diff --git a/lib/Target/X86/X86.h b/lib/Target/X86/X86.h index 6d645f19b41..f6d1be09870 100644 --- a/lib/Target/X86/X86.h +++ b/lib/Target/X86/X86.h @@ -25,14 +25,6 @@ class FunctionPass; class IntrinsicLowering; class MachineCodeEmitter; -extern bool X86PatIsel; - -/// createX86ISelPattern - This pass converts an LLVM function into a -/// machine code representation using pattern matching and a machine -/// description file. -/// -FunctionPass *createX86ISelPattern(TargetMachine &TM); - /// createX86ISelDag - This pass converts a legalized DAG into a /// X86-specific DAG, ready for instruction scheduling. /// diff --git a/lib/Target/X86/X86ISelLowering.cpp b/lib/Target/X86/X86ISelLowering.cpp index 3e0a21063f2..32c2a1fe811 100644 --- a/lib/Target/X86/X86ISelLowering.cpp +++ b/lib/Target/X86/X86ISelLowering.cpp @@ -70,13 +70,9 @@ X86TargetLowering::X86TargetLowering(TargetMachine &TM) // this operation. setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote); setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote); + // SSE has no i16 to fp conversion, only i32 if (X86ScalarSSE) - // SSE has no i16 to fp conversion, only i32 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote); - else if (!X86PatIsel) { - setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom); - setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); - } // We can handle SINT_TO_FP and FP_TO_SINT from/to i64 even though i64 // isn't legal. @@ -112,9 +108,7 @@ X86TargetLowering::X86TargetLowering(TargetMachine &TM) setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand); setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand); - if (!X86PatIsel) { - setOperationAction(ISD::BRCOND , MVT::Other, Custom); - } + setOperationAction(ISD::BRCOND , MVT::Other, Custom); setOperationAction(ISD::BRCONDTWOWAY , MVT::Other, Expand); setOperationAction(ISD::BRTWOWAY_CC , MVT::Other, Expand); setOperationAction(ISD::BR_CC , MVT::Other, Expand); @@ -136,16 +130,6 @@ X86TargetLowering::X86TargetLowering(TargetMachine &TM) setOperationAction(ISD::CTTZ , MVT::i32 , Expand); setOperationAction(ISD::CTLZ , MVT::i32 , Expand); setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom); - - if (X86PatIsel) { - setOperationAction(ISD::BSWAP , MVT::i32 , Expand); - setOperationAction(ISD::ROTL , MVT::i8 , Expand); - setOperationAction(ISD::ROTR , MVT::i8 , Expand); - setOperationAction(ISD::ROTL , MVT::i16 , Expand); - setOperationAction(ISD::ROTR , MVT::i16 , Expand); - setOperationAction(ISD::ROTL , MVT::i32 , Expand); - setOperationAction(ISD::ROTR , MVT::i32 , Expand); - } setOperationAction(ISD::BSWAP , MVT::i16 , Expand); setOperationAction(ISD::READIO , MVT::i1 , Expand); @@ -160,31 +144,30 @@ X86TargetLowering::X86TargetLowering(TargetMachine &TM) // These should be promoted to a larger select which is supported. setOperationAction(ISD::SELECT , MVT::i1 , Promote); setOperationAction(ISD::SELECT , MVT::i8 , Promote); - if (!X86PatIsel) { - // X86 wants to expand cmov itself. - setOperationAction(ISD::SELECT , MVT::i16 , Custom); - setOperationAction(ISD::SELECT , MVT::i32 , Custom); - setOperationAction(ISD::SELECT , MVT::f32 , Custom); - setOperationAction(ISD::SELECT , MVT::f64 , Custom); - setOperationAction(ISD::SETCC , MVT::i8 , Custom); - setOperationAction(ISD::SETCC , MVT::i16 , Custom); - setOperationAction(ISD::SETCC , MVT::i32 , Custom); - setOperationAction(ISD::SETCC , MVT::f32 , Custom); - setOperationAction(ISD::SETCC , MVT::f64 , Custom); - // X86 ret instruction may pop stack. - setOperationAction(ISD::RET , MVT::Other, Custom); - // Darwin ABI issue. - setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom); - // 64-bit addm sub, shl, sra, srl (iff 32-bit x86) - setOperationAction(ISD::ADD_PARTS , MVT::i32 , Custom); - setOperationAction(ISD::SUB_PARTS , MVT::i32 , Custom); - setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom); - setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom); - setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom); - // X86 wants to expand memset / memcpy itself. - setOperationAction(ISD::MEMSET , MVT::Other, Custom); - setOperationAction(ISD::MEMCPY , MVT::Other, Custom); - } + + // X86 wants to expand cmov itself. + setOperationAction(ISD::SELECT , MVT::i16 , Custom); + setOperationAction(ISD::SELECT , MVT::i32 , Custom); + setOperationAction(ISD::SELECT , MVT::f32 , Custom); + setOperationAction(ISD::SELECT , MVT::f64 , Custom); + setOperationAction(ISD::SETCC , MVT::i8 , Custom); + setOperationAction(ISD::SETCC , MVT::i16 , Custom); + setOperationAction(ISD::SETCC , MVT::i32 , Custom); + setOperationAction(ISD::SETCC , MVT::f32 , Custom); + setOperationAction(ISD::SETCC , MVT::f64 , Custom); + // X86 ret instruction may pop stack. + setOperationAction(ISD::RET , MVT::Other, Custom); + // Darwin ABI issue. + setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom); + // 64-bit addm sub, shl, sra, srl (iff 32-bit x86) + setOperationAction(ISD::ADD_PARTS , MVT::i32 , Custom); + setOperationAction(ISD::SUB_PARTS , MVT::i32 , Custom); + setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom); + setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom); + setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom); + // X86 wants to expand memset / memcpy itself. + setOperationAction(ISD::MEMSET , MVT::Other, Custom); + setOperationAction(ISD::MEMCPY , MVT::Other, Custom); // We don't have line number support yet. setOperationAction(ISD::LOCATION, MVT::Other, Expand); @@ -473,134 +456,98 @@ X86TargetLowering::LowerCCCCallTo(SDOperand Chain, const Type *RetTy, break; } - if (!X86PatIsel) { - std::vector NodeTys; - NodeTys.push_back(MVT::Other); // Returns a chain - NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. - std::vector Ops; - Ops.push_back(Chain); - Ops.push_back(Callee); + std::vector NodeTys; + NodeTys.push_back(MVT::Other); // Returns a chain + NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. + std::vector Ops; + Ops.push_back(Chain); + Ops.push_back(Callee); - // FIXME: Do not generate X86ISD::TAILCALL for now. - Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops); - SDOperand InFlag = Chain.getValue(1); + // FIXME: Do not generate X86ISD::TAILCALL for now. + Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops); + SDOperand InFlag = Chain.getValue(1); - NodeTys.clear(); - NodeTys.push_back(MVT::Other); // Returns a chain - NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. - Ops.clear(); - Ops.push_back(Chain); - Ops.push_back(DAG.getConstant(NumBytes, getPointerTy())); - Ops.push_back(DAG.getConstant(0, getPointerTy())); - Ops.push_back(InFlag); - Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, Ops); - InFlag = Chain.getValue(1); - - SDOperand RetVal; - if (RetTyVT != MVT::isVoid) { - switch (RetTyVT) { - default: assert(0 && "Unknown value type to return!"); - case MVT::i1: - case MVT::i8: - RetVal = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag); - Chain = RetVal.getValue(1); - if (RetTyVT == MVT::i1) - RetVal = DAG.getNode(ISD::TRUNCATE, MVT::i1, RetVal); - break; - case MVT::i16: - RetVal = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag); - Chain = RetVal.getValue(1); - break; - case MVT::i32: - RetVal = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag); - Chain = RetVal.getValue(1); - break; - case MVT::i64: { - SDOperand Lo = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag); - SDOperand Hi = DAG.getCopyFromReg(Lo.getValue(1), X86::EDX, MVT::i32, - Lo.getValue(2)); - RetVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Lo, Hi); - Chain = Hi.getValue(1); - break; - } - case MVT::f32: - case MVT::f64: { - std::vector Tys; - Tys.push_back(MVT::f64); - Tys.push_back(MVT::Other); - Tys.push_back(MVT::Flag); - std::vector Ops; - Ops.push_back(Chain); - Ops.push_back(InFlag); - RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, Ops); - Chain = RetVal.getValue(1); - InFlag = RetVal.getValue(2); - if (X86ScalarSSE) { - // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This - // shouldn't be necessary except that RFP cannot be live across - // multiple blocks. When stackifier is fixed, they can be uncoupled. - MachineFunction &MF = DAG.getMachineFunction(); - int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); - SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); - Tys.clear(); - Tys.push_back(MVT::Other); - Ops.clear(); - Ops.push_back(Chain); - Ops.push_back(RetVal); - Ops.push_back(StackSlot); - Ops.push_back(DAG.getValueType(RetTyVT)); - Ops.push_back(InFlag); - Chain = DAG.getNode(X86ISD::FST, Tys, Ops); - RetVal = DAG.getLoad(RetTyVT, Chain, StackSlot, - DAG.getSrcValue(NULL)); - Chain = RetVal.getValue(1); - } - - if (RetTyVT == MVT::f32 && !X86ScalarSSE) - // FIXME: we would really like to remember that this FP_ROUND - // operation is okay to eliminate if we allow excess FP precision. - RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal); - break; - } - } - } - - return std::make_pair(RetVal, Chain); - } else { - std::vector Ops; - Ops.push_back(Chain); - Ops.push_back(Callee); - Ops.push_back(DAG.getConstant(NumBytes, getPointerTy())); - Ops.push_back(DAG.getConstant(0, getPointerTy())); - - SDOperand TheCall = DAG.getNode(isTailCall ? X86ISD::TAILCALL :X86ISD::CALL, - RetVals, Ops); - - SDOperand ResultVal; + NodeTys.clear(); + NodeTys.push_back(MVT::Other); // Returns a chain + NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. + Ops.clear(); + Ops.push_back(Chain); + Ops.push_back(DAG.getConstant(NumBytes, getPointerTy())); + Ops.push_back(DAG.getConstant(0, getPointerTy())); + Ops.push_back(InFlag); + Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, Ops); + InFlag = Chain.getValue(1); + + SDOperand RetVal; + if (RetTyVT != MVT::isVoid) { switch (RetTyVT) { - case MVT::isVoid: break; - default: - ResultVal = TheCall.getValue(1); - break; + default: assert(0 && "Unknown value type to return!"); case MVT::i1: case MVT::i8: + RetVal = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag); + Chain = RetVal.getValue(1); + if (RetTyVT == MVT::i1) + RetVal = DAG.getNode(ISD::TRUNCATE, MVT::i1, RetVal); + break; case MVT::i16: - ResultVal = DAG.getNode(ISD::TRUNCATE, RetTyVT, TheCall.getValue(1)); + RetVal = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag); + Chain = RetVal.getValue(1); break; - case MVT::f32: - // FIXME: we would really like to remember that this FP_ROUND operation is - // okay to eliminate if we allow excess FP precision. - ResultVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, TheCall.getValue(1)); + case MVT::i32: + RetVal = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag); + Chain = RetVal.getValue(1); break; - case MVT::i64: - ResultVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, TheCall.getValue(1), - TheCall.getValue(2)); + case MVT::i64: { + SDOperand Lo = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag); + SDOperand Hi = DAG.getCopyFromReg(Lo.getValue(1), X86::EDX, MVT::i32, + Lo.getValue(2)); + RetVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Lo, Hi); + Chain = Hi.getValue(1); break; } + case MVT::f32: + case MVT::f64: { + std::vector Tys; + Tys.push_back(MVT::f64); + Tys.push_back(MVT::Other); + Tys.push_back(MVT::Flag); + std::vector Ops; + Ops.push_back(Chain); + Ops.push_back(InFlag); + RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, Ops); + Chain = RetVal.getValue(1); + InFlag = RetVal.getValue(2); + if (X86ScalarSSE) { + // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This + // shouldn't be necessary except that RFP cannot be live across + // multiple blocks. When stackifier is fixed, they can be uncoupled. + MachineFunction &MF = DAG.getMachineFunction(); + int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); + SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); + Tys.clear(); + Tys.push_back(MVT::Other); + Ops.clear(); + Ops.push_back(Chain); + Ops.push_back(RetVal); + Ops.push_back(StackSlot); + Ops.push_back(DAG.getValueType(RetTyVT)); + Ops.push_back(InFlag); + Chain = DAG.getNode(X86ISD::FST, Tys, Ops); + RetVal = DAG.getLoad(RetTyVT, Chain, StackSlot, + DAG.getSrcValue(NULL)); + Chain = RetVal.getValue(1); + } - Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, TheCall); - return std::make_pair(ResultVal, Chain); + if (RetTyVT == MVT::f32 && !X86ScalarSSE) + // FIXME: we would really like to remember that this FP_ROUND + // operation is okay to eliminate if we allow excess FP precision. + RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal); + break; + } + } } + + return std::make_pair(RetVal, Chain); } //===----------------------------------------------------------------------===// @@ -947,163 +894,123 @@ X86TargetLowering::LowerFastCCCallTo(SDOperand Chain, const Type *RetTy, break; } - if (!X86PatIsel) { - // Build a sequence of copy-to-reg nodes chained together with token chain - // and flag operands which copy the outgoing args into registers. - SDOperand InFlag; - for (unsigned i = 0, e = RegValuesToPass.size(); i != e; ++i) { - unsigned CCReg; - SDOperand RegToPass = RegValuesToPass[i]; - switch (RegToPass.getValueType()) { - default: assert(0 && "Bad thing to pass in regs"); - case MVT::i8: - CCReg = (i == 0) ? X86::AL : X86::DL; - break; - case MVT::i16: - CCReg = (i == 0) ? X86::AX : X86::DX; - break; - case MVT::i32: - CCReg = (i == 0) ? X86::EAX : X86::EDX; - break; - } - - Chain = DAG.getCopyToReg(Chain, CCReg, RegToPass, InFlag); - InFlag = Chain.getValue(1); - } - - std::vector NodeTys; - NodeTys.push_back(MVT::Other); // Returns a chain - NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. - std::vector Ops; - Ops.push_back(Chain); - Ops.push_back(Callee); - if (InFlag.Val) - Ops.push_back(InFlag); - - // FIXME: Do not generate X86ISD::TAILCALL for now. - Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops); - InFlag = Chain.getValue(1); - - NodeTys.clear(); - NodeTys.push_back(MVT::Other); // Returns a chain - NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. - Ops.clear(); - Ops.push_back(Chain); - Ops.push_back(DAG.getConstant(ArgOffset, getPointerTy())); - Ops.push_back(DAG.getConstant(ArgOffset, getPointerTy())); - Ops.push_back(InFlag); - Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, Ops); - InFlag = Chain.getValue(1); - - SDOperand RetVal; - if (RetTyVT != MVT::isVoid) { - switch (RetTyVT) { - default: assert(0 && "Unknown value type to return!"); - case MVT::i1: - case MVT::i8: - RetVal = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag); - Chain = RetVal.getValue(1); - if (RetTyVT == MVT::i1) - RetVal = DAG.getNode(ISD::TRUNCATE, MVT::i1, RetVal); - break; - case MVT::i16: - RetVal = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag); - Chain = RetVal.getValue(1); - break; - case MVT::i32: - RetVal = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag); - Chain = RetVal.getValue(1); - break; - case MVT::i64: { - SDOperand Lo = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag); - SDOperand Hi = DAG.getCopyFromReg(Lo.getValue(1), X86::EDX, MVT::i32, - Lo.getValue(2)); - RetVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Lo, Hi); - Chain = Hi.getValue(1); - break; - } - case MVT::f32: - case MVT::f64: { - std::vector Tys; - Tys.push_back(MVT::f64); - Tys.push_back(MVT::Other); - Tys.push_back(MVT::Flag); - std::vector Ops; - Ops.push_back(Chain); - Ops.push_back(InFlag); - RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, Ops); - Chain = RetVal.getValue(1); - InFlag = RetVal.getValue(2); - if (X86ScalarSSE) { - // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This - // shouldn't be necessary except that RFP cannot be live across - // multiple blocks. When stackifier is fixed, they can be uncoupled. - MachineFunction &MF = DAG.getMachineFunction(); - int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); - SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); - Tys.clear(); - Tys.push_back(MVT::Other); - Ops.clear(); - Ops.push_back(Chain); - Ops.push_back(RetVal); - Ops.push_back(StackSlot); - Ops.push_back(DAG.getValueType(RetTyVT)); - Ops.push_back(InFlag); - Chain = DAG.getNode(X86ISD::FST, Tys, Ops); - RetVal = DAG.getLoad(RetTyVT, Chain, StackSlot, - DAG.getSrcValue(NULL)); - Chain = RetVal.getValue(1); - } - - if (RetTyVT == MVT::f32 && !X86ScalarSSE) - // FIXME: we would really like to remember that this FP_ROUND - // operation is okay to eliminate if we allow excess FP precision. - RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal); - break; - } - } - } - - return std::make_pair(RetVal, Chain); - } else { - std::vector Ops; - Ops.push_back(Chain); - Ops.push_back(Callee); - Ops.push_back(DAG.getConstant(ArgOffset, getPointerTy())); - // Callee pops all arg values on the stack. - Ops.push_back(DAG.getConstant(ArgOffset, getPointerTy())); - - // Pass register arguments as needed. - Ops.insert(Ops.end(), RegValuesToPass.begin(), RegValuesToPass.end()); - - SDOperand TheCall = DAG.getNode(isTailCall ? X86ISD::TAILCALL :X86ISD::CALL, - RetVals, Ops); - Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, TheCall); - - SDOperand ResultVal; - switch (RetTyVT) { - case MVT::isVoid: break; - default: - ResultVal = TheCall.getValue(1); + // Build a sequence of copy-to-reg nodes chained together with token chain + // and flag operands which copy the outgoing args into registers. + SDOperand InFlag; + for (unsigned i = 0, e = RegValuesToPass.size(); i != e; ++i) { + unsigned CCReg; + SDOperand RegToPass = RegValuesToPass[i]; + switch (RegToPass.getValueType()) { + default: assert(0 && "Bad thing to pass in regs"); + case MVT::i8: + CCReg = (i == 0) ? X86::AL : X86::DL; break; + case MVT::i16: + CCReg = (i == 0) ? X86::AX : X86::DX; + break; + case MVT::i32: + CCReg = (i == 0) ? X86::EAX : X86::EDX; + break; + } + + Chain = DAG.getCopyToReg(Chain, CCReg, RegToPass, InFlag); + InFlag = Chain.getValue(1); + } + + std::vector NodeTys; + NodeTys.push_back(MVT::Other); // Returns a chain + NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. + std::vector Ops; + Ops.push_back(Chain); + Ops.push_back(Callee); + if (InFlag.Val) + Ops.push_back(InFlag); + + // FIXME: Do not generate X86ISD::TAILCALL for now. + Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops); + InFlag = Chain.getValue(1); + + NodeTys.clear(); + NodeTys.push_back(MVT::Other); // Returns a chain + NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. + Ops.clear(); + Ops.push_back(Chain); + Ops.push_back(DAG.getConstant(ArgOffset, getPointerTy())); + Ops.push_back(DAG.getConstant(ArgOffset, getPointerTy())); + Ops.push_back(InFlag); + Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, Ops); + InFlag = Chain.getValue(1); + + SDOperand RetVal; + if (RetTyVT != MVT::isVoid) { + switch (RetTyVT) { + default: assert(0 && "Unknown value type to return!"); case MVT::i1: case MVT::i8: + RetVal = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag); + Chain = RetVal.getValue(1); + if (RetTyVT == MVT::i1) + RetVal = DAG.getNode(ISD::TRUNCATE, MVT::i1, RetVal); + break; case MVT::i16: - ResultVal = DAG.getNode(ISD::TRUNCATE, RetTyVT, TheCall.getValue(1)); + RetVal = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag); + Chain = RetVal.getValue(1); break; - case MVT::f32: - // FIXME: we would really like to remember that this FP_ROUND operation is - // okay to eliminate if we allow excess FP precision. - ResultVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, TheCall.getValue(1)); + case MVT::i32: + RetVal = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag); + Chain = RetVal.getValue(1); break; - case MVT::i64: - ResultVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, TheCall.getValue(1), - TheCall.getValue(2)); + case MVT::i64: { + SDOperand Lo = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag); + SDOperand Hi = DAG.getCopyFromReg(Lo.getValue(1), X86::EDX, MVT::i32, + Lo.getValue(2)); + RetVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Lo, Hi); + Chain = Hi.getValue(1); break; } + case MVT::f32: + case MVT::f64: { + std::vector Tys; + Tys.push_back(MVT::f64); + Tys.push_back(MVT::Other); + Tys.push_back(MVT::Flag); + std::vector Ops; + Ops.push_back(Chain); + Ops.push_back(InFlag); + RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, Ops); + Chain = RetVal.getValue(1); + InFlag = RetVal.getValue(2); + if (X86ScalarSSE) { + // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This + // shouldn't be necessary except that RFP cannot be live across + // multiple blocks. When stackifier is fixed, they can be uncoupled. + MachineFunction &MF = DAG.getMachineFunction(); + int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); + SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); + Tys.clear(); + Tys.push_back(MVT::Other); + Ops.clear(); + Ops.push_back(Chain); + Ops.push_back(RetVal); + Ops.push_back(StackSlot); + Ops.push_back(DAG.getValueType(RetTyVT)); + Ops.push_back(InFlag); + Chain = DAG.getNode(X86ISD::FST, Tys, Ops); + RetVal = DAG.getLoad(RetTyVT, Chain, StackSlot, + DAG.getSrcValue(NULL)); + Chain = RetVal.getValue(1); + } - return std::make_pair(ResultVal, Chain); + if (RetTyVT == MVT::f32 && !X86ScalarSSE) + // FIXME: we would really like to remember that this FP_ROUND + // operation is okay to eliminate if we allow excess FP precision. + RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal); + break; + } + } } + + return std::make_pair(RetVal, Chain); } SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) { diff --git a/lib/Target/X86/X86ISelPattern.cpp b/lib/Target/X86/X86ISelPattern.cpp deleted file mode 100644 index dc3ef6aba7e..00000000000 --- a/lib/Target/X86/X86ISelPattern.cpp +++ /dev/null @@ -1,3648 +0,0 @@ -//===-- X86ISelPattern.cpp - A pattern matching inst selector for X86 -----===// -// -// The LLVM Compiler Infrastructure -// -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file defines a pattern matching instruction selector for X86. -// -//===----------------------------------------------------------------------===// - -#include "X86.h" -#include "X86InstrBuilder.h" -#include "X86RegisterInfo.h" -#include "X86Subtarget.h" -#include "X86ISelLowering.h" -#include "llvm/CallingConv.h" -#include "llvm/Constants.h" -#include "llvm/Instructions.h" -#include "llvm/Function.h" -#include "llvm/CodeGen/MachineConstantPool.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/MachineFrameInfo.h" -#include "llvm/CodeGen/SelectionDAG.h" -#include "llvm/CodeGen/SelectionDAGISel.h" -#include "llvm/CodeGen/SSARegMap.h" -#include "llvm/Target/TargetData.h" -#include "llvm/Target/TargetLowering.h" -#include "llvm/Target/TargetMachine.h" -#include "llvm/Target/TargetOptions.h" -#include "llvm/Support/CFG.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/ADT/Statistic.h" -#include -#include -#include -using namespace llvm; - -//===----------------------------------------------------------------------===// -// Pattern Matcher Implementation -//===----------------------------------------------------------------------===// - -namespace { - /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses - /// SDOperand's instead of register numbers for the leaves of the matched - /// tree. - struct X86ISelAddressMode { - enum { - RegBase, - FrameIndexBase, - } BaseType; - - struct { // This is really a union, discriminated by BaseType! - SDOperand Reg; - int FrameIndex; - } Base; - - unsigned Scale; - SDOperand IndexReg; - unsigned Disp; - GlobalValue *GV; - - X86ISelAddressMode() - : BaseType(RegBase), Scale(1), IndexReg(), Disp(), GV(0) { - } - }; -} - - -namespace { - Statistic<> - NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added"); - - //===--------------------------------------------------------------------===// - /// ISel - X86 specific code to select X86 machine instructions for - /// SelectionDAG operations. - /// - class ISel : public SelectionDAGISel { - /// ContainsFPCode - Every instruction we select that uses or defines a FP - /// register should set this to true. - bool ContainsFPCode; - - /// X86Lowering - This object fully describes how to lower LLVM code to an - /// X86-specific SelectionDAG. - X86TargetLowering X86Lowering; - - /// RegPressureMap - This keeps an approximate count of the number of - /// registers required to evaluate each node in the graph. - std::map RegPressureMap; - - /// ExprMap - As shared expressions are codegen'd, we keep track of which - /// vreg the value is produced in, so we only emit one copy of each compiled - /// tree. - std::map ExprMap; - - /// TheDAG - The DAG being selected during Select* operations. - SelectionDAG *TheDAG; - - /// Subtarget - Keep a pointer to the X86Subtarget around so that we can - /// make the right decision when generating code for different targets. - const X86Subtarget *Subtarget; - - const TargetData &TD; - - /// X86ScalarSSE - Select between SSE2 or x87 floating point ops. - bool X86ScalarSSE; - public: - ISel(TargetMachine &TM) : SelectionDAGISel(X86Lowering), - X86Lowering(TM), TD(TM.getTargetData()) { - Subtarget = &TM.getSubtarget(); - X86ScalarSSE = Subtarget->hasSSE2(); - } - - virtual const char *getPassName() const { - return "X86 Pattern Instruction Selection"; - } - - unsigned getRegPressure(SDOperand O) { - return RegPressureMap[O.Val]; - } - unsigned ComputeRegPressure(SDOperand O); - - /// InstructionSelectBasicBlock - This callback is invoked by - /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. - virtual void InstructionSelectBasicBlock(SelectionDAG &DAG); - - virtual void EmitFunctionEntryCode(Function &Fn, MachineFunction &MF); - - bool isFoldableLoad(SDOperand Op, SDOperand OtherOp, - bool FloatPromoteOk = false); - void EmitFoldedLoad(SDOperand Op, X86AddressMode &AM); - bool TryToFoldLoadOpStore(SDNode *Node); - bool EmitOrOpOp(SDOperand Op1, SDOperand Op2, unsigned DestReg); - void EmitCMP(SDOperand LHS, SDOperand RHS, bool isOnlyUse); - bool EmitBranchCC(MachineBasicBlock *Dest, SDOperand Chain, SDOperand Cond); - void EmitSelectCC(SDOperand Cond, SDOperand True, SDOperand False, - MVT::ValueType SVT, unsigned RDest); - unsigned SelectExpr(SDOperand N); - - X86AddressMode SelectAddrExprs(const X86ISelAddressMode &IAM); - bool MatchAddress(SDOperand N, X86ISelAddressMode &AM); - void SelectAddress(SDOperand N, X86AddressMode &AM); - bool EmitPotentialTailCall(SDNode *Node); - void EmitFastCCToFastCCTailCall(SDNode *TailCallNode); - void Select(SDOperand N); - }; -} - -/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in -/// the main function. -static void EmitSpecialCodeForMain(MachineBasicBlock *BB, - MachineFrameInfo *MFI) { - // Switch the FPU to 64-bit precision mode for better compatibility and speed. - int CWFrameIdx = MFI->CreateStackObject(2, 2); - addFrameReference(BuildMI(BB, X86::FNSTCW16m, 4), CWFrameIdx); - - // Set the high part to be 64-bit precision. - addFrameReference(BuildMI(BB, X86::MOV8mi, 5), - CWFrameIdx, 1).addImm(2); - - // Reload the modified control word now. - addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx); -} - -void ISel::EmitFunctionEntryCode(Function &Fn, MachineFunction &MF) { - // If this is main, emit special code for main. - MachineBasicBlock *BB = MF.begin(); - if (Fn.hasExternalLinkage() && Fn.getName() == "main") - EmitSpecialCodeForMain(BB, MF.getFrameInfo()); -} - - -/// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel -/// when it has created a SelectionDAG for us to codegen. -void ISel::InstructionSelectBasicBlock(SelectionDAG &DAG) { - // While we're doing this, keep track of whether we see any FP code for - // FP_REG_KILL insertion. - ContainsFPCode = false; - MachineFunction *MF = BB->getParent(); - - // Scan the PHI nodes that already are inserted into this basic block. If any - // of them is a PHI of a floating point value, we need to insert an - // FP_REG_KILL. - SSARegMap *RegMap = MF->getSSARegMap(); - if (BB != MF->begin()) - for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); - I != E; ++I) { - assert(I->getOpcode() == X86::PHI && - "Isn't just PHI nodes?"); - if (RegMap->getRegClass(I->getOperand(0).getReg()) == - X86::RFPRegisterClass) { - ContainsFPCode = true; - break; - } - } - - // Compute the RegPressureMap, which is an approximation for the number of - // registers required to compute each node. - ComputeRegPressure(DAG.getRoot()); - - TheDAG = &DAG; - - // Codegen the basic block. - Select(DAG.getRoot()); - - TheDAG = 0; - - // Finally, look at all of the successors of this block. If any contain a PHI - // node of FP type, we need to insert an FP_REG_KILL in this block. - for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), - E = BB->succ_end(); SI != E && !ContainsFPCode; ++SI) - for (MachineBasicBlock::iterator I = (*SI)->begin(), E = (*SI)->end(); - I != E && I->getOpcode() == X86::PHI; ++I) { - if (RegMap->getRegClass(I->getOperand(0).getReg()) == - X86::RFPRegisterClass) { - ContainsFPCode = true; - break; - } - } - - // Final check, check LLVM BB's that are successors to the LLVM BB - // corresponding to BB for FP PHI nodes. - const BasicBlock *LLVMBB = BB->getBasicBlock(); - const PHINode *PN; - if (!ContainsFPCode) - for (succ_const_iterator SI = succ_begin(LLVMBB), E = succ_end(LLVMBB); - SI != E && !ContainsFPCode; ++SI) - for (BasicBlock::const_iterator II = SI->begin(); - (PN = dyn_cast(II)); ++II) - if (PN->getType()->isFloatingPoint()) { - ContainsFPCode = true; - break; - } - - // Insert FP_REG_KILL instructions into basic blocks that need them. This - // only occurs due to the floating point stackifier not being aggressive - // enough to handle arbitrary global stackification. - // - // Currently we insert an FP_REG_KILL instruction into each block that uses or - // defines a floating point virtual register. - // - // When the global register allocators (like linear scan) finally update live - // variable analysis, we can keep floating point values in registers across - // basic blocks. This will be a huge win, but we are waiting on the global - // allocators before we can do this. - // - if (ContainsFPCode) { - BuildMI(*BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0); - ++NumFPKill; - } - - // Clear state used for selection. - ExprMap.clear(); - RegPressureMap.clear(); -} - - -// ComputeRegPressure - Compute the RegPressureMap, which is an approximation -// for the number of registers required to compute each node. This is basically -// computing a generalized form of the Sethi-Ullman number for each node. -unsigned ISel::ComputeRegPressure(SDOperand O) { - SDNode *N = O.Val; - unsigned &Result = RegPressureMap[N]; - if (Result) return Result; - - // FIXME: Should operations like CALL (which clobber lots o regs) have a - // higher fixed cost?? - - if (N->getNumOperands() == 0) { - Result = 1; - } else { - unsigned MaxRegUse = 0; - unsigned NumExtraMaxRegUsers = 0; - for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { - unsigned Regs; - if (N->getOperand(i).getOpcode() == ISD::Constant) - Regs = 0; - else - Regs = ComputeRegPressure(N->getOperand(i)); - if (Regs > MaxRegUse) { - MaxRegUse = Regs; - NumExtraMaxRegUsers = 0; - } else if (Regs == MaxRegUse && - N->getOperand(i).getValueType() != MVT::Other) { - ++NumExtraMaxRegUsers; - } - } - - if (O.getOpcode() != ISD::TokenFactor) - Result = MaxRegUse+NumExtraMaxRegUsers; - else - Result = MaxRegUse == 1 ? 0 : MaxRegUse-1; - } - - //std::cerr << " WEIGHT: " << Result << " "; N->dump(); std::cerr << "\n"; - return Result; -} - -/// NodeTransitivelyUsesValue - Return true if N or any of its uses uses Op. -/// The DAG cannot have cycles in it, by definition, so the visited set is not -/// needed to prevent infinite loops. The DAG CAN, however, have unbounded -/// reuse, so it prevents exponential cases. -/// -static bool NodeTransitivelyUsesValue(SDOperand N, SDOperand Op, - std::set &Visited) { - if (N == Op) return true; // Found it. - SDNode *Node = N.Val; - if (Node->getNumOperands() == 0 || // Leaf? - Node->getNodeDepth() <= Op.getNodeDepth()) return false; // Can't find it? - if (!Visited.insert(Node).second) return false; // Already visited? - - // Recurse for the first N-1 operands. - for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) - if (NodeTransitivelyUsesValue(Node->getOperand(i), Op, Visited)) - return true; - - // Tail recurse for the last operand. - return NodeTransitivelyUsesValue(Node->getOperand(0), Op, Visited); -} - -X86AddressMode ISel::SelectAddrExprs(const X86ISelAddressMode &IAM) { - X86AddressMode Result; - - // If we need to emit two register operands, emit the one with the highest - // register pressure first. - if (IAM.BaseType == X86ISelAddressMode::RegBase && - IAM.Base.Reg.Val && IAM.IndexReg.Val) { - bool EmitBaseThenIndex; - if (getRegPressure(IAM.Base.Reg) > getRegPressure(IAM.IndexReg)) { - std::set Visited; - EmitBaseThenIndex = true; - // If Base ends up pointing to Index, we must emit index first. This is - // because of the way we fold loads, we may end up doing bad things with - // the folded add. - if (NodeTransitivelyUsesValue(IAM.Base.Reg, IAM.IndexReg, Visited)) - EmitBaseThenIndex = false; - } else { - std::set Visited; - EmitBaseThenIndex = false; - // If Base ends up pointing to Index, we must emit index first. This is - // because of the way we fold loads, we may end up doing bad things with - // the folded add. - if (NodeTransitivelyUsesValue(IAM.IndexReg, IAM.Base.Reg, Visited)) - EmitBaseThenIndex = true; - } - - if (EmitBaseThenIndex) { - Result.Base.Reg = SelectExpr(IAM.Base.Reg); - Result.IndexReg = SelectExpr(IAM.IndexReg); - } else { - Result.IndexReg = SelectExpr(IAM.IndexReg); - Result.Base.Reg = SelectExpr(IAM.Base.Reg); - } - - } else if (IAM.BaseType == X86ISelAddressMode::RegBase && IAM.Base.Reg.Val) { - Result.Base.Reg = SelectExpr(IAM.Base.Reg); - } else if (IAM.IndexReg.Val) { - Result.IndexReg = SelectExpr(IAM.IndexReg); - } - - switch (IAM.BaseType) { - case X86ISelAddressMode::RegBase: - Result.BaseType = X86AddressMode::RegBase; - break; - case X86ISelAddressMode::FrameIndexBase: - Result.BaseType = X86AddressMode::FrameIndexBase; - Result.Base.FrameIndex = IAM.Base.FrameIndex; - break; - default: - assert(0 && "Unknown base type!"); - break; - } - Result.Scale = IAM.Scale; - Result.Disp = IAM.Disp; - Result.GV = IAM.GV; - return Result; -} - -/// SelectAddress - Pattern match the maximal addressing mode for this node and -/// emit all of the leaf registers. -void ISel::SelectAddress(SDOperand N, X86AddressMode &AM) { - X86ISelAddressMode IAM; - MatchAddress(N, IAM); - AM = SelectAddrExprs(IAM); -} - -/// MatchAddress - Add the specified node to the specified addressing mode, -/// returning true if it cannot be done. This just pattern matches for the -/// addressing mode, it does not cause any code to be emitted. For that, use -/// SelectAddress. -bool ISel::MatchAddress(SDOperand N, X86ISelAddressMode &AM) { - switch (N.getOpcode()) { - default: break; - case ISD::FrameIndex: - if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base.Reg.Val == 0) { - AM.BaseType = X86ISelAddressMode::FrameIndexBase; - AM.Base.FrameIndex = cast(N)->getIndex(); - return false; - } - break; - case ISD::GlobalAddress: - if (AM.GV == 0) { - GlobalValue *GV = cast(N)->getGlobal(); - // For Darwin, external and weak symbols are indirect, so we want to load - // the value at address GV, not the value of GV itself. This