Two bug fixes:

(1) Add edges for Values that are written by multiple m/c instructions
(2) Add edges for LLVM operands that are not machine operands (e.g., Call args)


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@676 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Vikram S. Adve 2001-09-30 23:36:58 +00:00
parent aca997cbd7
commit 5316f8fa2f
2 changed files with 356 additions and 158 deletions

View File

@ -23,6 +23,18 @@
#include "llvm/Support/StringExtras.h"
#include <algorithm>
//*********************** Internal Data Structures *************************/
typedef vector< pair<SchedGraphNode*, unsigned int> > RefVec;
// The following needs to be a class, not a typedef, so we can use
// an opaque declaration in SchedGraph.h
class RegToRefVecMap: public hash_map<int, RefVec> {
typedef hash_map<int, RefVec>:: iterator iterator;
typedef hash_map<int, RefVec>::const_iterator const_iterator;
};
//
// class SchedGraphEdge
//
@ -46,11 +58,11 @@ SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
/*ctor*/
SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
SchedGraphNode* _sink,
Value* _val,
SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
SchedGraphNode* _sink,
const Value* _val,
DataDepOrderType _depOrderType,
int _minDelay)
int _minDelay)
: src(_src),
sink(_sink),
depType(DefUseDep),
@ -64,11 +76,11 @@ SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
/*ctor*/
SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
SchedGraphNode* _sink,
unsigned int _regNum,
SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
SchedGraphNode* _sink,
unsigned int _regNum,
DataDepOrderType _depOrderType,
int _minDelay)
int _minDelay)
: src(_src),
sink(_sink),
depType(MachineRegister),
@ -85,7 +97,7 @@ SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
SchedGraphNode* _sink,
ResourceId _resourceId,
int _minDelay)
int _minDelay)
: src(_src),
sink(_sink),
depType(MachineResource),
@ -467,18 +479,8 @@ SchedGraph::addMemEdges(const vector<const Instruction*>& memVec,
}
typedef vector< pair<SchedGraphNode*, unsigned int> > RegRefVec;
// The following needs to be a class, not a typedef, so we can use
// an opaque declaration in SchedGraph.h
class NodeToRegRefMap: public hash_map<int, RegRefVec> {
typedef hash_map<int, RegRefVec>:: iterator iterator;
typedef hash_map<int, RegRefVec>::const_iterator const_iterator;
};
void
SchedGraph::addMachineRegEdges(NodeToRegRefMap& regToRefVecMap,
SchedGraph::addMachineRegEdges(RegToRefVecMap& regToRefVecMap,
const TargetMachine& target)
{
assert(bbVec.size() == 1 && "Only handling a single basic block here");
@ -489,49 +491,49 @@ SchedGraph::addMachineRegEdges(NodeToRegRefMap& regToRefVecMap,
// Also assumes that two registers with different numbers are
// not aliased!
//
for (NodeToRegRefMap::iterator I = regToRefVecMap.begin();
for (RegToRefVecMap::iterator I = regToRefVecMap.begin();
I != regToRefVecMap.end(); ++I)
{
int regNum = (*I).first;
RegRefVec& regRefVec = (*I).second;
int regNum = (*I).first;
RefVec& regRefVec = (*I).second;
// regRefVec is ordered by control flow order in the basic block
int lastDefIdx = -1;
for (unsigned i=0; i < regRefVec.size(); ++i)
{
SchedGraphNode* node = regRefVec[i].first;
bool isDef = regRefVec[i].second;
if (isDef)
{ // Each def gets an output edge from the last def
if (lastDefIdx > 0)
new SchedGraphEdge(regRefVec[lastDefIdx].first, node, regNum,
SchedGraphEdge::OutputDep);
// Also, an anti edge from all uses *since* the last def,
// But don't add edge from an instruction to itself!
