[SCEVExpander] Make findExistingExpansion smarter

Summary:
Extending findExistingExpansion can use existing value in ExprValueMap.
This patch gives 0.3~0.5% performance improvements on 
benchmarks(test-suite, spec2000, spec2006, commercial benchmark)
   
Reviewers: mzolotukhin, sanjoy, zzheng

Differential Revision: http://reviews.llvm.org/D15559


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@260938 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Junmo Park 2016-02-16 06:46:58 +00:00
parent b1fb18e8f7
commit 4ee5ab9daf
4 changed files with 77 additions and 28 deletions

View File

@ -263,6 +263,9 @@ namespace llvm {
const SCEV *const *op_end,
PointerType *PTy, Type *Ty, Value *V);
/// \brief Find a previous Value in ExprValueMap for expand.
Value *FindValueInExprValueMap(const SCEV *S, const Instruction *InsertPt);
Value *expand(const SCEV *S);
/// \brief Insert code to directly compute the specified SCEV expression

View File

@ -1598,6 +1598,34 @@ Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
return V;
}
Value *SCEVExpander::FindValueInExprValueMap(const SCEV *S,
const Instruction *InsertPt) {
SetVector<Value *> *Set = SE.getSCEVValues(S);
// If the expansion is not in CanonicalMode, and the SCEV contains any
// sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
if (CanonicalMode || !SE.containsAddRecurrence(S)) {
// If S is scConstant, it may be worse to reuse an existing Value.
if (S->getSCEVType() != scConstant && Set) {
// Choose a Value from the set which dominates the insertPt.
// insertPt should be inside the Value's parent loop so as not to break
// the LCSSA form.
for (auto const &Ent : *Set) {
Instruction *EntInst = nullptr;
if (Ent && isa<Instruction>(Ent) &&
(EntInst = cast<Instruction>(Ent)) &&
S->getType() == Ent->getType() &&
EntInst->getFunction() == InsertPt->getFunction() &&
SE.DT.dominates(EntInst, InsertPt) &&
(SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt))) {
return Ent;
}
}
}
}
return nullptr;
}
// The expansion of SCEV will either reuse a previous Value in ExprValueMap,
// or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
// and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
@ -1643,31 +1671,8 @@ Value *SCEVExpander::expand(const SCEV *S) {
Builder.SetInsertPoint(InsertPt);
// Expand the expression into instructions.
SetVector<Value *> *Set = SE.getSCEVValues(S);
Value *V = nullptr;
// If the expansion is not in CanonicalMode, and the SCEV contains any
// sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
if (CanonicalMode || !SE.containsAddRecurrence(S)) {
// If S is scConstant, it may be worse to reuse an existing Value.
if (S->getSCEVType() != scConstant && Set) {
// Choose a Value from the set which dominates the insertPt.
// insertPt should be inside the Value's parent loop so as not to break
// the LCSSA form.
for (auto const &Ent : *Set) {
Instruction *EntInst = nullptr;
if (Ent && isa<Instruction>(Ent) &&
(EntInst = cast<Instruction>(Ent)) &&
S->getType() == Ent->getType() &&
EntInst->getFunction() == InsertPt->getFunction() &&
SE.DT.dominates(EntInst, InsertPt) &&
(SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt))) {
V = Ent;
break;
}
}
}
}
Value *V = FindValueInExprValueMap(S, InsertPt);
if (!V)
V = visit(S);
@ -1877,6 +1882,11 @@ Value *SCEVExpander::findExistingExpansion(const SCEV *S,
return RHS;
}
// Use expand's logic which is used for reusing a previous Value in
// ExprValueMap.
if (Value *Val = FindValueInExprValueMap(S, At))
return Val;
// There is potential to make this significantly smarter, but this simple
// heuristic already gets some interesting cases.

View File

@ -311,9 +311,12 @@ bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count,
return false;
BasicBlock *Header = L->getHeader();
BasicBlock *PH = L->getLoopPreheader();
BranchInst *PreHeaderBR = cast<BranchInst>(PH->getTerminator());
const DataLayout &DL = Header->getModule()->getDataLayout();
SCEVExpander Expander(*SE, DL, "loop-unroll");
if (!AllowExpensiveTripCount && Expander.isHighCostExpansion(TripCountSC, L))
if (!AllowExpensiveTripCount &&
Expander.isHighCostExpansion(TripCountSC, L, PreHeaderBR))
return false;
// We only handle cases when the unroll factor is a power of 2.
@ -331,13 +334,12 @@ bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count,
if (Loop *ParentLoop = L->getParentLoop())
SE->forgetLoop(ParentLoop);
BasicBlock *PH = L->getLoopPreheader();
BasicBlock *Latch = L->getLoopLatch();
// It helps to split the original preheader twice, one for the end of the
// prolog code and one for a new loop preheader.
BasicBlock *PEnd = SplitEdge(PH, Header, DT, LI);
BasicBlock *NewPH = SplitBlock(PEnd, PEnd->getTerminator(), DT, LI);
BranchInst *PreHeaderBR = cast<BranchInst>(PH->getTerminator());
PreHeaderBR = cast<BranchInst>(PH->getTerminator());
// Compute the number of extra iterations required, which is:
// extra iterations = run-time trip count % (loop unroll factor + 1)

View File

@ -24,4 +24,38 @@ loopexit: ; preds = %loop
ret i32 0
}
;; Though SCEV for loop tripcount contains division,
;; it shouldn't be considered expensive, since the division already
;; exists in the code and we don't need to expand it once more.
;; Thus, it shouldn't prevent us from unrolling the loop.
define i32 @test2(i64* %loc, i64 %conv7) {
; CHECK-LABEL: @test2(
; CHECK: udiv
; CHECK: udiv
; CHECK-NOT: udiv
; CHECK-LABEL: for.body.prol
entry:
%rem0 = load i64, i64* %loc, align 8
%ExpensiveComputation = udiv i64 %rem0, 42 ; <<< Extra computations are added to the trip-count expression
br label %bb1
bb1:
%div11 = udiv i64 %ExpensiveComputation, %conv7
%cmp.i38 = icmp ugt i64 %div11, 1
%div12 = select i1 %cmp.i38, i64 %div11, i64 1
br label %for.body
for.body:
%rem1 = phi i64 [ %rem0, %bb1 ], [ %rem2, %for.body ]
%k1 = phi i64 [ %div12, %bb1 ], [ %dec, %for.body ]
%mul1 = mul i64 %rem1, 48271
%rem2 = urem i64 %mul1, 2147483647
%dec = add i64 %k1, -1
%cmp = icmp eq i64 %dec, 0
br i1 %cmp, label %exit, label %for.body
exit:
%rem3 = phi i64 [ %rem2, %for.body ]
store i64 %rem3, i64* %loc, align 8
ret i32 0
}
!0 = !{i64 1, i64 100}