsingDistributiveLaws(I))
return ReplaceInstUsesWith(I, V);
// See if we can simplify any instructions used by the instruction whose sole
// purpose is to compute bits we don't care about.
@ -1973,8 +1975,9 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
if (Value *V = SimplifyXorInst(Op0, Op1, TD))
return ReplaceInstUsesWith(I, V);
if (Instruction *NV = SimplifyByFactorizing(I)) // (A&B)^(A&C) -> A&(B^C)
return NV;
// (A&B)^(A&C) -> A&(B^C) etc
if (Value *V = SimplifyUsingDistributiveLaws(I))
return ReplaceInstUsesWith(I, V);
// See if we can simplify any instructions used by the instruction whose sole
// purpose is to compute bits we don't care about.

View File

@ -54,6 +54,9 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) {
if (Value *V = SimplifyMulInst(Op0, Op1, TD))
return ReplaceInstUsesWith(I, V);
if (Value *V = SimplifyUsingDistributiveLaws(I))
return ReplaceInstUsesWith(I, V);
// Simplify mul instructions with a constant RHS.
if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1C)) {

View File

@ -58,6 +58,7 @@ STATISTIC(NumCombined , "Number of insts combined");
STATISTIC(NumConstProp, "Number of constant folds");
STATISTIC(NumDeadInst , "Number of dead inst eliminated");
STATISTIC(NumSunkInst , "Number of instructions sunk");
STATISTIC(NumExpand, "Number of expansions");
STATISTIC(NumFactor , "Number of factorizations");
STATISTIC(NumReassoc , "Number of reassociations");
@ -294,64 +295,123 @@ static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
return false;
}
/// SimplifyByFactorizing - This tries to simplify binary operations which
/// some other binary operation distributes over by factorizing out a common
/// term (eg "(A*B)+(A*C)" -> "A*(B+C)"). Returns the simplified value, or
/// null if no simplification was performed.
Instruction *InstCombiner::SimplifyByFactorizing(BinaryOperator &I) {
BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
if (!Op0 || !Op1 || Op0->getOpcode() != Op1->getOpcode())
return 0;
/// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
/// which some other binary operation distributes over either by factorizing
/// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
/// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
/// a win). Returns the simplified value, or null if it didn't simplify.
Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); // op
// The instruction has the form "(A op' B) op (C op' D)".
Value *A = Op0->getOperand(0); Value *B = Op0->getOperand(1);
Value *C = Op1->getOperand(0); Value *D = Op1->getOperand(1);
Instruction::BinaryOps OuterOpcode = I.getOpcode(); // op
Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
// Factorization.
if (Op0 && Op1 && Op0->getOpcode() == Op1->getOpcode()) {
// The instruction has the form "(A op' B) op (C op' D)". Try to factorize
// a common term.
Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
// Does "X op' Y" always equal "Y op' X"?
bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
// Does "X op' Y" always equal "Y op' X"?
bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
// Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
if (LeftDistributesOverRight(InnerOpcode, OuterOpcode))
// Does the instruction have the form "(A op' B) op (A op' D)" or, in the
// commutative case, "(A op' B) op (C op' A)"?
if (A == C || (InnerCommutative && A == D)) {
if (A != C)
std::swap(C, D);
// Consider forming "A op' (B op D)".
// If "B op D" simplifies then it can be formed with no cost.
Value *RHS = SimplifyBinOp(OuterOpcode, B, D, TD);
// If "B op D" doesn't simplify then only proceed if both of the existing
// operations "A op' B" and "C op' D" will be zapped since no longer used.
if (!RHS && Op0->hasOneUse() && Op1->hasOneUse())
RHS = Builder->CreateBinOp(OuterOpcode, B, D, Op1->getName());
if (RHS) {
++NumFactor;
return BinaryOperator::Create(InnerOpcode, A, RHS);
// Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
// Does the instruction have the form "(A op' B) op (A op' D)" or, in the
// commutative case, "(A op' B) op (C op' A)"?
if (A == C || (InnerCommutative && A == D)) {
if (A != C)
std::swap(C, D);
// Consider forming "A op' (B op D)".
// If "B op D" simplifies then it can be formed with no cost.