means that - // the GlobalAddress must be in the base or index register of the address, - // not the GV offset field. - if (Subtarget->getIndirectExternAndWeakGlobals() && - (GV->hasWeakLinkage() || GV->isExternal())) { - break; - } else { - AM.GV = GV; - return false; - } - } - break; - case ISD::Constant: - AM.Disp += cast(N)->getValue(); - return false; - case ISD::SHL: - // We might have folded the load into this shift, so don't regen the value - // if so. - if (ExprMap.count(N)) break; - - if (AM.IndexReg.Val == 0 && AM.Scale == 1) - if (ConstantSDNode *CN = dyn_cast(N.Val->getOperand(1))) { - unsigned Val = CN->getValue(); - if (Val == 1 || Val == 2 || Val == 3) { - AM.Scale = 1 << Val; - SDOperand ShVal = N.Val->getOperand(0); - - // Okay, we know that we have a scale by now. However, if the scaled - // value is an add of something and a constant, we can fold the - // constant into the disp field here. - if (ShVal.Val->getOpcode() == ISD::ADD && ShVal.hasOneUse() && - isa(ShVal.Val->getOperand(1))) { - AM.IndexReg = ShVal.Val->getOperand(0); - ConstantSDNode *AddVal = - cast(ShVal.Val->getOperand(1)); - AM.Disp += AddVal->getValue() << Val; - } else { - AM.IndexReg = ShVal; - } - return false; - } - } - break; - case ISD::MUL: - // We might have folded the load into this mul, so don't regen the value if - // so. - if (ExprMap.count(N)) break; - - // X*[3,5,9] -> X+X*[2,4,8] - if (AM.IndexReg.Val == 0 && AM.BaseType == X86ISelAddressMode::RegBase && - AM.Base.Reg.Val == 0) - if (ConstantSDNode *CN = dyn_cast(N.Val->getOperand(1))) - if (CN->getValue() == 3 || CN->getValue() == 5 || CN->getValue() == 9) { - AM.Scale = unsigned(CN->getValue())-1; - - SDOperand MulVal = N.Val->getOperand(0); - SDOperand Reg; - - // Okay, we know that we have a scale by now. However, if the scaled - // value is an add of something and a constant, we can fold the - // constant into the disp field here. - if (MulVal.Val->getOpcode() == ISD::ADD && MulVal.hasOneUse() && - isa(MulVal.Val->getOperand(1))) { - Reg = MulVal.Val->getOperand(0); - ConstantSDNode *AddVal = - cast(MulVal.Val->getOperand(1)); - AM.Disp += AddVal->getValue() * CN->getValue(); - } else { - Reg = N.Val->getOperand(0); - } - - AM.IndexReg = AM.Base.Reg = Reg; - return false; - } - break; - - case ISD::ADD: { - // We might have folded the load into this mul, so don't regen the value if - // so. - if (ExprMap.count(N)) break; - - X86ISelAddressMode Backup = AM; - if (!MatchAddress(N.Val->getOperand(0), AM) && - !MatchAddress(N.Val->getOperand(1), AM)) - return false; - AM = Backup; - if (!MatchAddress(N.Val->getOperand(1), AM) && - !MatchAddress(N.Val->getOperand(0), AM)) - return false; - AM = Backup; - break; - } - } - - // Is the base register already occupied? - if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.Val) { - // If so, check to see if the scale index register is set. - if (AM.IndexReg.Val == 0) { - AM.IndexReg = N; - AM.Scale = 1; - return false; - } - - // Otherwise, we cannot select it. - return true; - } - - // Default, generate it as a register. - AM.BaseType = X86ISelAddressMode::RegBase; - AM.Base.Reg = N; - return false; -} - -/// Emit2SetCCsAndLogical - Emit the following sequence of instructions, -/// assuming that the temporary registers are in the 8-bit register class. -/// -/// Tmp1 = setcc1 -/// Tmp2 = setcc2 -/// DestReg = logicalop Tmp1, Tmp2 -/// -static void Emit2SetCCsAndLogical(MachineBasicBlock *BB, unsigned SetCC1, - unsigned SetCC2, unsigned LogicalOp, - unsigned DestReg) { - SSARegMap *RegMap = BB->getParent()->getSSARegMap(); - unsigned Tmp1 = RegMap->createVirtualRegister(X86::R8RegisterClass); - unsigned Tmp2 = RegMap->createVirtualRegister(X86::R8RegisterClass); - BuildMI(BB, SetCC1, 0, Tmp1); - BuildMI(BB, SetCC2, 0, Tmp2); - BuildMI(BB, LogicalOp, 2, DestReg).addReg(Tmp1).addReg(Tmp2); -} - -/// EmitSetCC - Emit the code to set the specified 8-bit register to 1 if the -/// condition codes match the specified SetCCOpcode. Note that some conditions -/// require multiple instructions to generate the correct value. -static void EmitSetCC(MachineBasicBlock *BB, unsigned DestReg, - ISD::CondCode SetCCOpcode, bool isFP) { - unsigned Opc; - if (!isFP) { - switch (SetCCOpcode) { - default: assert(0 && "Illegal integer SetCC!"); - case ISD::SETEQ: Opc = X86::SETEr; break; - case ISD::SETGT: Opc = X86::SETGr; break; - case ISD::SETGE: Opc = X86::SETGEr; break; - case ISD::SETLT: Opc = X86::SETLr; break; - case ISD::SETLE: Opc = X86::SETLEr; break; - case ISD::SETNE: Opc = X86::SETNEr; break; - case ISD::SETULT: Opc = X86::SETBr; break; - case ISD::SETUGT: Opc = X86::SETAr; break; - case ISD::SETULE: Opc = X86::SETBEr; break; - case ISD::SETUGE: Opc = X86::SETAEr; break; - } - } else { - // On a floating point condition, the flags are set as follows: - // ZF PF CF op - // 0 | 0 | 0 | X > Y - // 0 | 0 | 1 | X < Y - // 1 | 0 | 0 | X == Y - // 1 | 1 | 1 | unordered - // - switch (SetCCOpcode) { - default: assert(0 && "Invalid FP setcc!"); - case ISD::SETUEQ: - case ISD::SETEQ: - Opc = X86::SETEr; // True if ZF = 1 - break; - case ISD::SETOGT: - case ISD::SETGT: - Opc = X86::SETAr; // True if CF = 0 and ZF = 0 - break; - case ISD::SETOGE: - case ISD::SETGE: - Opc = X86::SETAEr; // True if CF = 0 - break; - case ISD::SETULT: - case ISD::SETLT: - Opc = X86::SETBr; // True if CF = 1 - break; - case ISD::SETULE: - case ISD::SETLE: - Opc = X86::SETBEr; // True if CF = 1 or ZF = 1 - break; - case ISD::SETONE: - case ISD::SETNE: - Opc = X86::SETNEr; // True if ZF = 0 - break; - case ISD::SETUO: - Opc = X86::SETPr; // True if PF = 1 - break; - case ISD::SETO: - Opc = X86::SETNPr; // True if PF = 0 - break; - case ISD::SETOEQ: // !PF & ZF - Emit2SetCCsAndLogical(BB, X86::SETNPr, X86::SETEr, X86::AND8rr, DestReg); - return; - case ISD::SETOLT: // !PF & CF - Emit2SetCCsAndLogical(BB, X86::SETNPr, X86::SETBr, X86::AND8rr, DestReg); - return; - case ISD::SETOLE: // !PF & (CF || ZF) - Emit2SetCCsAndLogical(BB, X86::SETNPr, X86::SETBEr, X86::AND8rr, DestReg); - return; - case ISD::SETUGT: // PF | (!ZF & !CF) - Emit2SetCCsAndLogical(BB, X86::SETPr, X86::SETAr, X86::OR8rr, DestReg); - return; - case ISD::SETUGE: // PF | !CF - Emit2SetCCsAndLogical(BB, X86::SETPr, X86::SETAEr, X86::OR8rr, DestReg); - return; - case ISD::SETUNE: // PF | !ZF - Emit2SetCCsAndLogical(BB, X86::SETPr, X86::SETNEr, X86::OR8rr, DestReg); - return; - } - } - BuildMI(BB, Opc, 0, DestReg); -} - - -/// EmitBranchCC - Emit code into BB that arranges for control to transfer to -/// the Dest block if the Cond condition is true. If we cannot fold this -/// condition into the branch, return true. -/// -bool ISel::EmitBranchCC(MachineBasicBlock *Dest, SDOperand Chain, - SDOperand Cond) { - // FIXME: Evaluate whether it would be good to emit code like (X < Y) | (A > - // B) using two conditional branches instead of one condbr, two setcc's, and - // an or. - if ((Cond.getOpcode() == ISD::OR || - Cond.getOpcode() == ISD::AND) && Cond.Val->hasOneUse()) { - // And and or set the flags for us, so there is no need to emit a TST of the - // result. It is only safe to do this if there is only a single use of the - // AND/OR though, otherwise we don't know it will be emitted here. - Select(Chain); - SelectExpr(Cond); - BuildMI(BB, X86::JNE, 1).addMBB(Dest); - return false; - } - - // Codegen br not C -> JE. - if (Cond.getOpcode() == ISD::XOR) - if (ConstantSDNode *NC = dyn_cast(Cond.Val->getOperand(1))) - if (NC->isAllOnesValue()) { - unsigned CondR; - if (getRegPressure(Chain) > getRegPressure(Cond)) { - Select(Chain); - CondR = SelectExpr(Cond.Val->getOperand(0)); - } else { - CondR = SelectExpr(Cond.Val->getOperand(0)); - Select(Chain); - } - BuildMI(BB, X86::TEST8rr, 2).addReg(CondR).addReg(CondR); - BuildMI(BB, X86::JE, 1).addMBB(Dest); - return false; - } - - if (Cond.getOpcode() != ISD::SETCC) - return true; // Can only handle simple setcc's so far. - ISD::CondCode CC = cast(Cond.getOperand(2))->get(); - - unsigned Opc; - - // Handle integer conditions first. - if (MVT::isInteger(Cond.getOperand(0).getValueType())) { - switch (CC) { - default: assert(0 && "Illegal integer SetCC!"); - case ISD::SETEQ: Opc = X86::JE; break; - case ISD::SETGT: Opc = X86::JG; break; - case ISD::SETGE: Opc = X86::JGE; break; - case ISD::SETLT: Opc = X86::JL; break; - case ISD::SETLE: Opc = X86::JLE; break; - case ISD::SETNE: Opc = X86::JNE; break; - case ISD::SETULT: Opc = X86::JB; break; - case ISD::SETUGT: Opc = X86::JA; break; - case ISD::SETULE: Opc = X86::JBE; break; - case ISD::SETUGE: Opc = X86::JAE; break; - } - Select(Chain); - EmitCMP(Cond.getOperand(0), Cond.getOperand(1), Cond.hasOneUse()); - BuildMI(BB, Opc, 1).addMBB(Dest); - return false; - } - - unsigned Opc2 = 0; // Second branch if needed. - - // On a floating point condition, the flags are set as follows: - // ZF PF CF op - // 0 | 0 | 0 | X > Y - // 0 | 0 | 1 | X < Y - // 1 | 0 | 0 | X == Y - // 1 | 1 | 1 | unordered - // - switch (CC) { - default: assert(0 && "Invalid FP setcc!"); - case ISD::SETUEQ: - case ISD::SETEQ: Opc = X86::JE; break; // True if ZF = 1 - case ISD::SETOGT: - case ISD::SETGT: Opc = X86::JA; break; // True if CF = 0 and ZF = 0 - case ISD::SETOGE: - case ISD::SETGE: Opc = X86::JAE; break; // True if CF = 0 - case ISD::SETULT: - case ISD::SETLT: Opc = X86::JB; break; // True if CF = 1 - case ISD::SETULE: - case ISD::SETLE: Opc = X86::JBE; break; // True if CF = 1 or ZF = 1 - case ISD::SETONE: - case ISD::SETNE: Opc = X86::JNE; break; // True if ZF = 0 - case ISD::SETUO: Opc = X86::JP; break; // True if PF = 1 - case ISD::SETO: Opc = X86::JNP; break; // True if PF = 0 - case ISD::SETUGT: // PF = 1 | (ZF = 0 & CF = 0) - Opc = X86::JA; // ZF = 0 & CF = 0 - Opc2 = X86::JP; // PF = 1 - break; - case ISD::SETUGE: // PF = 1 | CF = 0 - Opc = X86::JAE; // CF = 0 - Opc2 = X86::JP; // PF = 1 - break; - case ISD::SETUNE: // PF = 1 | ZF = 0 - Opc = X86::JNE; // ZF = 0 - Opc2 = X86::JP; // PF = 1 - break; - case ISD::SETOEQ: // PF = 0 & ZF = 1 - //X86::JNP, X86::JE - //X86::AND8rr - return true; // FIXME: Emit more efficient code for this branch. - case ISD::SETOLT: // PF = 0 & CF = 1 - //X86::JNP, X86::JB - //X86::AND8rr - return true; // FIXME: Emit more efficient code for this branch. - case ISD::SETOLE: // PF = 0 & (CF = 1 || ZF = 1) - //X86::JNP, X86::JBE - //X86::AND8rr - return true; // FIXME: Emit more efficient code for this branch. - } - - Select(Chain); - EmitCMP(Cond.getOperand(0), Cond.getOperand(1), Cond.hasOneUse()); - BuildMI(BB, Opc, 1).addMBB(Dest); - if (Opc2) - BuildMI(BB, Opc2, 1).addMBB(Dest); - return false; -} - -/// EmitSelectCC - Emit code into BB that performs a select operation between -/// the two registers RTrue and RFalse, generating a result into RDest. -/// -void ISel::EmitSelectCC(SDOperand Cond, SDOperand True, SDOperand False, - MVT::ValueType SVT, unsigned RDest) { - unsigned RTrue, RFalse; - enum Condition { - EQ, NE, LT, LE, GT, GE, B, BE, A, AE, P, NP, - NOT_SET - } CondCode = NOT_SET; - - static const unsigned CMOVTAB16[] = { - X86::CMOVE16rr, X86::CMOVNE16rr, X86::CMOVL16rr, X86::CMOVLE16rr, - X86::CMOVG16rr, X86::CMOVGE16rr, X86::CMOVB16rr, X86::CMOVBE16rr, - X86::CMOVA16rr, X86::CMOVAE16rr, X86::CMOVP16rr, X86::CMOVNP16rr, - }; - static const unsigned CMOVTAB32[] = { - X86::CMOVE32rr, X86::CMOVNE32rr, X86::CMOVL32rr, X86::CMOVLE32rr, - X86::CMOVG32rr, X86::CMOVGE32rr, X86::CMOVB32rr, X86::CMOVBE32rr, - X86::CMOVA32rr, X86::CMOVAE32rr, X86::CMOVP32rr, X86::CMOVNP32rr, - }; - static const unsigned CMOVTABFP[] = { - X86::FpCMOVE, X86::FpCMOVNE, /*missing*/0, /*missing*/0, - /*missing*/0, /*missing*/ 0, X86::FpCMOVB, X86::FpCMOVBE, - X86::FpCMOVNBE,X86::FpCMOVNB, X86::FpCMOVP, X86::FpCMOVNP - }; - static const int SSE_CMOVTAB[] = { - /*CMPEQ*/ 0, /*CMPNEQ*/ 4, /*missing*/ 0, /*missing*/ 0, - /*missing*/ 0, /*missing*/ 0, /*CMPLT*/ 1, /*CMPLE*/ 2, - /*CMPNLE*/ 6, /*CMPNLT*/ 5, /*CMPUNORD*/ 3, /*CMPORD*/ 7 - }; - - if (Cond.getOpcode() == ISD::SETCC) { - ISD::CondCode CC = cast(Cond.getOperand(2))->get(); - if (MVT::isInteger(Cond.getOperand(0).getValueType())) { - switch (CC) { - default: assert(0 && "Unknown integer comparison!"); - case ISD::SETEQ: CondCode = EQ; break; - case ISD::SETGT: CondCode = GT; break; - case ISD::SETGE: CondCode = GE; break; - case ISD::SETLT: CondCode = LT; break; - case ISD::SETLE: CondCode = LE; break; - case ISD::SETNE: CondCode = NE; break; - case ISD::SETULT: CondCode = B; break; - case ISD::SETUGT: CondCode = A; break; - case ISD::SETULE: CondCode = BE; break; - case ISD::SETUGE: CondCode = AE; break; - } - } else { - // On a floating point condition, the flags are set as follows: - // ZF PF CF op - // 0 | 0 | 0 | X > Y - // 0 | 0 | 1 | X < Y - // 1 | 0 | 0 | X == Y - // 1 | 1 | 1 | unordered - // - switch (CC) { - default: assert(0 && "Unknown FP comparison!"); - case ISD::SETUEQ: - case ISD::SETEQ: CondCode = EQ; break; // True if ZF = 1 - case ISD::SETOGT: - case ISD::SETGT: CondCode = A; break; // True if CF = 0 and ZF = 0 - case ISD::SETOGE: - case ISD::SETGE: CondCode = AE; break; // True if CF = 0 - case ISD::SETULT: - case ISD::SETLT: CondCode = B; break; // True if CF = 1 - case ISD::SETULE: - case ISD::SETLE: CondCode = BE; break; // True if CF = 1 or ZF = 1 - case ISD::SETONE: - case ISD::SETNE: CondCode = NE; break; // True if ZF = 0 - case ISD::SETUO: CondCode = P; break; // True if PF = 1 - case ISD::SETO: CondCode = NP; break; // True if PF = 0 - case ISD::SETUGT: // PF = 1 | (ZF = 0 & CF = 0) - case ISD::SETUGE: // PF = 1 | CF = 0 - case ISD::SETUNE: // PF = 1 | ZF = 0 - case ISD::SETOEQ: // PF = 0 & ZF = 1 - case ISD::SETOLT: // PF = 0 & CF = 1 - case ISD::SETOLE: // PF = 0 & (CF = 1 || ZF = 1) - // We cannot emit this comparison as a single cmov. - break; - } - } - - - // There's no SSE equivalent of FCMOVE. For cases where we set a condition - // code above and one of the results of the select is +0.0, then we can fake - // it up through a clever AND with mask. Otherwise, we will fall through to - // the code below that will use a PHI node to select the right value. - if (X86ScalarSSE && (SVT == MVT::f32 || SVT == MVT::f64)) { - if (Cond.getOperand(0).getValueType() == SVT && - NOT_SET != CondCode) { - ConstantFPSDNode *CT = dyn_cast(True); - ConstantFPSDNode *CF = dyn_cast(False); - bool TrueZero = CT && CT->isExactlyValue(0.0); - bool FalseZero = CF && CF->isExactlyValue(0.0); - if (TrueZero || FalseZero) { - SDOperand LHS = Cond.getOperand(0); - SDOperand RHS = Cond.getOperand(1); - - // Select the two halves of the condition - unsigned RLHS, RRHS; - if (getRegPressure(LHS) > getRegPressure(RHS)) { - RLHS = SelectExpr(LHS); - RRHS = SelectExpr(RHS); - } else { - RRHS = SelectExpr(RHS); - RLHS = SelectExpr(LHS); - } - - // Emit the comparison and generate a mask from it - unsigned MaskReg = MakeReg(SVT); - unsigned Opc = (SVT == MVT::f32) ? X86::CMPSSrr : X86::CMPSDrr; - BuildMI(BB, Opc, 3, MaskReg).addReg(RLHS).addReg(RRHS) - .addImm(SSE_CMOVTAB[CondCode]); - - if (TrueZero) { - RFalse = SelectExpr(False); - Opc = (SVT == MVT::f32) ? X86::ANDNPSrr : X86::ANDNPDrr; - BuildMI(BB, Opc, 2, RDest).addReg(MaskReg).addReg(RFalse); - } else { - RTrue = SelectExpr(True); - Opc = (SVT == MVT::f32) ? X86::ANDPSrr : X86::ANDPDrr; - BuildMI(BB, Opc, 2, RDest).addReg(MaskReg).addReg(RTrue); - } - return; - } - } - } - } - - // Select the true and false values for use in both the SSE PHI case, and the - // integer or x87 cmov cases below. - if (getRegPressure(True) > getRegPressure(False)) { - RTrue = SelectExpr(True); - RFalse = SelectExpr(False); - } else { - RFalse = SelectExpr(False); - RTrue = SelectExpr(True); - } - - // Since there's no SSE equivalent of FCMOVE, and we couldn't generate an - // AND with mask, we'll have to do the normal RISC thing and generate a PHI - // node to select between the true and false values. - if (X86ScalarSSE && (SVT == MVT::f32 || SVT == MVT::f64)) { - // FIXME: emit a direct compare and branch rather than setting a cond reg - // and testing it. - unsigned CondReg = SelectExpr(Cond); - BuildMI(BB, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg); - - // Create an iterator with which to insert the MBB for copying the false - // value and the MBB to hold the PHI instruction for this SetCC. - MachineBasicBlock *thisMBB = BB; - const BasicBlock *LLVM_BB = BB->getBasicBlock(); - ilist::iterator It = BB; - ++It; - - // thisMBB: - // ... - // TrueVal = ... - // cmpTY ccX, r1, r2 - // bCC sinkMBB - // fallthrough --> copy0MBB - MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); - MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); - BuildMI(BB, X86::JNE, 1).addMBB(sinkMBB); - MachineFunction *F = BB->getParent(); - F->getBasicBlockList().insert(It, copy0MBB); - F->getBasicBlockList().insert(It, sinkMBB); - // Update machine-CFG edges - BB->addSuccessor(copy0MBB); - BB->addSuccessor(sinkMBB); - - // copy0MBB: - // %FalseValue = ... - // # fallthrough to sinkMBB - BB = copy0MBB; - // Update machine-CFG edges - BB->addSuccessor(sinkMBB); - - // sinkMBB: - // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] - // ... - BB = sinkMBB; - BuildMI(BB, X86::PHI, 4, RDest).addReg(RFalse) - .addMBB(copy0MBB).addReg(RTrue).addMBB(thisMBB); - return; - } - - unsigned Opc = 0; - if (CondCode != NOT_SET) { - switch (SVT) { - default: assert(0 && "Cannot select this type!"); - case MVT::i16: Opc = CMOVTAB16[CondCode]; break; - case MVT::i32: Opc = CMOVTAB32[CondCode]; break; - case MVT::f64: Opc = CMOVTABFP[CondCode]; break; - } - } - - // Finally, if we weren't able to fold this, just emit the condition and test - // it. - if (CondCode == NOT_SET || Opc == 0) { - // Get the condition into the