for (int u = 1 + lastDefIdx; u < (int) i; u++)
if (regRefVec[u].first != node)
new SchedGraphEdge(regRefVec[u].first, node, regNum,
SchedGraphEdge::AntiDep);
}
else
{ // Each use gets a true edge from the last def
if (lastDefIdx > 0)
new SchedGraphEdge(regRefVec[lastDefIdx].first, node, regNum);
}
}
unsigned int opNum = regRefVec[i].second;
bool isDef = node->getMachineInstr()->operandIsDefined(opNum);
for (unsigned p=0; p < i; ++p)
{
SchedGraphNode* prevNode = regRefVec[p].first;
if (prevNode != node)
{
unsigned int prevOpNum = regRefVec[p].second;
bool prevIsDef =
prevNode->getMachineInstr()->operandIsDefined(prevOpNum);
if (isDef)
new SchedGraphEdge(prevNode, node, regNum,
(prevIsDef)? SchedGraphEdge::OutputDep
: SchedGraphEdge::AntiDep);
else if (prevIsDef)
new SchedGraphEdge(prevNode, node, regNum,
SchedGraphEdge::TrueDep);
}
}
}
}
}
void
SchedGraph::addSSAEdge(SchedGraphNode* node,
Value* val,
const Value* val,
const TargetMachine& target)
{
if (!val->isInstruction()) return;
const Instruction* thisVMInstr = node->getInstr();
const Instruction* defVMInstr = val->castInstructionAsserting();
@ -562,38 +564,38 @@ SchedGraph::addSSAEdge(SchedGraphNode* node,
// if there is a node for it in the same graph, add an edge.
SchedGraphNode* defNode = this->getGraphNodeForInstr(defMvec[i]);
if (defNode != NULL && defNode != node)
(void) new SchedGraphEdge(defNode, node, val);
(void) new SchedGraphEdge(defNode, node, val);
}
}
}
void
SchedGraph::addEdgesForInstruction(SchedGraphNode* node,
NodeToRegRefMap& regToRefVecMap,
SchedGraph::addEdgesForInstruction(const MachineInstr& minstr,
RegToRefVecMap& regToRefVecMap,
const TargetMachine& target)
{
const Instruction& instr = * node->getInstr(); // No dummy nodes here!
const MachineInstr& minstr = * node->getMachineInstr();
SchedGraphNode* node = this->getGraphNodeForInstr(&minstr);
if (node == NULL)
return;
// Add incoming edges for the following:
// (1) operands of the machine instruction, including hidden operands
// (2) machine register dependences
// (3) other resource dependences for the machine instruction, if any
// Also, note any uses or defs of machine registers.
assert(node->getInstr() && "Should be no dummy nodes here!");
const Instruction& instr = * node->getInstr();
// Add edges for all operands of the machine instruction.
// Also, record all machine register references to add reg. deps. later.
//
for (unsigned i=0, numOps=minstr.getNumOperands(); i < numOps; i++)
{
const MachineOperand& mop = minstr.getOperand(i);
// if this writes to a machine register other than the hardwired
// "zero" register used on many processors, record the reference.
// "zero" register, record the reference.
if (mop.getOperandType() == MachineOperand::MO_MachineRegister
&& (mop.getMachineRegNum()
== (unsigned) target.getRegInfo().getZeroRegNum()))
!= (unsigned) target.getRegInfo().getZeroRegNum()))
{
regToRefVecMap[mop.getMachineRegNum()].
push_back(make_pair(node, i));
regToRefVecMap[mop.getMachineRegNum()].push_back(make_pair(node, i));
}
// ignore all other def operands
@ -621,10 +623,87 @@ SchedGraph::addEdgesForInstruction(SchedGraphNode* node,
break;
}
}
// add all true, anti,
// and output dependences for this register. but ignore
// Add edges for values implicitly used by the machine instruction sequence
// for the VM instruction but not made explicit operands. Examples include
// function arguments to a Call instructions or the return value of a Ret
// instruction. We'll conservatively add the dependences to every machine
// machine instruction in the instruction sequence for this VM instr
// (at least for now, there is never more than one machine instr).