Value *V = SimplifyBinOp(TopLevelOpcode, B, D, TD);
// If "B op D" doesn't simplify then only go on if both of the existing
// operations "A op' B" and "C op' D" will be zapped as no longer used.
if (!V && Op0->hasOneUse() && Op1->hasOneUse())
V = Builder->CreateBinOp(TopLevelOpcode, B, D, Op1->getName());
if (V) {
++NumFactor;
V = Builder->CreateBinOp(InnerOpcode, A, V);
V->takeName(&I);
return V;
}
}
}
// Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
if (RightDistributesOverLeft(OuterOpcode, InnerOpcode))
// Does the instruction have the form "(A op' B) op (C op' B)" or, in the
// commutative case, "(A op' B) op (B op' D)"?
if (B == D || (InnerCommutative && B == C)) {
if (B != D)
std::swap(C, D);
// Consider forming "(A op C) op' B".
// If "A op C" simplifies then it can be formed with no cost.
Value *LHS = SimplifyBinOp(OuterOpcode, A, C, TD);
// If "A op C" doesn't simplify then only proceed if both of the existing
// operations "A op' B" and "C op' D" will be zapped since no longer used.
if (!LHS && Op0->hasOneUse() && Op1->hasOneUse())
LHS = Builder->CreateBinOp(OuterOpcode, A, C, Op0->getName());
if (LHS) {
++NumFactor;
return BinaryOperator::Create(InnerOpcode, LHS, B);
// Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
if (RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
// Does the instruction have the form "(A op' B) op (C op' B)" or, in the
// commutative case, "(A op' B) op (B op' D)"?
if (B == D || (InnerCommutative && B == C)) {
if (B != D)
std::swap(C, D);
// Consider forming "(A op C) op' B".
// If "A op C" simplifies then it can be formed with no cost.
Value *V = SimplifyBinOp(TopLevelOpcode, A, C, TD);
// If "A op C" doesn't simplify then only go on if both of the existing
// operations "A op' B" and "C op' D" will be zapped as no longer used.
if (!V && Op0->hasOneUse() && Op1->hasOneUse())
V = Builder->CreateBinOp(TopLevelOpcode, A, C, Op0->getName());
if (V) {
++NumFactor;
V = Builder->CreateBinOp(InnerOpcode, V, B);
V->takeName(&I);
return V;
}
}
}
}
// Expansion.
if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
// The instruction has the form "(A op' B) op C". See if expanding it out
// to "(A op C) op' (B op C)" results in simplifications.
Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
// Do "A op C" and "B op C" both simplify?
if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, TD))
if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, TD)) {
// They do! Return "L op' R".
++NumExpand;
// If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
if ((L == A && R == B) ||
(Instruction::isCommutative(InnerOpcode) && L == B && R == A))
return Op0;
// Otherwise return "L op' R" if it simplifies.
if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
return V;
// Otherwise, create a new instruction.
C = Builder->CreateBinOp(InnerOpcode, L, R);
C->takeName(&I);
return C;
}
}
if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
// The instruction has the form "A op (B op' C)". See if expanding it out
// to "(A op B) op' (A op C)" results in simplifications.
Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
// Do "A op B" and "A op C" both simplify?
if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, TD))
if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, TD)) {
// They do! Return "L op' R".
++NumExpand;
// If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
if ((L == B && R == C) ||
(Instruction::isCommutative(InnerOpcode) && L == C && R == B))
return Op1;
// Otherwise return "L op' R" if it simplifies.
if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
return V;
// Otherwise, create a new instruction.
A = Builder->CreateBinOp(InnerOpcode, L, R);
A->takeName(&I);
return A;
}
}
return 0;
}

View File

@ -5,7 +5,19 @@ define i32 @foo(i32 %x, i32 %y) {
%mul = mul nsw i32 %add, %y
%square = mul nsw i32 %y, %y
%res = sub i32 %mul, %square
; CHECK: %res = mul i32 %x, %y
ret i32 %res
; CHECK: ret i32 %res
; CHECK-NEXT: mul i32 %x, %y
; CHECK-NEXT: ret i32
}
define i1 @bar(i64 %x, i64 %y) {
; CHECK: @bar
%a = and i64 %y, %x
; CHECK: and
; CHECK-NOT: and
%not = xor i64 %a, -1
%b = and i64 %y, %not
%r = icmp eq i64 %b, 0
ret i1 %r
; CHECK: ret i1
}