zero flag. - unsigned CondReg = SelectExpr(Cond); - BuildMI(BB, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg); - - switch (SVT) { - default: assert(0 && "Cannot select this type!"); - case MVT::i16: Opc = X86::CMOVE16rr; break; - case MVT::i32: Opc = X86::CMOVE32rr; break; - case MVT::f64: Opc = X86::FpCMOVE; break; - } - } else { - // FIXME: CMP R, 0 -> TEST R, R - EmitCMP(Cond.getOperand(0), Cond.getOperand(1), Cond.Val->hasOneUse()); - std::swap(RTrue, RFalse); - } - BuildMI(BB, Opc, 2, RDest).addReg(RTrue).addReg(RFalse); -} - -void ISel::EmitCMP(SDOperand LHS, SDOperand RHS, bool HasOneUse) { - unsigned Opc; - if (ConstantSDNode *CN = dyn_cast(RHS)) { - Opc = 0; - if (HasOneUse && isFoldableLoad(LHS, RHS)) { - switch (RHS.getValueType()) { - default: break; - case MVT::i1: - case MVT::i8: Opc = X86::CMP8mi; break; - case MVT::i16: Opc = X86::CMP16mi; break; - case MVT::i32: Opc = X86::CMP32mi; break; - } - if (Opc) { - X86AddressMode AM; - EmitFoldedLoad(LHS, AM); - addFullAddress(BuildMI(BB, Opc, 5), AM).addImm(CN->getValue()); - return; - } - } - - switch (RHS.getValueType()) { - default: break; - case MVT::i1: - case MVT::i8: Opc = X86::CMP8ri; break; - case MVT::i16: Opc = X86::CMP16ri; break; - case MVT::i32: Opc = X86::CMP32ri; break; - } - if (Opc) { - unsigned Tmp1 = SelectExpr(LHS); - BuildMI(BB, Opc, 2).addReg(Tmp1).addImm(CN->getValue()); - return; - } - } else if (ConstantFPSDNode *CN = dyn_cast(RHS)) { - if (!X86ScalarSSE && (CN->isExactlyValue(+0.0) || - CN->isExactlyValue(-0.0))) { - unsigned Reg = SelectExpr(LHS); - BuildMI(BB, X86::FpTST, 1).addReg(Reg); - BuildMI(BB, X86::FNSTSW8r, 0); - BuildMI(BB, X86::SAHF, 1); - return; - } - } - - Opc = 0; - if (HasOneUse && isFoldableLoad(LHS, RHS)) { - switch (RHS.getValueType()) { - default: break; - case MVT::i1: - case MVT::i8: Opc = X86::CMP8mr; break; - case MVT::i16: Opc = X86::CMP16mr; break; - case MVT::i32: Opc = X86::CMP32mr; break; - } - if (Opc) { - X86AddressMode AM; - EmitFoldedLoad(LHS, AM); - unsigned Reg = SelectExpr(RHS); - addFullAddress(BuildMI(BB, Opc, 5), AM).addReg(Reg); - return; - } - } - - switch (LHS.getValueType()) { - default: assert(0 && "Cannot compare this value!"); - case MVT::i1: - case MVT::i8: Opc = X86::CMP8rr; break; - case MVT::i16: Opc = X86::CMP16rr; break; - case MVT::i32: Opc = X86::CMP32rr; break; - case MVT::f32: Opc = X86::UCOMISSrr; break; - case MVT::f64: Opc = X86ScalarSSE ? X86::UCOMISDrr : X86::FpUCOMIr; break; - } - unsigned Tmp1, Tmp2; - if (getRegPressure(LHS) > getRegPressure(RHS)) { - Tmp1 = SelectExpr(LHS); - Tmp2 = SelectExpr(RHS); - } else { - Tmp2 = SelectExpr(RHS); - Tmp1 = SelectExpr(LHS); - } - BuildMI(BB, Opc, 2).addReg(Tmp1).addReg(Tmp2); -} - -/// isFoldableLoad - Return true if this is a load instruction that can safely -/// be folded into an operation that uses it. -bool ISel::isFoldableLoad(SDOperand Op, SDOperand OtherOp, bool FloatPromoteOk){ - if (Op.getOpcode() == ISD::LOAD) { - // FIXME: currently can't fold constant pool indexes. - if (isa(Op.getOperand(1))) - return false; - } else if (FloatPromoteOk && Op.getOpcode() == ISD::EXTLOAD && - cast(Op.getOperand(3))->getVT() == MVT::f32) { - // FIXME: currently can't fold constant pool indexes. - if (isa(Op.getOperand(1))) - return false; - } else { - return false; - } - - // If this load has already been emitted, we clearly can't fold it. - assert(Op.ResNo == 0 && "Not a use of the value of the load?"); - if (ExprMap.count(Op.getValue(1))) return false; - assert(!ExprMap.count(Op.getValue(0)) && "Value in map but not token chain?"); - assert(!ExprMap.count(Op.getValue(1))&&"Token lowered but value not in map?"); - - // If there is not just one use of its value, we cannot fold. - if (!Op.Val->hasNUsesOfValue(1, 0)) return false; - - // Finally, we cannot fold the load into the operation if this would induce a - // cycle into the resultant dag. To check for this, see if OtherOp (the other - // operand of the operation we are folding the load into) can possible use the - // chain node defined by the load. - if (OtherOp.Val && !Op.Val->hasNUsesOfValue(0, 1)) { // Has uses of chain? - std::set Visited; - if (NodeTransitivelyUsesValue(OtherOp, Op.getValue(1), Visited)) - return false; - } - return true; -} - - -/// EmitFoldedLoad - Ensure that the arguments of the load are code generated, -/// and compute the address being loaded into AM. -void ISel::EmitFoldedLoad(SDOperand Op, X86AddressMode &AM) { - SDOperand Chain = Op.getOperand(0); - SDOperand Address = Op.getOperand(1); - - if (getRegPressure(Chain) > getRegPressure(Address)) { - Select(Chain); - SelectAddress(Address, AM); - } else { - SelectAddress(Address, AM); - Select(Chain); - } - - // The chain for this load is now lowered. - assert(ExprMap.count(SDOperand(Op.Val, 1)) == 0 && - "Load emitted more than once?"); - if (!ExprMap.insert(std::make_pair(Op.getValue(1), 1)).second) - assert(0 && "Load emitted more than once!"); -} - -// EmitOrOpOp - Pattern match the expression (Op1|Op2), where we know that op1 -// and op2 are i8/i16/i32 values with one use each (the or). If we can form a -// SHLD or SHRD, emit the instruction (generating the value into DestReg) and -// return true. -bool ISel::EmitOrOpOp(SDOperand Op1, SDOperand Op2, unsigned DestReg) { - if (Op1.getOpcode() == ISD::SHL && Op2.getOpcode() == ISD::SRL) { - // good! - } else if (Op2.getOpcode() == ISD::SHL && Op1.getOpcode() == ISD::SRL) { - std::swap(Op1, Op2); // Op1 is the SHL now. - } else { - return false; // No match - } - - SDOperand ShlVal = Op1.getOperand(0); - SDOperand ShlAmt = Op1.getOperand(1); - SDOperand ShrVal = Op2.getOperand(0); - SDOperand ShrAmt = Op2.getOperand(1); - - unsigned RegSize = MVT::getSizeInBits(Op1.getValueType()); - - // Find out if ShrAmt = 32-ShlAmt or ShlAmt = 32-ShrAmt. - if (ShlAmt.getOpcode() == ISD::SUB && ShlAmt.getOperand(1) == ShrAmt) - if (ConstantSDNode *SubCST = dyn_cast(ShlAmt.getOperand(0))) - if (SubCST->getValue() == RegSize) { - // (A >> ShrAmt) | (A << (32-ShrAmt)) ==> ROR A, ShrAmt - // (A >> ShrAmt) | (B << (32-ShrAmt)) ==> SHRD A, B, ShrAmt - if (ShrVal == ShlVal) { - unsigned Reg, ShAmt; - if (getRegPressure(ShrVal) > getRegPressure(ShrAmt)) { - Reg = SelectExpr(ShrVal); - ShAmt = SelectExpr(ShrAmt); - } else { - ShAmt = SelectExpr(ShrAmt); - Reg = SelectExpr(ShrVal); - } - BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(ShAmt); - unsigned Opc = RegSize == 8 ? X86::ROR8rCL : - (RegSize == 16 ? X86::ROR16rCL : X86::ROR32rCL); - BuildMI(BB, Opc, 1, DestReg).addReg(Reg); - return true; - } else if (RegSize != 8) { - unsigned AReg, BReg; - if (getRegPressure(ShlVal) > getRegPressure(ShrVal)) { - BReg = SelectExpr(ShlVal); - AReg = SelectExpr(ShrVal); - } else { - AReg = SelectExpr(ShrVal); - BReg = SelectExpr(ShlVal); - } - unsigned ShAmt = SelectExpr(ShrAmt); - BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(ShAmt); - unsigned Opc = RegSize == 16 ? X86::SHRD16rrCL : X86::SHRD32rrCL; - BuildMI(BB, Opc, 2, DestReg).addReg(AReg).addReg(BReg); - return true; - } - } - - if (ShrAmt.getOpcode() == ISD::SUB && ShrAmt.getOperand(1) == ShlAmt) - if (ConstantSDNode *SubCST = dyn_cast(ShrAmt.getOperand(0))) - if (SubCST->getValue() == RegSize) { - // (A << ShlAmt) | (A >> (32-ShlAmt)) ==> ROL A, ShrAmt - // (A << ShlAmt) | (B >> (32-ShlAmt)) ==> SHLD A, B, ShrAmt - if (ShrVal == ShlVal) { - unsigned Reg, ShAmt; - if (getRegPressure(ShrVal) > getRegPressure(ShlAmt)) { - Reg = SelectExpr(ShrVal); - ShAmt = SelectExpr(ShlAmt); - } else { - ShAmt = SelectExpr(ShlAmt); - Reg = SelectExpr(ShrVal); - } - BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(ShAmt); - unsigned Opc = RegSize == 8 ? X86::ROL8rCL : - (RegSize == 16 ? X86::ROL16rCL : X86::ROL32rCL); - BuildMI(BB, Opc, 1, DestReg).addReg(Reg); - return true; - } else if (RegSize != 8) { - unsigned AReg, BReg; - if (getRegPressure(ShlVal) > getRegPressure(ShrVal)) { - AReg = SelectExpr(ShlVal); - BReg = SelectExpr(ShrVal); - } else { - BReg = SelectExpr(ShrVal); - AReg = SelectExpr(ShlVal); - } - unsigned ShAmt = SelectExpr(ShlAmt); - BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(ShAmt); - unsigned Opc = RegSize == 16 ? X86::SHLD16rrCL : X86::SHLD32rrCL; - BuildMI(BB, Opc, 2, DestReg).addReg(AReg).addReg(BReg); - return true; - } - } - - if (ConstantSDNode *ShrCst = dyn_cast(ShrAmt)) - if (ConstantSDNode *ShlCst = dyn_cast(ShlAmt)) - if (ShrCst->getValue() < RegSize && ShlCst->getValue() < RegSize) - if (ShrCst->getValue() == RegSize-ShlCst->getValue()) { - // (A >> 5) | (A << 27) --> ROR A, 5 - // (A >> 5) | (B << 27) --> SHRD A, B, 5 - if (ShrVal == ShlVal) { - unsigned Reg = SelectExpr(ShrVal); - unsigned Opc = RegSize == 8 ? X86::ROR8ri : - (RegSize == 16 ? X86::ROR16ri : X86::ROR32ri); - BuildMI(BB, Opc, 2, DestReg).addReg(Reg).addImm(ShrCst->getValue()); - return true; - } else if (RegSize != 8) { - unsigned AReg, BReg; - if (getRegPressure(ShlVal) > getRegPressure(ShrVal)) { - BReg = SelectExpr(ShlVal); - AReg = SelectExpr(ShrVal); - } else { - AReg = SelectExpr(ShrVal); - BReg = SelectExpr(ShlVal); - } - unsigned Opc = RegSize == 16 ? X86::SHRD16rri8 : X86::SHRD32rri8; - BuildMI(BB, Opc, 3, DestReg).addReg(AReg).addReg(BReg) - .addImm(ShrCst->getValue()); - return true; - } - } - - return false; -} - -unsigned ISel::SelectExpr(SDOperand N) { - unsigned Result; - unsigned Tmp1 = 0, Tmp2 = 0, Tmp3 = 0, Opc = 0; - SDNode *Node = N.Val; - SDOperand Op0, Op1; - - if (Node->getOpcode() == ISD::CopyFromReg || - Node->getOpcode() == ISD::Register) { - unsigned Reg = (Node->getOpcode() == ISD::CopyFromReg) ? - cast(Node->getOperand(1))->getReg() : - cast(Node)->getReg(); - // Just use the specified register as our input if we can. - if (Node->getOpcode() == ISD::Register || - MRegisterInfo::isVirtualRegister(Reg)) - return Reg; - } - - unsigned &Reg = ExprMap[N]; - if (Reg) return Reg; - - switch (N.getOpcode()) { - default: - Reg = Result = (N.getValueType() != MVT::Other) ? - MakeReg(N.getValueType()) : 1; - break; - case X86ISD::TAILCALL: - case X86ISD::CALL: - // If this is a call instruction, make sure to prepare ALL of the result - // values as well as the chain. - ExprMap[N.getValue(0)] = 1; - if (Node->getNumValues() > 1) { - Result = MakeReg(Node->getValueType(1)); - ExprMap[N.getValue(1)] = Result; - for (unsigned i = 2, e = Node->getNumValues(); i != e; ++i) - ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i)); - } else { - Result = 1; - } - break; - case ISD::ADD_PARTS: - case ISD::SUB_PARTS: - case ISD::SHL_PARTS: - case ISD::SRL_PARTS: - case ISD::SRA_PARTS: - Result = MakeReg(Node->getValueType(0)); - ExprMap[N.getValue(0)] = Result; - for (unsigned i = 1, e = N.Val->getNumValues(); i != e; ++i) - ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i)); - break; - } - - switch (N.getOpcode()) { - default: - Node->dump(); - assert(0 && "Node not handled!\n"); - case ISD::FP_EXTEND: - assert(X86ScalarSSE && "Scalar SSE FP must be enabled to use f32"); - Tmp1 = SelectExpr(N.getOperand(0)); - BuildMI(BB, X86::CVTSS2SDrr, 1, Result).addReg(Tmp1); - return Result; - case ISD::FP_ROUND: - assert(X86ScalarSSE && "Scalar SSE FP must be enabled to use f32"); - Tmp1 = SelectExpr(N.getOperand(0)); - BuildMI(BB, X86::CVTSD2SSrr, 1, Result).addReg(Tmp1); - return Result; - case ISD::CopyFromReg: - Select(N.getOperand(0)); - if (Result == 1) { - Reg = Result = ExprMap[N.getValue(0)] = - MakeReg(N.getValue(0).getValueType()); - } - Tmp1 = cast(Node->getOperand(1))->getReg(); - switch (Node->getValueType(0)) { - default: assert(0 && "Cannot CopyFromReg this!"); - case MVT::i1: - case MVT::i8: - BuildMI(BB, X86::MOV8rr, 1, Result).addReg(Tmp1); - return Result; - case MVT::i16: - BuildMI(BB, X86::MOV16rr, 1, Result).addReg(Tmp1); - return Result; - case MVT::i32: - BuildMI(BB, X86::MOV32rr, 1, Result).addReg(Tmp1); - return Result; - } - - case ISD::FrameIndex: - Tmp1 = cast(N)->getIndex(); - addFrameReference(BuildMI(BB, X86::LEA32r, 4, Result), (int)Tmp1); - return Result; - case ISD::ConstantPool: { - Constant *C = cast(N)->get(); - unsigned Align = cast(N)->getAlignment(); - if (Align == 0) { - Align = C->getType() == Type::DoubleTy ? 3 : - TD.getTypeAlignmentShift(C->getType()); - } - Tmp1 = BB->getParent()->getConstantPool()->getConstantPoolIndex(C, Align); - addConstantPoolReference(BuildMI(BB, X86::LEA32r, 4, Result), Tmp1); - return Result; - } - case ISD::ConstantFP: - if (X86ScalarSSE) { - assert(cast(N)->isExactlyValue(+0.0) && - "SSE only supports +0.0"); - Opc = (N.getValueType() == MVT::f32) ? X86::FLD0SS : X86::FLD0SD; - BuildMI(BB, Opc, 0, Result); - return Result; - } - ContainsFPCode = true; - Tmp1 = Result; // Intermediate Register - if (cast(N)->getValue() < 0.0 || - cast(N)->isExactlyValue(-0.0)) - Tmp1 = MakeReg(MVT::f64); - - if (cast(N)->isExactlyValue(+0.0) || - cast(N)->isExactlyValue(-0.0)) - BuildMI(BB, X86::FpLD0, 0, Tmp1); - else if (cast(N)->isExactlyValue(+1.0) || - cast(N)->isExactlyValue(-1.0)) - BuildMI(BB, X86::FpLD1, 0, Tmp1); - else - assert(0 && "Unexpected constant!"); - if (Tmp1 != Result) - BuildMI(BB, X86::FpCHS, 1, Result).addReg(Tmp1); - return Result; - case ISD::Constant: - switch (N.getValueType()) { - default: assert(0 && "Cannot use constants of this type!"); - case MVT::i1: - case MVT::i8: Opc = X86::MOV8ri; break; - case MVT::i16: Opc = X86::MOV16ri; break; - case MVT::i32: Opc = X86::MOV32ri; break; - } - BuildMI(BB, Opc, 1,Result).addImm(cast(N)->getValue()); - return Result; - case ISD::UNDEF: - BuildMI(BB, X86::IMPLICIT_DEF, 0, Result); - return Result; - case ISD::GlobalAddress: { - GlobalValue *GV = cast(N)->getGlobal(); - // For Darwin, external and weak symbols are indirect, so we want to load - // the value at address GV, not the value of GV itself. - if (Subtarget->getIndirectExternAndWeakGlobals() && - (GV->hasWeakLinkage() || GV->isExternal())) { - BuildMI(BB, X86::MOV32rm, 4, Result).addReg(0).addZImm(1).addReg(0) - .addGlobalAddress(GV, false, 0); - } else { - BuildMI(BB, X86::MOV32ri, 1, Result).addGlobalAddress(GV); - } - return Result; - } - case ISD::ExternalSymbol: { - const char *Sym = cast(N)->getSymbol(); - BuildMI(BB, X86::MOV32ri, 1, Result).addExternalSymbol(Sym); - return Result; - } - case ISD::ANY_EXTEND: // treat any extend like zext - case ISD::ZERO_EXTEND: { - int DestIs16 = N.getValueType() == MVT::i16; - int SrcIs16 = N.getOperand(0).getValueType() == MVT::i16; - - // FIXME: This hack is here for zero extension casts from bool to i8. This - // would not be needed if bools were promoted by Legalize. - if (N.getValueType() == MVT::i8) { - Tmp1 = SelectExpr(N.getOperand(0)); - BuildMI(BB, X86::MOV8rr, 1, Result).addReg(Tmp1); - return Result; - } - - if (isFoldableLoad(N.getOperand(0), SDOperand())) { - static const unsigned Opc[3] = { - X86::MOVZX32rm8, X86::MOVZX32rm16, X86::MOVZX16rm8 - }; - - X86AddressMode AM; - EmitFoldedLoad(N.getOperand(0), AM); - addFullAddress(BuildMI(BB, Opc[SrcIs16+DestIs16*2], 4, Result), AM); - - return Result; - } - - static const unsigned Opc[3] = { - X86::MOVZX32rr8, X86::MOVZX32rr16, X86::MOVZX16rr8 - }; - Tmp1 = SelectExpr(N.getOperand(0)); - BuildMI(BB, Opc[SrcIs16+DestIs16*2], 1, Result).addReg(Tmp1); - return Result; - } - case ISD::SIGN_EXTEND: { - int DestIs16 = N.getValueType() == MVT::i16; - int SrcIs16 = N.getOperand(0).getValueType() == MVT::i16; - - // FIXME: Legalize should promote bools to i8! - assert(N.getOperand(0).getValueType() != MVT::i1 && - "Sign extend from bool not implemented!"); - - if (isFoldableLoad(N.getOperand(0), SDOperand())) { - static const unsigned Opc[3] = { - X86::MOVSX32rm8, X86::MOVSX32rm16, X86::MOVSX16rm8 - }; - - X86AddressMode AM; - EmitFoldedLoad(N.getOperand(0), AM); - addFullAddress(BuildMI(BB, Opc[SrcIs16+DestIs16*2], 4, Result), AM); - return Result; - } - - static const unsigned Opc[3] = { - X86::MOVSX32rr8, X86::MOVSX32rr16, X86::MOVSX16rr8 - }; - Tmp1 = SelectExpr(N.getOperand(0)); - BuildMI(BB, Opc[SrcIs16+DestIs16*2], 1, Result).addReg(Tmp1); - return Result; - } - case ISD::TRUNCATE: - // Handle cast of LARGER int to SMALLER int using a move to EAX followed by - // a move out of AX or AL. - switch (N.getOperand(0).getValueType()) { - default: assert(0 && "Unknown truncate!"); - case MVT::i8: Tmp2 = X86::AL; Opc = X86::MOV8rr; break; - case MVT::i16: Tmp2 = X86::AX; Opc = X86::MOV16rr; break; - case MVT::i32: Tmp2 = X86::EAX; Opc = X86::MOV32rr; break; - } - Tmp1 = SelectExpr(N.getOperand(0)); - BuildMI(BB, Opc, 1, Tmp2).addReg(Tmp1); - - switch (N.getValueType()) { - default: assert(0 && "Unknown truncate!"); - case MVT::i1: - case MVT::i8: Tmp2 = X86::AL; Opc = X86::MOV8rr; break; - case MVT::i16: Tmp2 = X86::AX; Opc = X86::MOV16rr; break; - } - BuildMI(BB, Opc, 1, Result).addReg(Tmp2); - return Result; - - case ISD::SINT_TO_FP: { - Tmp1 = SelectExpr(N.getOperand(0)); // Get the operand register - unsigned PromoteOpcode = 0; - - // We can handle any sint to fp with the direct sse conversion instructions. - if (X86ScalarSSE) { - Opc = (N.getValueType() == MVT::f64) ? X86::CVTSI2SDrr : X86::CVTSI2SSrr; - BuildMI(BB, Opc, 1, Result).addReg(Tmp1); - return Result; - } - - ContainsFPCode = true; - - // Spill the integer to memory and reload it from there. - MVT::ValueType SrcTy = N.getOperand(0).getValueType(); - unsigned Size = MVT::getSizeInBits(SrcTy)/8; - MachineFunction *F = BB->getParent(); - int FrameIdx = F->getFrameInfo()->CreateStackObject(Size, Size); - - switch (SrcTy) { - case MVT::i32: - addFrameReference(BuildMI(BB, X86::MOV32mr, 5), FrameIdx).addReg(Tmp1); - addFrameReference(BuildMI(BB, X86::FpILD32m, 5, Result), FrameIdx); - break; - case MVT::i16: - addFrameReference(BuildMI(BB, X86::MOV16mr, 