//
const vector<const Value*>& implicitUses =
instr.getMachineInstrVec().getImplicitUses();
for (unsigned i=0; i < implicitUses.size(); ++i)
addSSAEdge(node, implicitUses[i], target);
}
void
SchedGraph::addNonSSAEdgesForValue(const Instruction* instr,
const TargetMachine& target)
{
assert(instr->isInstruction());
if (instr->isPHINode())
return;
MachineCodeForVMInstr& mvec = instr->getMachineInstrVec();
const MachineInstrInfo& mii = target.getInstrInfo();
RefVec refVec;
for (unsigned i=0, N=mvec.size(); i < N; i++)
for (int o=0, N = mii.getNumOperands(mvec[i]->getOpCode()); o < N; o++)
{
const MachineOperand& op = mvec[i]->getOperand(o);
if ((op.getOperandType() == MachineOperand::MO_VirtualRegister ||
op.getOperandType() == MachineOperand::MO_CCRegister)
&& op.getVRegValue() == (Value*) instr)
{
// this operand is a definition or use of value `instr'
SchedGraphNode* node = this->getGraphNodeForInstr(mvec[i]);
assert(node && "No node for machine instruction in this BB?");
refVec.push_back(make_pair(node, o));
}
}
// refVec is ordered by control flow order of the machine instructions
for (unsigned i=0; i < refVec.size(); ++i)
{
SchedGraphNode* node = refVec[i].first;
unsigned int opNum = refVec[i].second;
bool isDef = node->getMachineInstr()->operandIsDefined(opNum);
if (isDef)
// add output and/or anti deps to this definition
for (unsigned p=0; p < i; ++p)
{
SchedGraphNode* prevNode = refVec[p].first;
if (prevNode != node)
{
bool prevIsDef = prevNode->getMachineInstr()->
operandIsDefined(refVec[p].second);
new SchedGraphEdge(prevNode, node, SchedGraphEdge::DefUseDep,
(prevIsDef)? SchedGraphEdge::OutputDep
: SchedGraphEdge::AntiDep);
}
}
}
}
void
SchedGraph::buildNodesforVMInstr(const TargetMachine& target,
const Instruction* instr)
{
const MachineInstrInfo& mii = target.getInstrInfo();
const MachineCodeForVMInstr& mvec = instr->getMachineInstrVec();
for (unsigned i=0; i < mvec.size(); i++)
if (! mii.isDummyPhiInstr(mvec[i]->getOpCode()))
{
SchedGraphNode* node = new SchedGraphNode(getNumNodes(),
instr, mvec[i], target);
this->noteGraphNodeForInstr(mvec[i], node);
}
}
@ -649,37 +728,46 @@ SchedGraph::buildGraph(const TargetMachine& target)
// single basic block, hence the assertion. Each reference is identified
// by the pair: <node, operand-number>.
//
NodeToRegRefMap regToRefVecMap;
RegToRefVecMap regToRefVecMap;
// Make a dummy root node. We'll add edges to the real roots later.
graphRoot = new SchedGraphNode(0, NULL, NULL, target);
graphLeaf = new SchedGraphNode(1, NULL, NULL, target);
//----------------------------------------------------------------
// First add nodes for all the machine instructions in the basic block.
// This greatly simplifies identifing which edges to add.
// First add nodes for all the machine instructions in the basic block
// because this greatly simplifies identifying which edges to add.
// Do this one VM instruction at a time since the SchedGraphNode needs that.
// Also, remember the load/store instructions to add memory deps later.
//----------------------------------------------------------------
for (BasicBlock::const_iterator II = bb->begin(); II != bb->end(); ++II)
{
const Instruction *instr = *II;
const MachineCodeForVMInstr& mvec = instr->getMachineInstrVec();
for (unsigned i=0, N=mvec.size(); i < N; i++)
if (! mii.isDummyPhiInstr(mvec[i]->getOpCode()))
{
SchedGraphNode* node = new SchedGraphNode(getNumNodes(),
instr, mvec[i], target);
this->noteGraphNodeForInstr(mvec[i], node);
}
// Build graph nodes for this VM instruction
buildNodesforVMInstr(target, instr);
// Remember the load/store instructions to add memory deps later.
if (instr->getOpcode() == Instruction::Load ||
instr->getOpcode() == Instruction::Store)
memVec.push_back(instr);
}
//----------------------------------------------------------------
// Now add the edges.
