Keep track of register masks in LiveIntervalAnalysis.

Build an ordered vector of register mask operands (i.e., calls) when
computing live intervals. Provide a checkRegMaskInterference() function
that computes a bit mask of usable registers for a live range.

This is a quick way of determining of a live range crosses any calls,
and restricting it to the callee saved registers if it does.
Previously, we had to discover call clobbers for each candidate register
independently.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150077 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Jakob Stoklund Olesen 2012-02-08 17:33:45 +00:00
parent 90a468c424
commit 3fd3a840c5
2 changed files with 105 additions and 0 deletions

View File

@ -63,6 +63,25 @@ namespace llvm {
/// allocatableRegs_ - A bit vector of allocatable registers.
BitVector allocatableRegs_;
/// RegMaskSlots - Sorted list of instructions with register mask operands.
/// Always use the 'r' slot, RegMasks are normal clobbers, not early
/// clobbers.
SmallVector<SlotIndex, 8> RegMaskSlots;
/// RegMaskBits - This vector is parallel to RegMaskSlots, it holds a
/// pointer to the corresponding register mask. This pointer can be
/// recomputed as:
///
/// MI = Indexes->getInstructionFromIndex(RegMaskSlot[N]);
/// unsigned OpNum = findRegMaskOperand(MI);
/// RegMaskBits[N] = MI->getOperand(OpNum).getRegMask();
///
/// This is kept in a separate vector partly because some standard
/// libraries don't support lower_bound() with mixed objects, partly to
/// improve locality when searching in RegMaskSlots.
/// Also see the comment in LiveInterval::find().
SmallVector<const uint32_t*, 8> RegMaskBits;
public:
static char ID; // Pass identification, replacement for typeid
LiveIntervals() : MachineFunctionPass(ID) {
@ -249,6 +268,30 @@ namespace llvm {
/// point can be above or below mi, but must be in the same basic block.
void moveInstr(MachineBasicBlock::iterator insertPt, MachineInstr* mi);
// Register mask functions.
//
// Machine instructions may use a register mask operand to indicate that a
// large number of registers are clobbered by the instruction. This is
// typically used for calls.
//
// For compile time performance reasons, these clobbers are not recorded in
// the live intervals for individual physical registers. Instead,
// LiveIntervalAnalysis maintains a sorted list of instructions with
// register mask operands.
/// getRegMaskSlots - Returns asorted array of slot indices of all
/// instructions with register mask operands.
ArrayRef<SlotIndex> getRegMaskSlots() const { return RegMaskSlots; }
/// checkRegMaskInterference - Test if LI is live across any register mask
/// instructions, and compute a bit mask of physical registers that are not
/// clobbered by any of them.
///
/// Returns false if LI doesn't cross any register mask instructions. In
/// that case, the bit vector is not filled in.
bool checkRegMaskInterference(LiveInterval &LI,
BitVector &UsableRegs);
private:
/// computeIntervals - Compute live intervals.
void computeIntervals();

View File

@ -88,6 +88,8 @@ void LiveIntervals::releaseMemory() {
delete I->second;
r2iMap_.clear();
RegMaskSlots.clear();
RegMaskBits.clear();
// Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
VNInfoAllocator.Reset();
@ -558,10 +560,20 @@ void LiveIntervals::computeIntervals() {
DEBUG(dbgs() << MIIndex << "\t" << *MI);
if (MI->isDebugValue())
continue;
assert(indexes_->getInstructionFromIndex(MIIndex) == MI &&
"Lost SlotIndex synchronization");
// Handle defs.
for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
MachineOperand &MO = MI->getOperand(i);
// Collect register masks.
if (MO.isRegMask()) {
RegMaskSlots.push_back(MIIndex.getRegSlot());
RegMaskBits.push_back(MO.getRegMask());
continue;
}
if (!MO.isReg() || !MO.getReg())
continue;
@ -1111,3 +1123,53 @@ LiveRange LiveIntervals::addLiveRangeToEndOfBlock(unsigned reg,
return LR;
}
//===----------------------------------------------------------------------===//
// Register mask functions
//===----------------------------------------------------------------------===//
bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
BitVector &UsableRegs) {
if (LI.empty())
return false;
// We are going to enumerate all the register mask slots contained in LI.
// Start with a binary search of RegMaskSlots to find a starting point.
LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
ArrayRef<SlotIndex> Slots = getRegMaskSlots();
ArrayRef<SlotIndex>::iterator SlotI =
std::lower_bound(Slots.begin(), Slots.end(), LiveI->start);
ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
// No slots in range, LI begins after the last call.
if (SlotI == SlotE)
return false;
bool Found = false;
for (;;) {
assert(*SlotI >= LiveI->start);
// Loop over all slots overlapping this segment.
while (*SlotI < LiveI->end) {
// *SlotI overlaps LI. Collect mask bits.
if (!Found) {
// This is the first overlap. Initialize UsableRegs to all ones.
UsableRegs.clear();
UsableRegs.resize(tri_->getNumRegs(), true);
Found = true;
}
// Remove usable registers clobbered by this mask.
UsableRegs.clearBitsNotInMask(RegMaskBits[SlotI-Slots.begin()]);
if (++SlotI == SlotE)
return Found;
}
// *SlotI is beyond the current LI segment.
LiveI = LI.advanceTo(LiveI, *SlotI);
if (LiveI == LiveE)
return Found;
// Advance SlotI until it overlaps.
while (*SlotI < LiveI->start)
if (++SlotI == SlotE)
return Found;
}
}