5), FrameIdx).addReg(Tmp1); - addFrameReference(BuildMI(BB, X86::FpILD16m, 5, Result), FrameIdx); - break; - default: break; // No promotion required. - } - return Result; - } - case ISD::FP_TO_SINT: - Tmp1 = SelectExpr(N.getOperand(0)); // Get the operand register - - // If the target supports SSE2 and is performing FP operations in SSE regs - // instead of the FP stack, then we can use the efficient CVTSS2SI and - // CVTSD2SI instructions. - assert(X86ScalarSSE); - if (MVT::f32 == N.getOperand(0).getValueType()) { - BuildMI(BB, X86::CVTTSS2SIrr, 1, Result).addReg(Tmp1); - } else if (MVT::f64 == N.getOperand(0).getValueType()) { - BuildMI(BB, X86::CVTTSD2SIrr, 1, Result).addReg(Tmp1); - } else { - assert(0 && "Not an f32 or f64?"); - abort(); - } - return Result; - - case ISD::FADD: - case ISD::ADD: - Op0 = N.getOperand(0); - Op1 = N.getOperand(1); - - if (isFoldableLoad(Op0, Op1, true)) { - std::swap(Op0, Op1); - goto FoldAdd; - } - - if (isFoldableLoad(Op1, Op0, true)) { - FoldAdd: - switch (N.getValueType()) { - default: assert(0 && "Cannot add this type!"); - case MVT::i1: - case MVT::i8: Opc = X86::ADD8rm; break; - case MVT::i16: Opc = X86::ADD16rm; break; - case MVT::i32: Opc = X86::ADD32rm; break; - case MVT::f32: Opc = X86::ADDSSrm; break; - case MVT::f64: - // For F64, handle promoted load operations (from F32) as well! - if (X86ScalarSSE) { - assert(Op1.getOpcode() == ISD::LOAD && "SSE load not promoted"); - Opc = X86::ADDSDrm; - } else { - Opc = Op1.getOpcode() == ISD::LOAD ? X86::FpADD64m : X86::FpADD32m; - } - break; - } - X86AddressMode AM; - EmitFoldedLoad(Op1, AM); - Tmp1 = SelectExpr(Op0); - addFullAddress(BuildMI(BB, Opc, 5, Result).addReg(Tmp1), AM); - return Result; - } - - // See if we can codegen this as an LEA to fold operations together. - if (N.getValueType() == MVT::i32) { - ExprMap.erase(N); - X86ISelAddressMode AM; - MatchAddress(N, AM); - ExprMap[N] = Result; - - // If this is not just an add, emit the LEA. For a simple add (like - // reg+reg or reg+imm), we just emit an add. It might be a good idea to - // leave this as LEA, then peephole it to 'ADD' after two address elim - // happens. - if (AM.Scale != 1 || AM.BaseType == X86ISelAddressMode::FrameIndexBase|| - AM.GV || (AM.Base.Reg.Val && AM.IndexReg.Val && AM.Disp)) { - X86AddressMode XAM = SelectAddrExprs(AM); - addFullAddress(BuildMI(BB, X86::LEA32r, 4, Result), XAM); - return Result; - } - } - - if (ConstantSDNode *CN = dyn_cast(Op1)) { - Opc = 0; - if (CN->getValue() == 1) { // add X, 1 -> inc X - switch (N.getValueType()) { - default: assert(0 && "Cannot integer add this type!"); - case MVT::i8: Opc = X86::INC8r; break; - case MVT::i16: Opc = X86::INC16r; break; - case MVT::i32: Opc = X86::INC32r; break; - } - } else if (CN->isAllOnesValue()) { // add X, -1 -> dec X - switch (N.getValueType()) { - default: assert(0 && "Cannot integer add this type!"); - case MVT::i8: Opc = X86::DEC8r; break; - case MVT::i16: Opc = X86::DEC16r; break; - case MVT::i32: Opc = X86::DEC32r; break; - } - } - - if (Opc) { - Tmp1 = SelectExpr(Op0); - BuildMI(BB, Opc, 1, Result).addReg(Tmp1); - return Result; - } - - switch (N.getValueType()) { - default: assert(0 && "Cannot add this type!"); - case MVT::i8: Opc = X86::ADD8ri; break; - case MVT::i16: Opc = X86::ADD16ri; break; - case MVT::i32: Opc = X86::ADD32ri; break; - } - if (Opc) { - Tmp1 = SelectExpr(Op0); - BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue()); - return Result; - } - } - - switch (N.getValueType()) { - default: assert(0 && "Cannot add this type!"); - case MVT::i8: Opc = X86::ADD8rr; break; - case MVT::i16: Opc = X86::ADD16rr; break; - case MVT::i32: Opc = X86::ADD32rr; break; - case MVT::f32: Opc = X86::ADDSSrr; break; - case MVT::f64: Opc = X86ScalarSSE ? X86::ADDSDrr : X86::FpADD; break; - } - - if (getRegPressure(Op0) > getRegPressure(Op1)) { - Tmp1 = SelectExpr(Op0); - Tmp2 = SelectExpr(Op1); - } else { - Tmp2 = SelectExpr(Op1); - Tmp1 = SelectExpr(Op0); - } - - BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); - return Result; - - case ISD::FSQRT: - Tmp1 = SelectExpr(Node->getOperand(0)); - if (X86ScalarSSE) { - Opc = (N.getValueType() == MVT::f32) ? X86::SQRTSSrr : X86::SQRTSDrr; - BuildMI(BB, Opc, 1, Result).addReg(Tmp1); - } else { - BuildMI(BB, X86::FpSQRT, 1, Result).addReg(Tmp1); - } - return Result; - - // FIXME: - // Once we can spill 16 byte constants into the constant pool, we can - // implement SSE equivalents of FABS and FCHS. - case ISD::FABS: - case ISD::FNEG: - case ISD::FSIN: - case ISD::FCOS: - assert(N.getValueType()==MVT::f64 && "Illegal type for this operation"); - Tmp1 = SelectExpr(Node->getOperand(0)); - switch (N.getOpcode()) { - default: assert(0 && "Unreachable!"); - case ISD::FABS: BuildMI(BB, X86::FpABS, 1, Result).addReg(Tmp1); break; - case ISD::FNEG: BuildMI(BB, X86::FpCHS, 1, Result).addReg(Tmp1); break; - case ISD::FSIN: BuildMI(BB, X86::FpSIN, 1, Result).addReg(Tmp1); break; - case ISD::FCOS: BuildMI(BB, X86::FpCOS, 1, Result).addReg(Tmp1); break; - } - return Result; - - case ISD::MULHU: - switch (N.getValueType()) { - default: assert(0 && "Unsupported VT!"); - case MVT::i8: Tmp2 = X86::MUL8r; break; - case MVT::i16: Tmp2 = X86::MUL16r; break; - case MVT::i32: Tmp2 = X86::MUL32r; break; - } - // FALL THROUGH - case ISD::MULHS: { - unsigned MovOpc, LowReg, HiReg; - switch (N.getValueType()) { - default: assert(0 && "Unsupported VT!"); - case MVT::i8: - MovOpc = X86::MOV8rr; - LowReg = X86::AL; - HiReg = X86::AH; - Opc = X86::IMUL8r; - break; - case MVT::i16: - MovOpc = X86::MOV16rr; - LowReg = X86::AX; - HiReg = X86::DX; - Opc = X86::IMUL16r; - break; - case MVT::i32: - MovOpc = X86::MOV32rr; - LowReg = X86::EAX; - HiReg = X86::EDX; - Opc = X86::IMUL32r; - break; - } - if (Node->getOpcode() != ISD::MULHS) - Opc = Tmp2; // Get the MULHU opcode. - - Op0 = Node->getOperand(0); - Op1 = Node->getOperand(1); - if (getRegPressure(Op0) > getRegPressure(Op1)) { - Tmp1 = SelectExpr(Op0); - Tmp2 = SelectExpr(Op1); - } else { - Tmp2 = SelectExpr(Op1); - Tmp1 = SelectExpr(Op0); - } - - // FIXME: Implement folding of loads into the memory operands here! - BuildMI(BB, MovOpc, 1, LowReg).addReg(Tmp1); - BuildMI(BB, Opc, 1).addReg(Tmp2); - BuildMI(BB, MovOpc, 1, Result).addReg(HiReg); - return Result; - } - - case ISD::FSUB: - case ISD::FMUL: - case ISD::SUB: - case ISD::MUL: - case ISD::AND: - case ISD::OR: - case ISD::XOR: { - static const unsigned SUBTab[] = { - X86::SUB8ri, X86::SUB16ri, X86::SUB32ri, 0, 0, - X86::SUB8rm, X86::SUB16rm, X86::SUB32rm, X86::FpSUB32m, X86::FpSUB64m, - X86::SUB8rr, X86::SUB16rr, X86::SUB32rr, X86::FpSUB , X86::FpSUB, - }; - static const unsigned SSE_SUBTab[] = { - X86::SUB8ri, X86::SUB16ri, X86::SUB32ri, 0, 0, - X86::SUB8rm, X86::SUB16rm, X86::SUB32rm, X86::SUBSSrm, X86::SUBSDrm, - X86::SUB8rr, X86::SUB16rr, X86::SUB32rr, X86::SUBSSrr, X86::SUBSDrr, - }; - static const unsigned MULTab[] = { - 0, X86::IMUL16rri, X86::IMUL32rri, 0, 0, - 0, X86::IMUL16rm , X86::IMUL32rm, X86::FpMUL32m, X86::FpMUL64m, - 0, X86::IMUL16rr , X86::IMUL32rr, X86::FpMUL , X86::FpMUL, - }; - static const unsigned SSE_MULTab[] = { - 0, X86::IMUL16rri, X86::IMUL32rri, 0, 0, - 0, X86::IMUL16rm , X86::IMUL32rm, X86::MULSSrm, X86::MULSDrm, - 0, X86::IMUL16rr , X86::IMUL32rr, X86::MULSSrr, X86::MULSDrr, - }; - static const unsigned ANDTab[] = { - X86::AND8ri, X86::AND16ri, X86::AND32ri, 0, 0, - X86::AND8rm, X86::AND16rm, X86::AND32rm, 0, 0, - X86::AND8rr, X86::AND16rr, X86::AND32rr, 0, 0, - }; - static const unsigned ORTab[] = { - X86::OR8ri, X86::OR16ri, X86::OR32ri, 0, 0, - X86::OR8rm, X86::OR16rm, X86::OR32rm, 0, 0, - X86::OR8rr, X86::OR16rr, X86::OR32rr, 0, 0, - }; - static const unsigned XORTab[] = { - X86::XOR8ri, X86::XOR16ri, X86::XOR32ri, 0, 0, - X86::XOR8rm, X86::XOR16rm, X86::XOR32rm, 0, 0, - X86::XOR8rr, X86::XOR16rr, X86::XOR32rr, 0, 0, - }; - - Op0 = Node->getOperand(0); - Op1 = Node->getOperand(1); - - if (Node->getOpcode() == ISD::OR && Op0.hasOneUse() && Op1.hasOneUse()) - if (EmitOrOpOp(Op0, Op1, Result)) // Match SHLD, SHRD, and rotates. - return Result; - - if (Node->getOpcode() == ISD::SUB) - if (ConstantSDNode *CN = dyn_cast(N.getOperand(0))) - if (CN->isNullValue()) { // 0 - N -> neg N - switch (N.getValueType()) { - default: assert(0 && "Cannot sub this type!"); - case MVT::i1: - case MVT::i8: Opc = X86::NEG8r; break; - case MVT::i16: Opc = X86::NEG16r; break; - case MVT::i32: Opc = X86::NEG32r; break; - } - Tmp1 = SelectExpr(N.getOperand(1)); - BuildMI(BB, Opc, 1, Result).addReg(Tmp1); - return Result; - } - - if (ConstantSDNode *CN = dyn_cast(Op1)) { - if (CN->isAllOnesValue() && Node->getOpcode() == ISD::XOR) { - Opc = 0; - switch (N.getValueType()) { - default: assert(0 && "Cannot add this type!"); - case MVT::i1: break; // Not supported, don't invert upper bits! - case MVT::i8: Opc = X86::NOT8r; break; - case MVT::i16: Opc = X86::NOT16r; break; - case MVT::i32: Opc = X86::NOT32r; break; - } - if (Opc) { - Tmp1 = SelectExpr(Op0); - BuildMI(BB, Opc, 1, Result).addReg(Tmp1); - return Result; - } - } - - // Fold common multiplies into LEA instructions. - if (Node->getOpcode() == ISD::MUL && N.getValueType() == MVT::i32) { - switch ((int)CN->getValue()) { - default: break; - case 3: - case 5: - case 9: - // Remove N from exprmap so SelectAddress doesn't get confused. - ExprMap.erase(N); - X86AddressMode AM; - SelectAddress(N, AM); - // Restore it to the map. - ExprMap[N] = Result; - addFullAddress(BuildMI(BB, X86::LEA32r, 4, Result), AM); - return Result; - } - } - - switch (N.getValueType()) { - default: assert(0 && "Cannot xor this type!"); - case MVT::i1: - case MVT::i8: Opc = 0; break; - case MVT::i16: Opc = 1; break; - case MVT::i32: Opc = 2; break; - } - switch (Node->getOpcode()) { - default: assert(0 && "Unreachable!"); - case ISD::FSUB: - case ISD::SUB: Opc = X86ScalarSSE ? SSE_SUBTab[Opc] : SUBTab[Opc]; break; - case ISD::FMUL: - case ISD::MUL: Opc = X86ScalarSSE ? SSE_MULTab[Opc] : MULTab[Opc]; break; - case ISD::AND: Opc = ANDTab[Opc]; break; - case ISD::OR: Opc = ORTab[Opc]; break; - case ISD::XOR: Opc = XORTab[Opc]; break; - } - if (Opc) { // Can't fold MUL:i8 R, imm - Tmp1 = SelectExpr(Op0); - BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue()); - return Result; - } - } - - if (isFoldableLoad(Op0, Op1, true)) - if (Node->getOpcode() != ISD::SUB && Node->getOpcode() != ISD::FSUB) { - std::swap(Op0, Op1); - goto FoldOps; - } else { - // For FP, emit 'reverse' subract, with a memory operand. - if (N.getValueType() == MVT::f64 && !X86ScalarSSE) { - if (Op0.getOpcode() == ISD::EXTLOAD) - Opc = X86::FpSUBR32m; - else - Opc = X86::FpSUBR64m; - - X86AddressMode AM; - EmitFoldedLoad(Op0, AM); - Tmp1 = SelectExpr(Op1); - addFullAddress(BuildMI(BB, Opc, 5, Result).addReg(Tmp1), AM); - return Result; - } - } - - if (isFoldableLoad(Op1, Op0, true)) { - FoldOps: - switch (N.getValueType()) { - default: assert(0 && "Cannot operate on this type!"); - case MVT::i1: - case MVT::i8: Opc = 5; break; - case MVT::i16: Opc = 6; break; - case MVT::i32: Opc = 7; break; - case MVT::f32: Opc = 8; break; - // For F64, handle promoted load operations (from F32) as well! - case MVT::f64: - assert((!X86ScalarSSE || Op1.getOpcode() == ISD::LOAD) && - "SSE load should have been promoted"); - Opc = Op1.getOpcode() == ISD::LOAD ? 9 : 8; break; - } - switch (Node->getOpcode()) { - default: assert(0 && "Unreachable!"); - case ISD::FSUB: - case ISD::SUB: Opc = X86ScalarSSE ? SSE_SUBTab[Opc] : SUBTab[Opc]; break; - case ISD::FMUL: - case ISD::MUL: Opc = X86ScalarSSE ? SSE_MULTab[Opc] : MULTab[Opc]; break; - case ISD::AND: Opc = ANDTab[Opc]; break; - case ISD::OR: Opc = ORTab[Opc]; break; - case ISD::XOR: Opc = XORTab[Opc]; break; - } - - X86AddressMode AM; - EmitFoldedLoad(Op1, AM); - Tmp1 = SelectExpr(Op0); - if (Opc) { - addFullAddress(BuildMI(BB, Opc, 5, Result).addReg(Tmp1), AM); - } else { - assert(Node->getOpcode() == ISD::MUL && - N.getValueType() == MVT::i8 && "Unexpected situation!"); - // Must use the MUL instruction, which forces use of AL. - BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(Tmp1); - addFullAddress(BuildMI(BB, X86::MUL8m, 1), AM); - BuildMI(BB, X86::MOV8rr, 1, Result).addReg(X86::AL); - } - return Result; - } - - if (getRegPressure(Op0) > getRegPressure(Op1)) { - Tmp1 = SelectExpr(Op0); - Tmp2 = SelectExpr(Op1); - } else { - Tmp2 = SelectExpr(Op1); - Tmp1 = SelectExpr(Op0); - } - - switch (N.getValueType()) { - default: assert(0 && "Cannot add this type!"); - case MVT::i1: - case MVT::i8: Opc = 10; break; - case MVT::i16: Opc = 11; break; - case MVT::i32: Opc = 12; break; - case MVT::f32: Opc = 13; break; - case MVT::f64: Opc = 14; break; - } - switch (Node->getOpcode()) { - default: assert(0 && "Unreachable!"); - case ISD::FSUB: - case ISD::SUB: Opc = X86ScalarSSE ? SSE_SUBTab[Opc] : SUBTab[Opc]; break; - case ISD::FMUL: - case ISD::MUL: Opc = X86ScalarSSE ? SSE_MULTab[Opc] : MULTab[Opc]; break; - case ISD::AND: Opc = ANDTab[Opc]; break; - case ISD::OR: Opc = ORTab[Opc]; break; - case ISD::XOR: Opc = XORTab[Opc]; break; - } - if (Opc) { - BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); - } else { - assert(Node->getOpcode() == ISD::MUL && - N.getValueType() == MVT::i8 && "Unexpected situation!"); - // Must use the MUL instruction, which forces use of AL. - BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(Tmp1); - BuildMI(BB, X86::MUL8r, 1).addReg(Tmp2); - BuildMI(BB, X86::MOV8rr, 1, Result).addReg(X86::AL); - } - return Result; - } - case ISD::ADD_PARTS: - case ISD::SUB_PARTS: { - assert(N.getNumOperands() == 4 && N.getValueType() == MVT::i32 && - "Not an i64 add/sub!"); - // Emit all of the operands. - std::vector InVals; - for (unsigned i = 0, e = N.getNumOperands(); i != e; ++i) - InVals.push_back(SelectExpr(N.getOperand(i))); - if (N.getOpcode() == ISD::ADD_PARTS) { - BuildMI(BB, X86::ADD32rr, 2, Result).addReg(InVals[0]).addReg(InVals[2]); - BuildMI(BB, X86::ADC32rr,2,Result+1).addReg(InVals[1]).addReg(InVals[3]); - } else { - BuildMI(BB, X86::SUB32rr, 2, Result).addReg(InVals[0]).addReg(InVals[2]); - BuildMI(BB, X86::SBB32rr, 2,Result+1).addReg(InVals[1]).addReg(InVals[3]); - } - return Result+N.ResNo; - } - - case ISD::SHL_PARTS: - case ISD::SRA_PARTS: - case ISD::SRL_PARTS: { - assert(N.getNumOperands() == 3 && N.getValueType() == MVT::i32 && - "Not an i64 shift!"); - unsigned ShiftOpLo = SelectExpr(N.getOperand(0)); - unsigned ShiftOpHi = SelectExpr(N.getOperand(1)); - unsigned TmpReg = MakeReg(MVT::i32); - if (N.getOpcode() == ISD::SRA_PARTS) { - // If this is a SHR of a Long, then we need to do funny sign extension - // stuff. TmpReg gets the value to use as the high-part if we are - // shifting more than 32 bits. - BuildMI(BB, X86::SAR32ri, 2, TmpReg).addReg(ShiftOpHi).addImm(31); - } else { - // Other shifts use a fixed zero value if the shift is more than 32 bits. - BuildMI(BB, X86::MOV32ri, 1, TmpReg).addImm(0); - } - - // Initialize CL with the shift amount. - unsigned ShiftAmountReg = SelectExpr(N.getOperand(2)); - BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg); - - unsigned TmpReg2 = MakeReg(MVT::i32); - unsigned TmpReg3 = MakeReg(MVT::i32); - if (N.getOpcode() == ISD::SHL_PARTS) { - // TmpReg2 = shld inHi, inLo - BuildMI(BB, X86::SHLD32rrCL, 2,TmpReg2).addReg(ShiftOpHi) - .addReg(ShiftOpLo); - // TmpReg3 = shl inLo, CL - BuildMI(BB, X86::SHL32rCL, 1, TmpReg3).addReg(ShiftOpLo); - - // Set the flags to indicate whether the shift was by more than 32 bits. - BuildMI(BB, X86::TEST8ri, 2).addReg(X86::CL).addImm(32); - - // DestHi = (>32) ? TmpReg3 : TmpReg2; - BuildMI(BB, X86::CMOVNE32rr, 2, - Result+1).addReg(TmpReg2).addReg(TmpReg3); - // DestLo = (>32) ? TmpReg : TmpReg3; - BuildMI(BB, X86::CMOVNE32rr, 2, - Result).addReg(TmpReg3).addReg(TmpReg); - } else { - // TmpReg2 = shrd inLo, inHi - BuildMI(BB, X86::SHRD32rrCL,2,TmpReg2).addReg(ShiftOpLo) - .addReg(ShiftOpHi); - // TmpReg3 = s[ah]r inHi, CL - BuildMI(BB, N.getOpcode() == ISD::SRA_PARTS ? X86::SAR32rCL - : X86::SHR32rCL, 1, TmpReg3) - .addReg(ShiftOpHi); - - // Set the flags to indicate whether the shift was by more than 32 bits. - BuildMI(BB, X86::TEST8ri, 2).addReg(X86::CL).addImm(32); - - // DestLo = (>32) ? TmpReg3 : TmpReg2; - BuildMI(BB, X86::CMOVNE32rr, 2, - Result).addReg(TmpReg2).addReg(TmpReg3); - - // DestHi = (>32) ? TmpReg : TmpReg3; - BuildMI(BB, X86::CMOVNE32rr, 2, - Result+1).addReg(TmpReg3).addReg(TmpReg); - } - return Result+N.ResNo; - } - - case ISD::SELECT: - EmitSelectCC(N.getOperand(0), N.getOperand(1), N.getOperand(2), - N.getValueType(), Result); - return Result; - - case ISD::FDIV: - case ISD::FREM: - case ISD::SDIV: - case ISD::UDIV: - case ISD::SREM: - case ISD::UREM: { - assert((N.getOpcode() != ISD::SREM || MVT::isInteger(N.getValueType())) && - "We don't support this operator!"); - - if (N.getOpcode() == ISD::SDIV || N.getOpcode() == ISD::FDIV) { - // We can fold loads into FpDIVs, but not really into any others. - if (N.getValueType() == MVT::f64 && !X86ScalarSSE) { - // Check for reversed and unreversed DIV. - if (isFoldableLoad(N.getOperand(0), N.getOperand(1), true)) { - if (N.getOperand(0).getOpcode() == ISD::EXTLOAD) - Opc = X86::FpDIVR32m; - else - Opc = X86::FpDIVR64m; - X86AddressMode AM; - EmitFoldedLoad(N.getOperand(0), AM); - Tmp1 = SelectExpr(N.getOperand(1)); - addFullAddress(BuildMI(BB, Opc, 5, Result).addReg(Tmp1), AM); - return Result; - } else if (isFoldableLoad(N.getOperand(1), N.getOperand(0), true) && - N.getOperand(1).getOpcode() == ISD::LOAD) { - if (N.getOperand(1).getOpcode() == ISD::EXTLOAD) - Opc = X86::FpDIV32m; - else - Opc = X86::FpDIV64m; - X86AddressMode AM; - EmitFoldedLoad(N.getOperand(1), AM); - Tmp1 = SelectExpr(N.getOperand(0)); - addFullAddress(BuildMI(BB, Opc, 5, Result).addReg(Tmp1), AM); - return Result; - } - } - } - - if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { - Tmp1 = SelectExpr(N.getOperand(0)); - Tmp2 = SelectExpr(N.getOperand(1)); - } else { - Tmp2 = SelectExpr(N.getOperand(1)); - Tmp1 = SelectExpr(N.getOperand(0)); - } - - bool isSigned = N.getOpcode() == ISD::SDIV || N.getOpcode() == ISD::SREM; - bool isDiv = N.getOpcode() == ISD::SDIV || N.getOpcode() == ISD::UDIV; - unsigned LoReg, HiReg, DivOpcode, MovOpcode, ClrOpcode, SExtOpcode; - switch (N.getValueType()) { - default: assert(0 && "Cannot sdiv this type!"); - case MVT::i8: - DivOpcode = isSigned ? X86::IDIV8r : X86::DIV8r; - LoReg = X86::AL; - HiReg = X86::AH; - MovOpcode = X86::MOV8rr; - ClrOpcode = X86::MOV8ri; - SExtOpcode = X86::CBW; - break; - case MVT::i16: - DivOpcode = isSigned ? X86::IDIV16r : X86::DIV16r; - LoReg = X86::AX; - HiReg = X86::DX; - MovOpcode = X86::MOV16rr; - ClrOpcode = X86::MOV16ri; - SExtOpcode = X86::CWD; - break; - case MVT::i32: - DivOpcode = isSigned ? X86::IDIV32r : X86::DIV32r; - LoReg = X86::EAX; - HiReg = X86::EDX; - MovOpcode = X86::MOV32rr; - ClrOpcode = X86::MOV32ri; - SExtOpcode = X86::CDQ; - break; - case MVT::f32: - BuildMI(BB, X86::DIVSSrr, 2, Result).addReg(Tmp1).addReg(Tmp2); - return Result; - case MVT::f64: - Opc = X86ScalarSSE ? X86::DIVSDrr : X86::FpDIV; - BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); - return Result; - } - - // Set up the low part. - BuildMI(BB, MovOpcode, 1, LoReg).addReg(Tmp1); - - if (isSigned) { - // Sign extend the low part into the high part. - BuildMI(BB, SExtOpcode, 0); - } else { - // Zero out the high part, effectively zero extending the input. - BuildMI(BB, ClrOpcode, 1, HiReg).addImm(0); - } - - // Emit the DIV/IDIV instruction. - BuildMI(BB, DivOpcode, 1).addReg(Tmp2); - - // Get the result of the divide or rem. - BuildMI(BB, MovOpcode, 1, Result).addReg(isDiv ? LoReg : HiReg); - return Result; - } - - case ISD::SHL: - if (ConstantSDNode *CN = dyn_cast(N.getOperand(1))) { - if (CN->getValue() == 1) { // X = SHL Y, 1 -> X = ADD Y, Y - switch (N.getValueType()) { - default: assert(0 && "Cannot shift this type!"); - case MVT::i8: Opc = X86::ADD8rr; break; - case MVT::i16: Opc = X86::ADD16rr; break; - case MVT::i32: Opc = X86::ADD32rr; break; - } - Tmp1 = SelectExpr(N.getOperand(0)); - BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp1); - return Result; - } - - switch (N.getValueType()) { - default: assert(0 && "Cannot shift this type!"); - case MVT::i8: Opc = X86::SHL8ri; break; - case MVT::i16: Opc = X86::SHL16ri; break; - case MVT::i32: Opc = X86::SHL32ri; break; - } - Tmp1 = SelectExpr(N.getOperand(0)); - BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue()); - return Result; - } - - if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { - Tmp1 = SelectExpr(N.getOperand(0)); - Tmp2 = SelectExpr(N.getOperand(1)); - } else { - Tmp2 = SelectExpr(N.getOperand(1)); - Tmp1 = SelectExpr(N.getOperand(0)); - } - - switch (N.getValueType()) { - default: assert(0 && "Cannot shift this type!"); - case MVT::i8 : Opc = X86::SHL8rCL; break; - case MVT::i16: Opc = X86::SHL16rCL; break; - case MVT::i32: Opc = X86::SHL32rCL; break; - } - BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(Tmp2); - BuildMI(BB, Opc, 1, Result).addReg(Tmp1); - return Result; - case ISD::SRL: - if (ConstantSDNode *CN = dyn_cast(N.getOperand(1))) { - switch (N.getValueType()) { - default: assert(0 && "Cannot shift this type!"); - case MVT::i8: Opc = X86::SHR8ri; break; - case MVT::i16: Opc = X86::SHR16ri; break; - case MVT::i32: Opc = X86::SHR32ri; break; - } - Tmp1 = SelectExpr(N.getOperand(0)); - BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue()); - return Result; - } - - if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { - Tmp1 = SelectExpr(N.getOperand(0)); - Tmp2 = SelectExpr(N.getOperand(1)); - } else { - Tmp2 = SelectExpr(N.getOperand(1)); - Tmp1 = SelectExpr(N.getOperand(0)); - } - - switch (N.getValueType()) { - default: assert(0 && "Cannot shift this type!"); - case MVT::i8 : Opc = X86::SHR8rCL; break; - case MVT::i16: Opc = X86::SHR16rCL; break; - case MVT::i32: Opc = X86::SHR32rCL; break; - } - BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(Tmp2); - BuildMI(BB, Opc, 1, Result).addReg(Tmp1); - return Result; - case ISD::SRA: - if (ConstantSDNode *CN = dyn_cast(N.getOperand(1))) { - switch (N.getValueType()) { - default: assert(0 && "Cannot shift this type!"); - case MVT::i8: Opc = X86::SAR8ri; break; - case MVT::i16: Opc = X86::SAR16ri; break; - case MVT::i32: Opc = X86::SAR32ri; break; - } - Tmp1 = SelectExpr(N.getOperand(0)); - BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(CN->getValue()); - return Result; - } - - if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { - Tmp1 = SelectExpr(N.getOperand(0)); - Tmp2 = SelectExpr(N.getOperand(1)); - } else { - Tmp2 = SelectExpr(N.getOperand(1)); - Tmp1 = SelectExpr(N.getOperand(0)); - } - - switch (N.getValueType()) { - default: assert(0 && "Cannot shift this type!"); - case MVT::i8 : Opc = X86::SAR8rCL; break; - case MVT::i16: Opc = X86::SAR16rCL; break; - case MVT::i32: Opc = X86::SAR32rCL; break; - } - BuildMI(BB, X86::MOV8rr, 1, X86::CL).addReg(Tmp2); - BuildMI(BB, Opc, 1, Result).addReg(Tmp1); - return Result; - - case ISD::SETCC: - EmitCMP(N.getOperand(0), N.getOperand(1), Node->hasOneUse()); - EmitSetCC(BB, Result, cast(N.getOperand(2))->get(), - MVT::isFloatingPoint(N.getOperand(1).getValueType())); - return Result; - case ISD::LOAD: - // Make sure we generate both values. - if (Result != 1) { // Generate the token - if (!ExprMap.insert(std::make_pair(N.getValue(1), 1)).second) - assert(0 && "Load already emitted!?"); - } else - Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); - - switch (Node->getValueType(0)) { - default: assert(0 && "Cannot load this type!"); - case MVT::i1: - case MVT::i8: Opc = X86::MOV8rm; break; - case MVT::i16: Opc = X86::MOV16rm; break; - case MVT::i32: Opc = X86::MOV32rm; break; - case MVT::f32: Opc = X86::MOVSSrm; break; - case MVT::f64: - if (X86ScalarSSE) { - Opc = X86::MOVSDrm; - } else { - Opc = X86::FpLD64m; - ContainsFPCode = true; - } - break; - } - - if (ConstantPoolSDNode *CP = dyn_cast(N.getOperand(1))){ - Constant *C = CP->get(); - unsigned Align = CP->getAlignment(); - if (Align == 0) { - Align = C->getType() == Type::DoubleTy ? 3 : - TD.getTypeAlignmentShift(C->getType()); - } - - unsigned CPIdx = BB->getParent()->getConstantPool()-> - getConstantPoolIndex(C, Align); - Select(N.getOperand(0)); - addConstantPoolReference(BuildMI(BB, Opc, 4, Result), CPIdx); - } else { - X86AddressMode AM; - - SDOperand Chain = N.getOperand(0); - SDOperand Address = N.getOperand(1); - if (getRegPressure(Chain) > getRegPressure(Address)) { - Select(Chain); - SelectAddress(Address, AM); - } else { - SelectAddress(Address, AM); - Select(Chain); - } - - addFullAddress(BuildMI(BB, Opc, 4, Result), AM); - } - return Result; - case X86ISD::FILD: - // Make sure we generate both values. - assert(Result != 1 && N.getValueType() == MVT::f64); - if (!ExprMap.insert(std::make_pair(N.getValue(1), 1)).second) - assert(0 && "Load already emitted!?"); - - { - X86AddressMode AM; - - SDOperand Chain = N.getOperand(0); - SDOperand Address = N.getOperand(1); - if (getRegPressure(Chain) > getRegPressure(Address)) { - Select(Chain); - SelectAddress(Address, AM); - } else { - SelectAddress(Address, AM); - Select(Chain); - } - - addFullAddress(BuildMI(BB, X86::FpILD64m, 4, Result), AM); - } - return Result; - - case ISD::EXTLOAD: // Arbitrarily codegen extloads as MOVZX* - case ISD::ZEXTLOAD: { - // Make sure we generate both values. - if (Result != 1) - ExprMap[N.getValue(1)] = 1; // Generate the token - else - Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); - - if (ConstantPoolSDNode *CP = dyn_cast(N.getOperand(1))) - if (Node->getValueType(0) == MVT::f64) { - assert(cast(Node->getOperand(3))->getVT() == MVT::f32 && - "Bad EXTLOAD!"); - unsigned CPIdx = BB->getParent()->getConstantPool()-> - getConstantPoolIndex(CP->get(), 2); - - addConstantPoolReference(BuildMI(BB, X86::FpLD32m, 4, Result), CPIdx); - return Result; - } - - X86AddressMode AM; - if (getRegPressure(Node->getOperand(0)) > - getRegPressure(Node->getOperand(1))) { - Select(Node->getOperand(0)); // chain - SelectAddress(Node->getOperand(1), AM); - } else { - SelectAddress(Node->getOperand(1), AM); - Select(Node->getOperand(0)); // chain - } - - switch (Node->getValueType(0)) { - default: assert(0 && "Unknown type to sign extend to."); - case MVT::f64: - assert(cast(Node->getOperand(3))->getVT() == MVT::f32 && - "Bad EXTLOAD!"); - addFullAddress(BuildMI(BB, X86::FpLD32m, 5, Result), AM); - break; - case MVT::i32: - switch (cast(Node->getOperand(3))->getVT()) { - default: - assert(0 && "Bad zero extend!"); - case MVT::i1: - case MVT::i8: - addFullAddress(BuildMI(BB, X86::MOVZX32rm8, 5, Result), AM); - break; - case MVT::i16: - addFullAddress(BuildMI(BB, X86::MOVZX32rm16, 5, Result), AM); - break; - } - break; - case MVT::i16: - assert(cast(Node->getOperand(3))->getVT() <= MVT::i8 && - "Bad zero extend!"); - addFullAddress(BuildMI(BB, X86::MOVZX16rm8, 5, Result), AM); - break; - case MVT::i8: - assert(cast(Node->getOperand(3))->getVT() == MVT::i1 && - "Bad zero extend!"); - addFullAddress(BuildMI(BB, X86::MOV8rm, 5, Result), AM); - break; - } - return Result; - } - case ISD::SEXTLOAD: { - // Make sure we generate both values. - if (Result != 1) - ExprMap[N.getValue(1)] = 1; // Generate the token - else - Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); - - X86AddressMode AM; - if (getRegPressure(Node->getOperand(0)) > - getRegPressure(Node->getOperand(1))) { - Select(Node->getOperand(0)); // chain - SelectAddress(Node->getOperand(1), AM); - } else { - SelectAddress(Node->getOperand(1), AM); - Select(Node->getOperand(0)); // chain - } - - switch (Node->getValueType(0)) { - case MVT::i8: assert(0 && "Cannot sign extend from bool!"); - default: assert(0 && "Unknown type to sign extend to."); - case MVT::i32: - switch (cast(Node->getOperand(3))->getVT()) { - default: - case MVT::i1: assert(0 && "Cannot sign extend from bool!"); - case MVT::i8: - addFullAddress(BuildMI(BB, X86::MOVSX32rm8, 5, Result), AM); - break; - case MVT::i16: - addFullAddress(BuildMI(BB, X86::MOVSX32rm16, 5, Result), AM); - break; - } - break; - case MVT::i16: - assert(cast(Node->getOperand(3))->getVT() == MVT::i8 && - "Cannot sign extend from bool!"); - addFullAddress(BuildMI(BB, X86::MOVSX16rm8, 5, Result), AM); - break; - } - return Result; - } - - case X86ISD::TAILCALL: - case X86ISD::CALL: { - // The chain for this call is now lowered. - ExprMap.insert(std::make_pair(N.getValue(0), 1)); - - bool isDirect = isa(N.getOperand(1)) || - isa(N.getOperand(1)); - unsigned Callee = 0; - if (isDirect) { - Select(N.getOperand(0)); - } else { - if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { - Select(N.getOperand(0)); - Callee = SelectExpr(N.getOperand(1)); - } else { - Callee = SelectExpr(N.getOperand(1)); - Select(N.getOperand(0)); - } - } - - // If this call has values to pass in registers, do so now. - if (Node->getNumOperands() > 4) { - // The first value is passed in (a part of) EAX, the second in EDX. - unsigned RegOp1 = SelectExpr(N.getOperand(4)); - unsigned RegOp2 = - Node->getNumOperands() > 5 ? SelectExpr(N.getOperand(5)) : 0; - - switch (N.getOperand(4).getValueType()) { - default: assert(0 && "Bad thing to pass in regs"); - case MVT::i1: - case MVT::i8: BuildMI(BB, X86::MOV8rr , 1,X86::AL).addReg(RegOp1); break; - case MVT::i16: BuildMI(BB, X86::MOV16rr, 1,X86::AX).addReg(RegOp1); break; - case MVT::i32: BuildMI(BB, X86::MOV32rr, 1,X86::EAX).addReg(RegOp1);break; - } - if (RegOp2) - switch (N.getOperand(5).getValueType()) { - default: assert(0 && "Bad thing to pass in regs"); - case MVT::i1: - case MVT::i8: - BuildMI(BB, X86::MOV8rr , 1, X86::DL).addReg(RegOp2); - break; - case MVT::i16: - BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(RegOp2); - break; - case MVT::i32: - BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(RegOp2); - break; - } - } - - if (GlobalAddressSDNode *GASD = - dyn_cast(N.getOperand(1))) { - BuildMI(BB, X86::CALLpcrel32, 1).addGlobalAddress(GASD->getGlobal(),true); - } else if (ExternalSymbolSDNode *ESSDN = - dyn_cast(N.getOperand(1))) { - BuildMI(BB, X86::CALLpcrel32, - 1).addExternalSymbol(ESSDN->getSymbol(), true); - } else { - if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { - Select(N.getOperand(0)); - Tmp1 = SelectExpr(N.getOperand(1)); - } else { - Tmp1 = SelectExpr(N.getOperand(1)); - Select(N.getOperand(0)); - } - - BuildMI(BB, X86::CALL32r, 1).addReg(Tmp1); - } - - // Get caller stack amount and amount the callee added to the stack pointer. - Tmp1 = cast(N.getOperand(2))->getValue(); - Tmp2 = cast(N.getOperand(3))->getValue(); - BuildMI(BB, X86::ADJCALLSTACKUP, 2).addImm(Tmp1).addImm(Tmp2); - - if (Node->getNumValues() != 1) - switch (Node->getValueType(1)) { - default: assert(0 && "Unknown value type for call result!"); - case MVT::Other: return 1; - case MVT::i1: - case MVT::i8: - BuildMI(BB, X86::MOV8rr, 1, Result).addReg(X86::AL); - break; - case MVT::i16: - BuildMI(BB, X86::MOV16rr, 1, Result).addReg(X86::AX); - break; - case MVT::i32: - BuildMI(BB, X86::MOV32rr, 1, Result).addReg(X86::EAX); - if (Node->getNumValues() == 3 && Node->getValueType(2) == MVT::i32) - BuildMI(BB, X86::MOV32rr, 1, Result+1).addReg(X86::EDX); - break; - case MVT::f64: // Floating-point return values live in %ST(0) - if (X86ScalarSSE) { - ContainsFPCode = true; - BuildMI(BB, X86::FpGETRESULT, 1, X86::FP0); - - unsigned Size = MVT::getSizeInBits(MVT::f64)/8; - MachineFunction *F = BB->getParent(); - int FrameIdx = F->getFrameInfo()->CreateStackObject(Size, Size); - addFrameReference(BuildMI(BB, X86::FpST64m, 5), FrameIdx).addReg(X86::FP0); - addFrameReference(BuildMI(BB, X86::MOVSDrm, 4, Result), FrameIdx); - break; - } else { - ContainsFPCode = true; - BuildMI(BB, X86::FpGETRESULT, 1, Result); - break; - } - } - return Result+N.ResNo-1; - } - case ISD::READPORT: - // First, determine that the size of the operand falls within the acceptable - // range for this architecture. - // - if (Node->getOperand(1).getValueType() != MVT::i16) { - std::cerr << "llvm.readport: Address size is not 16 bits\n"; - exit(1); - } - - // Make sure we generate both values. - if (Result != 1) { // Generate the token - if (!ExprMap.insert(std::make_pair(N.getValue(1), 1)).second) - assert(0 && "readport already emitted!?"); - } else - Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); - - Select(Node->getOperand(0)); // Select the chain. - - // If the port is a single-byte constant, use the immediate form. - if (ConstantSDNode *Port = dyn_cast(Node->getOperand(1))) - if ((Port->getValue() & 255) == Port->getValue()) { - switch (Node->getValueType(0)) { - case MVT::i8: - BuildMI(BB, X86::IN8ri, 1).addImm(Port->getValue()); - BuildMI(BB, X86::MOV8rr, 1, Result).addReg(X86::AL); - return Result; - case MVT::i16: - BuildMI(BB, X86::IN16ri, 1).addImm(Port->getValue()); - BuildMI(BB, X86::MOV16rr, 1, Result).addReg(X86::AX); - return Result; - case MVT::i32: - BuildMI(BB, X86::IN32ri, 1).addImm(Port->getValue()); - BuildMI(BB, X86::MOV32rr, 1, Result).addReg(X86::EAX); - return Result; - default: break; - } - } - - // Now, move the I/O port address into the DX register and use the IN - // instruction to get the input data. - // - Tmp1 = SelectExpr(Node->getOperand(1)); - BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Tmp1); - switch (Node->getValueType(0)) { - case MVT::i8: - BuildMI(BB, X86::IN8rr, 0); - BuildMI(BB, X86::MOV8rr, 1, Result).addReg(X86::AL); - return Result; - case MVT::i16: - BuildMI(BB, X86::IN16rr, 0); - BuildMI(BB, X86::MOV16rr, 1, Result).addReg(X86::AX); - return Result; - case MVT::i32: - BuildMI(BB, X86::IN32rr, 0); - BuildMI(BB, X86::MOV32rr, 1, Result).addReg(X86::EAX); - return Result; - default: - std::cerr << "Cannot do input on this data type"; - exit(1); - } - - } - - return 0; -} - -/// TryToFoldLoadOpStore - Given a store node, try to fold together a -/// load/op/store instruction. If successful return true. -bool ISel::TryToFoldLoadOpStore(SDNode *Node) { - assert(Node->getOpcode() == ISD::STORE && "Can only do this for stores!"); - SDOperand Chain = Node->getOperand(0); - SDOperand StVal = Node->getOperand(1); - SDOperand StPtr = Node->getOperand(2); - - // The chain has to be a load, the stored value must be an integer binary - // operation with one use. - if (!StVal.Val->hasOneUse() || StVal.Val->getNumOperands() != 2 || - MVT::isFloatingPoint(StVal.getValueType())) - return false; - - // Token chain must either be a factor node or the load to fold. - if (Chain.getOpcode() != ISD::LOAD && Chain.getOpcode() != ISD::TokenFactor) - return false; - - SDOperand TheLoad; - - // Check to see if there is a load from the same pointer that we're storing - // to in either operand of the binop. - if (StVal.getOperand(0).getOpcode() == ISD::LOAD && - StVal.getOperand(0).getOperand(1) == StPtr) - TheLoad = StVal.getOperand(0); - else if (StVal.getOperand(1).getOpcode() == ISD::LOAD && - StVal.getOperand(1).getOperand(1) == StPtr) - TheLoad = StVal.getOperand(1); - else - return false; // No matching load operand. - - // We can only fold the load if there are no intervening side-effecting - // operations. This means that the store uses the load as its token chain, or - // there are only token factor nodes in between the store and load. - if (Chain != TheLoad.getValue(1)) { - // Okay, the other option is that we have a store referring to (possibly - // nested) token factor nodes. For now, just try peeking through one level - // of token factors to see if this is the case. - bool ChainOk = false; - if (Chain.getOpcode() == ISD::TokenFactor) { - for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) - if (Chain.getOperand(i) == TheLoad.getValue(1)) { - ChainOk = true; - break; - } - } - - if (!ChainOk) return false; - } - - if (TheLoad.getOperand(1) != StPtr) - return false; - - // Make sure that one of the operands of the binop is the load, and that the - // load folds into the binop. - if (((StVal.getOperand(0) != TheLoad || - !isFoldableLoad(TheLoad, StVal.getOperand(1))) && - (StVal.getOperand(1) != TheLoad || - !isFoldableLoad(TheLoad, StVal.getOperand(0))))) - return false; - - // Finally, check to see if this is one of the ops we can handle! - static const unsigned ADDTAB[] = { - X86::ADD8mi, X86::ADD16mi, X86::ADD32mi, - X86::ADD8mr, X86::ADD16mr, X86::ADD32mr, - }; - static const unsigned SUBTAB[] = { - X86::SUB8mi, X86::SUB16mi, X86::SUB32mi, - X86::SUB8mr, X86::SUB16mr, X86::SUB32mr, - }; - static const unsigned ANDTAB[] = { - X86::AND8mi, X86::AND16mi, X86::AND32mi, - X86::AND8mr, X86::AND16mr, X86::AND32mr, - }; - static const unsigned ORTAB[] = { - X86::OR8mi, X86::OR16mi, X86::OR32mi, - X86::OR8mr, X86::OR16mr, X86::OR32mr, - }; - static const unsigned XORTAB[] = { - X86::XOR8mi, X86::XOR16mi, X86::XOR32mi, - X86::XOR8mr, X86::XOR16mr, X86::XOR32mr, - }; - static const unsigned SHLTAB[] = { - X86::SHL8mi, X86::SHL16mi, X86::SHL32mi, - /*Have to put the reg in CL*/0, 0, 0, - }; - static const unsigned SARTAB[] = { - X86::SAR8mi, X86::SAR16mi, X86::SAR32mi, - /*Have to put the reg in CL*/0, 0, 0, - }; - static const unsigned SHRTAB[] = { - X86::SHR8mi, X86::SHR16mi, X86::SHR32mi, - /*Have to put the reg in CL*/0, 0, 0, - }; - - const unsigned *TabPtr = 0; - switch (StVal.getOpcode()) { - default: - std::cerr << "CANNOT [mem] op= val: "; - StVal.Val->dump(); std::cerr << "\n"; - case ISD::FMUL: - case ISD::MUL: - case ISD::FDIV: - case ISD::SDIV: - case ISD::UDIV: - case ISD::FREM: - case ISD::SREM: - case ISD::UREM: return false; - - case ISD::ADD: TabPtr = ADDTAB; break; - case ISD::SUB: TabPtr = SUBTAB; break; - case ISD::AND: TabPtr = ANDTAB; break; - case ISD:: OR: TabPtr = ORTAB; break; - case ISD::XOR: TabPtr = XORTAB; break; - case ISD::SHL: TabPtr = SHLTAB; break; - case ISD::SRA: TabPtr = SARTAB; break; - case ISD::SRL: TabPtr = SHRTAB; break; - } - - // Handle: [mem] op= CST - SDOperand Op0 = StVal.getOperand(0); - SDOperand Op1 = StVal.getOperand(1); - unsigned Opc = 0; - if (ConstantSDNode *CN = dyn_cast(Op1)) { - switch (Op0.getValueType()) { // Use Op0's type because of shifts. - default: break; - case MVT::i1: - case MVT::i8: Opc = TabPtr[0]; break; - case MVT::i16: Opc = TabPtr[1]; break; - case MVT::i32: Opc = TabPtr[2]; break; - } - - if (Opc) { - if (!ExprMap.insert(std::make_pair(TheLoad.getValue(1), 1)).second) - assert(0 && "Already emitted?"); - Select(Chain); - - X86AddressMode AM; - if (getRegPressure(TheLoad.getOperand(0)) > - getRegPressure(TheLoad.getOperand(1))) { - Select(TheLoad.getOperand(0)); - SelectAddress(TheLoad.getOperand(1), AM); - } else { - SelectAddress(TheLoad.getOperand(1), AM); - Select(TheLoad.getOperand(0)); - } - - if (StVal.getOpcode() == ISD::ADD) { - if (CN->getValue() == 1) { - switch (Op0.getValueType()) { - default: break; - case MVT::i8: - addFullAddress(BuildMI(BB, X86::INC8m, 4), AM); - return true; - case MVT::i16: Opc = TabPtr[1]; - addFullAddress(BuildMI(BB, X86::INC16m, 4), AM); - return true; - case MVT::i32: Opc = TabPtr[2]; - addFullAddress(BuildMI(BB, X86::INC32m, 4), AM); - return true; - } - } else if (CN->getValue()+1 == 0) { // [X] += -1 -> DEC [X] - switch (Op0.getValueType()) { - default: break; - case MVT::i8: - addFullAddress(BuildMI(BB, X86::DEC8m, 4), AM); - return true; - case MVT::i16: Opc = TabPtr[1]; - addFullAddress(BuildMI(BB, X86::DEC16m, 4), AM); - return true; - case MVT::i32: Opc = TabPtr[2]; - addFullAddress(BuildMI(BB, X86::DEC32m, 4), AM); - return true; - } - } - } - - addFullAddress(BuildMI(BB, Opc, 4+1),AM).addImm(CN->getValue()); - return true; - } - } - - // If we have [mem] = V op [mem], try to turn it into: - // [mem] = [mem] op V. - if (Op1 == TheLoad && - StVal.getOpcode() != ISD::SUB && StVal.getOpcode() != ISD::FSUB && - StVal.getOpcode() != ISD::SHL && StVal.getOpcode() != ISD::SRA && - StVal.getOpcode() != ISD::SRL) - std::swap(Op0, Op1); - - if (Op0 != TheLoad) return false; - - switch (Op0.getValueType()) { - default: return false; - case MVT::i1: - case MVT::i8: Opc = TabPtr[3]; break; - case MVT::i16: Opc = TabPtr[4]; break; - case MVT::i32: Opc = TabPtr[5]; break; - } - - // Table entry doesn't exist? - if (Opc == 0) return false; - - if (!ExprMap.insert(std::make_pair(TheLoad.getValue(1), 1)).second) - assert(0 && "Already emitted?"); - Select(Chain); - Select(TheLoad.getOperand(0)); - - X86AddressMode AM; - SelectAddress(TheLoad.getOperand(1), AM); - unsigned Reg = SelectExpr(Op1); - addFullAddress(BuildMI(BB, Opc, 4+1), AM).addReg(Reg); - return true; -} - -/// If node is a ret(tailcall) node, emit the specified tail call and return -/// true, otherwise return false. -/// -/// FIXME: This whole thing should be a post-legalize optimization pass which -/// recognizes and transforms the dag. We don't want the selection phase doing -/// this stuff!! -/// -bool ISel::EmitPotentialTailCall(SDNode *RetNode) { - assert(RetNode->getOpcode() == ISD::RET && "Not a return"); - - SDOperand Chain = RetNode->getOperand(0); - - // If this is a token factor node where one operand is a call, dig into it. - SDOperand TokFactor; - unsigned TokFactorOperand = 0; - if (Chain.getOpcode() == ISD::TokenFactor) { - for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) - if (Chain.getOperand(i).getOpcode() == ISD::CALLSEQ_END || - Chain.getOperand(i).getOpcode() == X86ISD::TAILCALL) { - TokFactorOperand = i; - TokFactor = Chain; - Chain = Chain.getOperand(i); - break; - } - if (TokFactor.Val == 0) return false; // No call operand. - } - - // Skip the CALLSEQ_END node if present. - if (Chain.getOpcode() == ISD::CALLSEQ_END) - Chain = Chain.getOperand(0); - - // Is a tailcall the last control operation that occurs before the return? - if (Chain.getOpcode() != X86ISD::TAILCALL) - return false; - - // If we return a value, is it the value produced by the call? - if (RetNode->getNumOperands() > 1) { - // Not returning the ret val of the call? - if (Chain.Val->getNumValues() == 1 || - RetNode->getOperand(1) != Chain.getValue(1)) - return false; - - if (RetNode->getNumOperands() > 2) { - if (Chain.Val->getNumValues() == 2 || - RetNode->getOperand(2) != Chain.getValue(2)) - return false; - } - assert(RetNode->getNumOperands() <= 3); - } - - // CalleeCallArgAmt - The total number of bytes used for the callee arg area. - // For FastCC, this will always be > 0. - unsigned CalleeCallArgAmt = - cast(Chain.getOperand(2))->getValue(); - - // CalleeCallArgPopAmt - The number of bytes in the call area popped by the - // callee. For FastCC this will always be > 0, for CCC this is always 0. - unsigned CalleeCallArgPopAmt = - cast(Chain.getOperand(3))->getValue(); - - // There are several cases we can handle here. First, if the caller and - // callee are both CCC functions, we can tailcall if the callee takes <= the - // number of argument bytes that the caller does. - if (CalleeCallArgPopAmt == 0 && // Callee is C CallingConv? - X86Lowering.getBytesToPopOnReturn() == 0) { // Caller is C CallingConv? - // Check to see if caller arg area size >= callee arg area size. - if (X86Lowering.getBytesCallerReserves() >= CalleeCallArgAmt) { - //std::cerr << "CCC TAILCALL UNIMP!\n"; - // If TokFactor is non-null, emit all operands. - - //EmitCCCToCCCTailCall(Chain.Val); - //return true; - } - return false; - } - - // Second, if both are FastCC functions, we can always perform the tail call. - if (CalleeCallArgPopAmt && X86Lowering.getBytesToPopOnReturn()) { - // If TokFactor is non-null, emit all operands before the call. - if (TokFactor.Val) { - for (unsigned i = 0, e = TokFactor.getNumOperands(); i != e; ++i) - if (i != TokFactorOperand) - Select(TokFactor.getOperand(i)); - } - - EmitFastCCToFastCCTailCall(Chain.Val); - return true; - } - - // We don't support mixed calls, due to issues with alignment. We could in - // theory handle some mixed calls from CCC -> FastCC if the stack is properly - // aligned (which depends on the number of arguments to the callee). TODO. - return false; -} - -static SDOperand GetAdjustedArgumentStores(SDOperand Chain, int Offset, - SelectionDAG &DAG) { - MVT::ValueType StoreVT; - switch (Chain.getOpcode()) { - default: assert(0 && "Unexpected node!"); - case ISD::CALLSEQ_START: - // If we found the start of the call sequence, we're done. We actually - // strip off the CALLSEQ_START node, to avoid generating the - // ADJCALLSTACKDOWN marker for the tail call. - return Chain.getOperand(0); - case ISD::TokenFactor: { - std::vector Ops; - Ops.reserve(Chain.getNumOperands()); - for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) - Ops.push_back(GetAdjustedArgumentStores(Chain.getOperand(i), Offset,DAG)); - return DAG.getNode(ISD::TokenFactor, MVT::Other, Ops); - } - case ISD::STORE: // Normal store - StoreVT = Chain.getOperand(1).getValueType(); - break; - case ISD::TRUNCSTORE: // FLOAT store - StoreVT = cast(Chain.getOperand(4))->getVT(); - break; - } - - SDOperand OrigDest = Chain.getOperand(2); - unsigned OrigOffset; - - if (OrigDest.getOpcode() == ISD::CopyFromReg) { - OrigOffset = 0; - assert(cast(OrigDest.getOperand(1))->getReg() == X86::ESP); - } else if (OrigDest.getOpcode() == ISD::ADD && - isa(OrigDest.getOperand(1)) && - OrigDest.getOperand(0).getOpcode() == ISD::CopyFromReg && - cast(OrigDest.getOperand(0).getOperand(1))->getReg() - == X86::ESP) { - // We expect only (ESP+C) - OrigOffset = cast(OrigDest.getOperand(1))->getValue(); - } else if (OrigDest.getOpcode() == ISD::Register) { - // We expect only (ESP+C) - OrigOffset = 0; - } else { - assert(OrigDest.getOpcode() == ISD::ADD && - isa(OrigDest.getOperand(1)) && - OrigDest.getOperand(0).getOpcode() == ISD::Register && - cast(OrigDest.getOperand(0))->getReg() == X86::ESP); - OrigOffset = cast(OrigDest.getOperand(1))->getValue(); - } - - // Compute the new offset from the incoming ESP value we wish to use. - unsigned NewOffset = OrigOffset + Offset; - - unsigned OpSize = (MVT::getSizeInBits(StoreVT)+7)/8; // Bits -> Bytes - MachineFunction &MF = DAG.getMachineFunction(); - int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, NewOffset); - SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32); - - SDOperand InChain = GetAdjustedArgumentStores(Chain.getOperand(0), Offset, - DAG); - if (Chain.getOpcode() == ISD::STORE) - return DAG.getNode(ISD::STORE, MVT::Other, InChain, Chain.getOperand(1), - FIN); - assert(Chain.getOpcode() == ISD::TRUNCSTORE); - return DAG.getNode(ISD::TRUNCSTORE, MVT::Other, InChain, Chain.getOperand(1), - FIN, DAG.getSrcValue(NULL), DAG.getValueType(StoreVT)); -} - - -/// EmitFastCCToFastCCTailCall - Given a tailcall in the tail position to a -/// fastcc function from a fastcc function, emit the code to emit a 'proper' -/// tail call. -void ISel::EmitFastCCToFastCCTailCall(SDNode *TailCallNode) { - unsigned CalleeCallArgSize = - cast(TailCallNode->getOperand(2))->getValue(); - unsigned CallerArgSize = X86Lowering.getBytesToPopOnReturn(); - - //std::cerr << "****\n*** EMITTING TAIL CALL!\n****\n"; - - // Adjust argument stores. Instead of storing to [ESP], f.e., store to frame - // indexes that are relative to the incoming ESP. If the incoming and - // outgoing arg sizes are the same we will store to [InESP] instead of - // [CurESP] and the ESP referenced will be relative to the incoming function - // ESP. - int ESPOffset = CallerArgSize-CalleeCallArgSize; - SDOperand AdjustedArgStores = - GetAdjustedArgumentStores(TailCallNode->getOperand(0), ESPOffset, *TheDAG); - - // Copy the return address of the caller into a virtual register so we don't - // clobber it. - SDOperand RetVal(0, 0); - if (ESPOffset) { - SDOperand RetValAddr = X86Lowering.getReturnAddressFrameIndex(*TheDAG); - RetVal = TheDAG->getLoad(MVT::i32, TheDAG->getEntryNode(), - RetValAddr, TheDAG->getSrcValue(NULL)); - SelectExpr(RetVal); - } - - // Codegen all of the argument stores. - Select(AdjustedArgStores); - - if (RetVal.Val) { - // Emit a store of the saved ret value to the new location. - MachineFunction &MF = TheDAG->getMachineFunction(); - int ReturnAddrFI = MF.getFrameInfo()->CreateFixedObject(4, ESPOffset-4); - SDOperand RetValAddr = TheDAG->getFrameIndex(ReturnAddrFI, MVT::i32); - Select(TheDAG->getNode(ISD::STORE, MVT::Other, TheDAG->getEntryNode(), - RetVal, RetValAddr)); - } - - // Get the destination value. - SDOperand Callee = TailCallNode->getOperand(1); - bool isDirect = isa(Callee) || - isa(Callee); - unsigned CalleeReg = 0; - if (!isDirect) { - // If this is not a direct tail call, evaluate the callee's address. - CalleeReg = SelectExpr(Callee); - } - - unsigned RegOp1 = 0; - unsigned RegOp2 = 0; - - if (TailCallNode->getNumOperands() > 4) { - // The first value is passed in (a part of) EAX, the second in EDX. - RegOp1 = SelectExpr(TailCallNode->getOperand(4)); - if (TailCallNode->getNumOperands() > 5) - RegOp2 = SelectExpr(TailCallNode->getOperand(5)); - - switch (TailCallNode->getOperand(4).getValueType()) { - default: assert(0 && "Bad thing to pass in regs"); - case MVT::i1: - case MVT::i8: - BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(RegOp1); - RegOp1 = X86::AL; - break; - case MVT::i16: - BuildMI(BB, X86::MOV16rr, 1,X86::AX).addReg(RegOp1); - RegOp1 = X86::AX; - break; - case MVT::i32: - BuildMI(BB, X86::MOV32rr, 1,X86::EAX).addReg(RegOp1); - RegOp1 = X86::EAX; - break; - } - if (RegOp2) - switch (TailCallNode->getOperand(5).getValueType()) { - default: assert(0 && "Bad thing to pass in regs"); - case MVT::i1: - case MVT::i8: - BuildMI(BB, X86::MOV8rr, 1, X86::DL).addReg(RegOp2); - RegOp2 = X86::DL; - break; - case MVT::i16: - BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(RegOp2); - RegOp2 = X86::DX; - break; - case MVT::i32: - BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(RegOp2); - RegOp2 = X86::EDX; - break; - } - } - - // If this is not a direct tail call, put the callee's address into ECX. - // The address has to be evaluated into a non-callee save register that is - // not used for arguments. This means either ECX, as EAX and EDX may be - // used for argument passing. We do this here to make sure that the - // expressions for arguments and callee are all evaluated before the copies - // into physical registers. - if (!isDirect) - BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CalleeReg); - - // Adjust ESP. - if (ESPOffset) - BuildMI(BB, X86::ADJSTACKPTRri, 2, - X86::ESP).addReg(X86::ESP).addImm(ESPOffset); - - // TODO: handle jmp [mem] - if (!isDirect) { - BuildMI(BB, X86::TAILJMPr, 1).addReg(X86::ECX); - } else if (GlobalAddressSDNode *GASD = dyn_cast(Callee)){ - BuildMI(BB, X86::TAILJMPd, 1).addGlobalAddress(GASD->getGlobal(), true); - } else { - ExternalSymbolSDNode *ESSDN = cast(Callee); - BuildMI(BB, X86::TAILJMPd, 1).addExternalSymbol(ESSDN->getSymbol(), true); - } - // ADD IMPLICIT USE RegOp1/RegOp2's -} - - -void ISel::Select(SDOperand N) { - unsigned Tmp1 = 0, Tmp2 = 0, Opc = 0; - - if (!ExprMap.insert(std::make_pair(N, 1)).second) - return; // Already selected. - - SDNode *Node = N.Val; - - switch (Node->getOpcode()) { - default: - Node->dump(); std::cerr << "\n"; - assert(0 && "Node not handled yet!"); - case X86ISD::RDTSC_DAG: - Select(Node->getOperand(0)); //Chain - BuildMI(BB, X86::RDTSC, 0); - return; - - case ISD::EntryToken: return; // Noop - case ISD::TokenFactor: - if (Node->getNumOperands() == 2) { - bool OneFirst = - getRegPressure(Node->getOperand(1))>getRegPressure(Node->getOperand(0)); - Select(Node->getOperand(OneFirst)); - Select(Node->getOperand(!OneFirst)); - } else { - std::vector > OpsP; - for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) - OpsP.push_back(std::make_pair(getRegPressure(Node->getOperand(i)), i)); - std::sort(OpsP.begin(), OpsP.end()); - std::reverse(OpsP.begin(), OpsP.end()); - for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) - Select(Node->getOperand(OpsP[i].second)); - } - return; - case ISD::CopyToReg: - if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(2))) { - Select(N.getOperand(0)); - Tmp1 = SelectExpr(N.getOperand(2)); - } else { - Tmp1 = SelectExpr(N.getOperand(2)); - Select(N.getOperand(0)); - } - Tmp2 = cast(N.getOperand(1))->getReg(); - - if (Tmp1 != Tmp2) { - switch (N.getOperand(2).getValueType()) { - default: assert(0 && "Invalid type for operation!"); - case MVT::i1: - case MVT::i8: Opc = X86::MOV8rr; break; - case MVT::i16: Opc = X86::MOV16rr; break; - case MVT::i32: Opc = X86::MOV32rr; break; - case MVT::f32: Opc = X86::MOVSSrr; break; - case MVT::f64: - if (X86ScalarSSE) { - Opc = X86::MOVSDrr; - } else { - Opc = X86::FpMOV; - ContainsFPCode = true; - } - break; - } - BuildMI(BB, Opc, 1, Tmp2).addReg(Tmp1); - } - return; - case ISD::RET: - if (N.getOperand(0).getOpcode() == ISD::CALLSEQ_END || - N.getOperand(0).getOpcode() == X86ISD::TAILCALL || - N.getOperand(0).getOpcode() == ISD::TokenFactor) - if (EmitPotentialTailCall(Node)) - return; - - switch (N.getNumOperands()) { - default: - assert(0 && "Unknown return instruction!"); - case 3: - assert(N.getOperand(1).getValueType() == MVT::i32 && - N.getOperand(2).getValueType() == MVT::i32 && - "Unknown two-register value!"); - if (getRegPressure(N.getOperand(1)) > getRegPressure(N.getOperand(2))) { - Tmp1 = SelectExpr(N.getOperand(1)); - Tmp2 = SelectExpr(N.getOperand(2)); - } else { - Tmp2 = SelectExpr(N.getOperand(2)); - Tmp1 = SelectExpr(N.getOperand(1)); - } - Select(N.getOperand(0)); - - BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(Tmp1); - BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(Tmp2); - break; - case 2: - if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { - Select(N.getOperand(0)); - Tmp1 = SelectExpr(N.getOperand(1)); - } else { - Tmp1 = SelectExpr(N.getOperand(1)); - Select(N.getOperand(0)); - } - switch (N.getOperand(1).getValueType()) { - default: assert(0 && "All other types should have been promoted!!"); - case MVT::f32: - if (X86ScalarSSE) { - // Spill the value to memory and reload it into top of stack. - unsigned Size = MVT::getSizeInBits(MVT::f32)/8; - MachineFunction *F = BB->getParent(); - int FrameIdx = F->getFrameInfo()->CreateStackObject(Size, Size); - addFrameReference(BuildMI(BB, X86::MOVSSmr, 5), FrameIdx).addReg(Tmp1); - addFrameReference(BuildMI(BB, X86::FpLD32m, 4, X86::FP0), FrameIdx); - BuildMI(BB, X86::FpSETRESULT, 1).addReg(X86::FP0); - ContainsFPCode = true; - } else { - assert(0 && "MVT::f32 only legal with scalar sse fp"); - abort(); - } - break; - case MVT::f64: - if (X86ScalarSSE) { - // Spill the value to memory and reload it into top of stack. - unsigned Size = MVT::getSizeInBits(MVT::f64)/8; - MachineFunction *F = BB->getParent(); - int FrameIdx = F->getFrameInfo()->CreateStackObject(Size, Size); - addFrameReference(BuildMI(BB, X86::MOVSDmr, 5), FrameIdx).addReg(Tmp1); - addFrameReference(BuildMI(BB, X86::FpLD64m, 4, X86::FP0), FrameIdx); - BuildMI(BB, X86::FpSETRESULT, 1).addReg(X86::FP0); - ContainsFPCode = true; - } else { - BuildMI(BB, X86::FpSETRESULT, 1).addReg(Tmp1); - } - break; - case MVT::i32: - BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(Tmp1); - break; - } - break; - case 1: - Select(N.getOperand(0)); - break; - } - if (X86Lowering.getBytesToPopOnReturn() == 0) - BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction - else - BuildMI(BB, X86::RETI, 1).addImm(X86Lowering.getBytesToPopOnReturn()); - return; - case ISD::BR: { - Select(N.getOperand(0)); - MachineBasicBlock *Dest = - cast(N.getOperand(1))->getBasicBlock(); - BuildMI(BB, X86::JMP, 1).addMBB(Dest); - return; - } - - case ISD::BRCOND: { - MachineBasicBlock *Dest = - cast(N.getOperand(2))->getBasicBlock(); - - // Try to fold a setcc into the branch. If this fails, emit a test/jne - // pair. - if (EmitBranchCC(Dest, N.getOperand(0), N.getOperand(1))) { - if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(1))) { - Select(N.getOperand(0)); - Tmp1 = SelectExpr(N.getOperand(1)); - } else { - Tmp1 = SelectExpr(N.getOperand(1)); - Select(N.getOperand(0)); - } - BuildMI(BB, X86::TEST8rr, 2).addReg(Tmp1).addReg(Tmp1); - BuildMI(BB, X86::JNE, 1).addMBB(Dest); - } - - return; - } - - case ISD::LOAD: - // If this load could be folded into the only using instruction, and if it - // is safe to emit the instruction here, try to do so now. - if (Node->hasNUsesOfValue(1, 0)) { - SDOperand TheVal = N.getValue(0); - SDNode *User = 0; - for (SDNode::use_iterator UI = Node->use_begin(); ; ++UI) { - assert(UI != Node->use_end() && "Didn't find use!"); - SDNode *UN = *UI; - for (unsigned i = 0, e = UN->getNumOperands(); i != e; ++i) - if (UN->getOperand(i) == TheVal) { - User = UN; - goto FoundIt; - } - } - FoundIt: - // Only handle unary operators right now. - if (User->getNumOperands() == 1) { - ExprMap.erase(N); - SelectExpr(SDOperand(User, 0)); - return; - } - } - ExprMap.erase(N); - SelectExpr(N); - return; - case ISD::READPORT: - case ISD::EXTLOAD: - case ISD::SEXTLOAD: - case ISD::ZEXTLOAD: - case X86ISD::TAILCALL: - case X86ISD::CALL: - ExprMap.erase(N); - SelectExpr(N); - return; - case ISD::CopyFromReg: - case X86ISD::FILD: - ExprMap.erase(N); - SelectExpr(N.getValue(0)); - return; - - case X86ISD::FP_TO_INT16_IN_MEM: - case X86ISD::FP_TO_INT32_IN_MEM: - case X86ISD::FP_TO_INT64_IN_MEM: { - assert(N.getOperand(1).getValueType() == MVT::f64); - X86AddressMode AM; - Select(N.getOperand(0)); // Select the token chain - - unsigned ValReg; - if (getRegPressure(N.getOperand(1)) > getRegPressure(N.getOperand(2))) { - ValReg = SelectExpr(N.getOperand(1)); - SelectAddress(N.getOperand(2), AM); - } else { - SelectAddress(N.getOperand(2), AM); - ValReg = SelectExpr(N.getOperand(1)); - } - - // Change the floating point control register to use "round towards zero" - // mode when truncating to an integer value. - // - MachineFunction *F = BB->getParent(); - int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2); - addFrameReference(BuildMI(BB, X86::FNSTCW16m, 4), CWFrameIdx); - - // Load the old value of the high byte of the control word... - unsigned OldCW = MakeReg(MVT::i16); - addFrameReference(BuildMI(BB, X86::MOV16rm, 4, OldCW), CWFrameIdx); - - // Set the high part to be round to zero... - addFrameReference(BuildMI(BB, X86::MOV16mi, 5), CWFrameIdx).addImm(0xC7F); - - // Reload the modified control word now... - addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx); - - // Restore the memory image of control word to original value - addFrameReference(BuildMI(BB, X86::MOV16mr, 5), CWFrameIdx).addReg(OldCW); - - // Get the X86 opcode to use. - switch (N.getOpcode()) { - case X86ISD::FP_TO_INT16_IN_MEM: Tmp1 = X86::FpIST16m; break; - case X86ISD::FP_TO_INT32_IN_MEM: Tmp1 = X86::FpIST32m; break; - case X86ISD::FP_TO_INT64_IN_MEM: Tmp1 = X86::FpIST64m; break; - } - - addFullAddress(BuildMI(BB, Tmp1, 5), AM).addReg(ValReg); - - // Reload the original control word now. - addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx); - return; - } - - case ISD::TRUNCSTORE: { // truncstore chain, val, ptr, SRCVALUE, storety - X86AddressMode AM; - MVT::ValueType StoredTy = cast(N.getOperand(4))->getVT(); - assert((StoredTy == MVT::i1 || StoredTy == MVT::f32 || - StoredTy == MVT::i16 /*FIXME: THIS IS JUST FOR TESTING!*/) - && "Unsupported TRUNCSTORE for this target!"); - - if (StoredTy == MVT::i16) { - // FIXME: This is here just to allow testing. X86 doesn't really have a - // TRUNCSTORE i16 operation, but this is required for targets that do not - // have 16-bit integer registers. We occasionally disable 16-bit integer - // registers to test the promotion code. - Select(N.getOperand(0)); - Tmp1 = SelectExpr(N.getOperand(1)); - SelectAddress(N.getOperand(2), AM); - - BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(Tmp1); - addFullAddress(BuildMI(BB, X86::MOV16mr, 5), AM).addReg(X86::AX); - return; - } - - // Store of constant bool? - if (ConstantSDNode *CN = dyn_cast(N.getOperand(1))) { - if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(2))) { - Select(N.getOperand(0)); - SelectAddress(N.getOperand(2), AM); - } else { - SelectAddress(N.getOperand(2), AM); - Select(N.getOperand(0)); - } - addFullAddress(BuildMI(BB, X86::MOV8mi, 5), AM).addImm(CN->getValue()); - return; - } - - switch (StoredTy) { - default: assert(0 && "Cannot truncstore this type!"); - case MVT::i1: Opc = X86::MOV8mr; break; - case MVT::f32: - assert(!X86ScalarSSE && "Cannot truncstore scalar SSE regs"); - Opc = X86::FpST32m; break; - } - - std::vector > RP; - RP.push_back(std::make_pair(getRegPressure(N.getOperand(0)), 0)); - RP.push_back(std::make_pair(getRegPressure(N.getOperand(1)), 1)); - RP.push_back(std::make_pair(getRegPressure(N.getOperand(2)), 2)); - std::sort(RP.begin(), RP.end()); - - Tmp1 = 0; // Silence a warning. - for (unsigned i = 0; i != 3; ++i) - switch (RP[2-i].second) { - default: assert(0 && "Unknown operand number!"); - case 0: Select(N.getOperand(0)); break; - case 1: Tmp1 = SelectExpr(N.getOperand(1)); break; - case 2: SelectAddress(N.getOperand(2), AM); break; - } - - addFullAddress(BuildMI(BB, Opc, 4+1), AM).addReg(Tmp1); - return; - } - case ISD::STORE: { - X86AddressMode AM; - - if (ConstantSDNode *CN = dyn_cast(N.getOperand(1))) { - Opc = 0; - switch (CN->getValueType(0)) { - default: assert(0 && "Invalid type for operation!"); - case MVT::i1: - case MVT::i8: Opc = X86::MOV8mi; break; - case MVT::i16: Opc = X86::MOV16mi; break; - case MVT::i32: Opc = X86::MOV32mi; break; - } - if (Opc) { - if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(2))) { - Select(N.getOperand(0)); - SelectAddress(N.getOperand(2), AM); - } else { - SelectAddress(N.getOperand(2), AM); - Select(N.getOperand(0)); - } - addFullAddress(BuildMI(BB, Opc, 4+1), AM).addImm(CN->getValue()); - return; - } - } else if (GlobalAddressSDNode *GA = - dyn_cast(N.getOperand(1))) { - assert(GA->getValueType(0) == MVT::i32 && "Bad pointer operand"); - - if (getRegPressure(N.getOperand(0)) > getRegPressure(N.getOperand(2))) { - Select(N.getOperand(0)); - SelectAddress(N.getOperand(2), AM); - } else { - SelectAddress(N.getOperand(2), AM); - Select(N.getOperand(0)); - } - GlobalValue *GV = GA->getGlobal(); - // For Darwin, external and weak symbols are indirect, so we want to load - // the value at address GV, not the value of GV itself. - if (Subtarget->getIndirectExternAndWeakGlobals() && - (GV->hasWeakLinkage() || GV->isExternal())) { - Tmp1 = MakeReg(MVT::i32); - BuildMI(BB, X86::MOV32rm, 4, Tmp1).addReg(0).addZImm(1).addReg(0) - .addGlobalAddress(GV, false, 0); - addFullAddress(BuildMI(BB, X86::MOV32mr, 4+1),AM).addReg(Tmp1); - } else { - addFullAddress(BuildMI(BB, X86::MOV32mi, 4+1),AM).addGlobalAddress(GV); - } - return; - } - - // Check to see if this is a load/op/store combination. - if (TryToFoldLoadOpStore(Node)) - return; - - switch (N.getOperand(1).getValueType()) { - default: assert(0 && "Cannot store this type!"); - case MVT::i1: - case MVT::i8: Opc = X86::MOV8mr; break; - case MVT::i16: Opc = X86::MOV16mr; break; - case MVT::i32: Opc = X86::MOV32mr; break; - case MVT::f32: Opc = X86::MOVSSmr; break; - case MVT::f64: Opc = X86ScalarSSE ? X86::MOVSDmr : X86::FpST64m; break; - } - - std::vector > RP; - RP.push_back(std::make_pair(getRegPressure(N.getOperand(0)), 0)); - RP.push_back(std::make_pair(getRegPressure(N.getOperand(1)), 1)); - RP.push_back(std::make_pair(getRegPressure(N.getOperand(2)), 2)); - std::sort(RP.begin(), RP.end()); - - Tmp1 = 0; // Silence a warning. - for (unsigned i = 0; i != 3; ++i) - switch (RP[2-i].second) { - default: assert(0 && "Unknown operand number!"); - case 0: Select(N.getOperand(0)); break; - case 1: Tmp1 = SelectExpr(N.getOperand(1)); break; - case 2: SelectAddress(N.getOperand(2), AM); break; - } - - addFullAddress(BuildMI(BB, Opc, 4+1), AM).addReg(Tmp1); - return; - } - case ISD::CALLSEQ_START: - Select(N.getOperand(0)); - // Stack amount - Tmp1 = cast(N.getOperand(1))->getValue(); - BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(Tmp1); - return; - case ISD::CALLSEQ_END: - Select(N.getOperand(0)); - return; - case ISD::MEMSET: { - Select(N.getOperand(0)); // Select the chain. - unsigned Align = - (unsigned)cast(Node->getOperand(4))->getValue(); - if (Align == 0) Align = 1; - - // Turn the byte code into # iterations - unsigned CountReg; - unsigned Opcode; - if (ConstantSDNode *ValC = dyn_cast(Node->getOperand(2))) { - unsigned Val = ValC->getValue() & 255; - - // If the value is a constant, then we can potentially use larger sets. - switch (Align & 3) { - case 2: // WORD aligned - CountReg = MakeReg(MVT::i32); - if (ConstantSDNode *I = dyn_cast(Node->getOperand(3))) { - BuildMI(BB, X86::MOV32ri, 1, CountReg).addImm(I->getValue()/2); - } else { - unsigned ByteReg = SelectExpr(Node->getOperand(3)); - BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1); - } - BuildMI(BB, X86::MOV16ri, 1, X86::AX).addImm((Val << 8) | Val); - Opcode = X86::REP_STOSW; - break; - case 0: // DWORD aligned - CountReg = MakeReg(MVT::i32); - if (ConstantSDNode *I = dyn_cast(Node->getOperand(3))) { - BuildMI(BB, X86::MOV32ri, 1, CountReg).addImm(I->getValue()/4); - } else { - unsigned ByteReg = SelectExpr(Node->getOperand(3)); - BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2); - } - Val = (Val << 8) | Val; - BuildMI(BB, X86::MOV32ri, 1, X86::EAX).addImm((Val << 16) | Val); - Opcode = X86::REP_STOSD; - break; - default: // BYTE aligned - CountReg = SelectExpr(Node->getOperand(3)); - BuildMI(BB, X86::MOV8ri, 1, X86::AL).addImm(Val); - Opcode = X86::REP_STOSB; - break; - } - } else { - // If it's not a constant value we are storing, just fall back. We could - // try to be clever to form 16 bit and 32 bit values, but we don't yet. - unsigned ValReg = SelectExpr(Node->getOperand(2)); - BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg); - CountReg = SelectExpr(Node->getOperand(3)); - Opcode = X86::REP_STOSB; - } - - // No matter what the alignment is, we put the destination in EDI, and the - // count in ECX. - unsigned TmpReg1 = SelectExpr(Node->getOperand(1)); - BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg); - BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1); - BuildMI(BB, Opcode, 0); - return; - } - case ISD::MEMCPY: { - Select(N.getOperand(0)); // Select the chain. - unsigned Align = - (unsigned)cast(Node->getOperand(4))->getValue(); - if (Align == 0) Align = 1; - - // Turn the byte code into # iterations - unsigned CountReg; - unsigned Opcode; - switch (Align & 3) { - case 2: // WORD aligned - CountReg = MakeReg(MVT::i32); - if (ConstantSDNode *I = dyn_cast(Node->getOperand(3))) { - BuildMI(BB, X86::MOV32ri, 1, CountReg).addImm(I->getValue()/2); - } else { - unsigned ByteReg = SelectExpr(Node->getOperand(3)); - BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1); - } - Opcode = X86::REP_MOVSW; - break; - case 0: // DWORD aligned - CountReg = MakeReg(MVT::i32); - if (ConstantSDNode *I = dyn_cast(Node->getOperand(3))) { - BuildMI(BB, X86::MOV32ri, 1, CountReg).addImm(I->getValue()/4); - } else { - unsigned ByteReg = SelectExpr(Node->getOperand(3)); - BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2); - } - Opcode = X86::REP_MOVSD; - break; - default: // BYTE aligned - CountReg = SelectExpr(Node->getOperand(3)); - Opcode = X86::REP_MOVSB; - break; - } - - // No matter what the alignment is, we put the source in ESI, the - // destination in EDI, and the count in ECX. - unsigned TmpReg1 = SelectExpr(Node->getOperand(1)); - unsigned TmpReg2 = SelectExpr(Node->getOperand(2)); - BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg); - BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1); - BuildMI(BB, X86::MOV32rr, 1, X86::ESI).addReg(TmpReg2); - BuildMI(BB, Opcode, 0); - return; - } - case ISD::WRITEPORT: - if (Node->getOperand(2).getValueType() != MVT::i16) { - std::cerr << "llvm.writeport: Address size is not 16 bits\n"; - exit(1); - } - Select(Node->getOperand(0)); // Emit the chain. - - Tmp1 = SelectExpr(Node->getOperand(1)); - switch (Node->getOperand(1).getValueType()) { - case MVT::i8: - BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(Tmp1); - Tmp2 = X86::OUT8ir; Opc = X86::OUT8rr; - break; - case MVT::i16: - BuildMI(BB, X86::MOV16rr, 1, X86::AX).addReg(Tmp1); - Tmp2 = X86::OUT16ir; Opc = X86::OUT16rr; - break; - case MVT::i32: - BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(Tmp1); - Tmp2 = X86::OUT32ir; Opc = X86::OUT32rr; - break; - default: - std::cerr << "llvm.writeport: invalid data type for X86 target"; - exit(1); - } - - // If the port is a single-byte constant, use the immediate form. - if (ConstantSDNode *CN = dyn_cast(Node->getOperand(2))) - if ((CN->getValue() & 255) == CN->getValue()) { - BuildMI(BB, Tmp2, 1).addImm(CN->getValue()); - return; - } - - // Otherwise, move the I/O port address into the DX register. - unsigned Reg = SelectExpr(Node->getOperand(2)); - BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg); - BuildMI(BB, Opc, 0); - return; - } - assert(0 && "Should not be reached!"); -} - - -/// createX86ISelPattern - This pass converts an LLVM function -/// into a machine code representation using pattern matching and a machine -/// description file. -/// -FunctionPass *llvm::createX86ISelPattern(TargetMachine &TM) { - return new ISel(TM); -} diff --git a/lib/Target/X86/X86TargetMachine.cpp b/lib/Target/X86/X86TargetMachine.cpp index b4de8797508..49f18784192 100644 --- a/lib/Target/X86/X86TargetMachine.cpp +++ b/lib/Target/X86/X86TargetMachine.cpp @@ -26,8 +26,6 @@ #include using namespace llvm; -bool llvm::X86PatIsel = true; - /// X86TargetMachineModule - Note that this is used on hosts that cannot link /// in a library unless there are references into the library. In particular, /// it seems that it is not possible to get things to work on Win32 without @@ -39,11 +37,6 @@ namespace { cl::opt DisableOutput("disable-x86-llc-output", cl::Hidden, cl::desc("Disable the X86 asm printer, for use " "when profiling the code generator.")); - cl::opt EnableX86PatISel("enable-x86-pattern-isel", cl::Hidden, - cl::desc("Enable the pattern based isel for X86"), - cl::location(X86PatIsel), - cl::init(false)); - // Register the target. RegisterTarget X("x86", " IA-32 (Pentium and above)"); } @@ -107,10 +100,7 @@ bool X86TargetMachine::addPassesToEmitFile(PassManager &PM, std::ostream &Out, PM.add(createUnreachableBlockEliminationPass()); // Install an instruction selector. - if (X86PatIsel) - PM.add(createX86ISelPattern(*this)); - else - PM.add(createX86ISelDag(*this)); + PM.add(createX86ISelDag(*this)); // Print the instruction selected machine code... if (PrintMachineCode) @@ -172,10 +162,7 @@ void X86JITInfo::addPassesToJITCompile(FunctionPassManager &PM) { PM.add(createUnreachableBlockEliminationPass()); // Install an instruction selector. - if (X86PatIsel) - PM.add(createX86ISelPattern(TM)); - else - PM.add(createX86ISelDag(TM)); + PM.add(createX86ISelDag(TM)); // Print the instruction selected machine code... if (PrintMachineCode)