// Now add edges for the following (all are incoming edges except (4)):
// (1) operands of the machine instruction, including hidden operands
// (2) machine register dependences
// (3) memory load/store dependences
// (3) other resource dependences for the machine instruction, if any
// (4) output dependences when multiple machine instructions define the
// same value; all must have been generated from a single VM instrn
// (5) control dependences to branch instructions generated for the
// terminator instruction of the BB. Because of delay slots and
// 2-way conditional branches, multiple CD edges are needed
// (see addCDEdges for details).
// Also, note any uses or defs of machine registers.
//
//----------------------------------------------------------------
// First, add edges to the terminator instruction of the basic block.
@ -689,10 +777,21 @@ SchedGraph::buildGraph(const TargetMachine& target)
this->addMemEdges(memVec, target);
// Then add other edges for all instructions in the block.
for (SchedGraph::iterator GI = this->begin(); GI != this->end(); ++GI)
// Do this in machine code order and find all references to machine regs.
MachineCodeForBasicBlock& mvec = bb->getMachineInstrVec();
for (unsigned i=0, N=mvec.size(); i < N; i++)
addEdgesForInstruction(*mvec[i], regToRefVecMap, target);
// Since the code is no longer in SSA form, add output dep. edges
// between machine instructions that define the same Value, and anti-dep.
// edges from those to other machine instructions for the same VM instr.
// We assume that all machine instructions that define a value are
// generated from the VM instruction corresponding to that value.
//
for (BasicBlock::const_iterator II = bb->begin(); II != bb->end(); ++II)
{
SchedGraphNode* node = (*GI).second;
addEdgesForInstruction(node, regToRefVecMap, target);
const Instruction *instr = *II;
this->addNonSSAEdgesForValue(instr, target);
}
// Then add edges for dependences on machine registers

View File

@ -23,6 +23,18 @@
#include "llvm/Support/StringExtras.h"
#include <algorithm>
//*********************** Internal Data Structures *************************/
typedef vector< pair<SchedGraphNode*, unsigned int> > RefVec;
// The following needs to be a class, not a typedef, so we can use
// an opaque declaration in SchedGraph.h
class RegToRefVecMap: public hash_map<int, RefVec> {
typedef hash_map<int, RefVec>:: iterator iterator;
typedef hash_map<int, RefVec>::const_iterator const_iterator;
};
//
// class SchedGraphEdge
//
@ -46,11 +58,11 @@ SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
/*ctor*/
SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
SchedGraphNode* _sink,
Value* _val,
SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
SchedGraphNode* _sink,
const Value* _val,
DataDepOrderType _depOrderType,
int _minDelay)
int _minDelay)
: src(_src),
sink(_sink),
depType(DefUseDep),
@ -64,11 +76,11 @@ SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
/*ctor*/
SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
SchedGraphNode* _sink,
unsigned int _regNum,
SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
SchedGraphNode* _sink,
unsigned int _regNum,
DataDepOrderType _depOrderType,
int _minDelay)
int _minDelay)
: src(_src),
sink(_sink),
depType(MachineRegister),
@ -85,7 +97,7 @@ SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
SchedGraphNode* _sink,
ResourceId _resourceId,
int _minDelay)
int _minDelay)
: src(_src),
sink(_sink),
depType(MachineResource),
@ -467,18 +479,8 @@ SchedGraph::addMemEdges(const vector<const Instruction*>& memVec,
}
typedef vector< pair<SchedGraphNode*, unsigned int> > RegRefVec;
// The following needs to be a class, not a typedef, so we can use
// an opaque declaration in SchedGraph.h
class NodeToRegRefMap: public hash_map<int, RegRefVec> {
typedef hash_map<int, RegRefVec>:: iterator iterator;
typedef hash_map<int, RegRefVec>::const_iterator const_iterator;
};
void
SchedGraph::addMachineRegEdges(NodeToRegRefMap& regToRefVecMap,
SchedGraph::addMachineRegEdges(RegToRefVecMap& regToRefVecMap,
const TargetMachine& target)
{
assert(bbVec.size() == 1 && "Only handling a single basic block here");
@ -489,49 +491,49 @@ SchedGraph::addMachineRegEdges(NodeToRegRefMap& regToRefVecMap,
// Also assumes that two registers with different numbers are
// not aliased!
//
for (NodeToRegRefMap::iterator I = regToRefVecMap.begin();
for (RegToRefVecMap::iterator I = regToRefVecMap.begin();
I != regToRefVecMap.end(); ++I)
{
int regNum = (*I).first;
RegRefVec& regRefVec = (*I).second;
int regNum = (*I).first;
RefVec& regRefVec = (*I).second;
// regRefVec is ordered by control flow order in the basic block
int lastDefIdx = -1;
for (unsigned i=0; i < regRefVec.size(); ++i)
{
SchedGraphNode* node = regRefVec[i].first;
bool isDef = regRefVec[i].second;
if (isDef)
{ // Each def gets an output edge from the last def
if (lastDefIdx > 0)
new SchedGraphEdge(regRefVec[lastDefIdx].first, node, regNum,
SchedGraphEdge::OutputDep);
// Also, an anti edge from all uses *since* the last def,
// But don't add edge from an instruction to itself!
for (int u = 1 + lastDefIdx; u < (int) i; u++)
if (regRefVec[u].first != node)
new SchedGraphEdge(regRefVec[u].first, node, regNum,
SchedGraphEdge::AntiDep);
}
else
{ // Each use gets a true edge from the last def
if (lastDefIdx > 0)
new SchedGraphEdge(regRefVec[lastDefIdx].first, node, regNum);
}
}
unsigned int opNum = regRefVec[i].second;
bool isDef = node->getMachineInstr()->operandIsDefined(opNum);
for (unsigned p=0; p < i; ++p)
{
SchedGraphNode* prevNode = regRefVec[p].first;
if (prevNode != node)
{
unsigned int prevOpNum = regRefVec[p].second;
bool prevIsDef =
prevNode->getMachineInstr()->operandIsDefined(prevOpNum);
if (isDef)
new SchedGraphEdge(prevNode, node, regNum,
(prevIsDef)? SchedGraphEdge::OutputDep
: SchedGraphEdge::AntiDep);
else if (prevIsDef)
new SchedGraphEdge(prevNode, node, regNum,
SchedGraphEdge::TrueDep);
}
}
}
}
}
void
SchedGraph::addSSAEdge(SchedGraphNode* node,
Value* val,
const Value* val,
const TargetMachine& target)
{
if (!val->isInstruction()) return;
const Instruction* thisVMInstr = node->getInstr();
const Instruction* defVMInstr = val->castInstructionAsserting();
@ -562,38 +564,38 @@ SchedGraph::addSSAEdge(SchedGraphNode* node,
// if there is a node for it in the same graph, add an edge.
SchedGraphNode* defNode = this->getGraphNodeForInstr(defMvec[i]);
if (defNode != NULL && defNode != node)
(void) new SchedGraphEdge(defNode, node, val);
(void) new SchedGraphEdge(defNode, node, val);
}
}
}
void
SchedGraph::addEdgesForInstruction(SchedGraphNode* node,
NodeToRegRefMap& regToRefVecMap,
SchedGraph::addEdgesForInstruction(const MachineInstr& minstr,
RegToRefVecMap& regToRefVecMap,
const TargetMachine& target)
{
const Instruction& instr = * node->getInstr(); // No dummy nodes here!
const MachineInstr& minstr = * node->getMachineInstr();
SchedGraphNode* node = this->getGraphNodeForInstr(&minstr);
if (node == NULL)
return;
// Add incoming edges for the following:
// (1) operands of the machine instruction, including hidden operands
// (2) machine register dependences
// (3) other resource dependences for the machine instruction, if any
// Also, note any uses or defs of machine registers.
assert(node->getInstr() && "Should be no dummy nodes here!");
const Instruction& instr = * node->getInstr();
// Add edges for all operands of the machine instruction.
// Also, record all machine register references to add reg. deps. later.
//
for (unsigned i=0, numOps=minstr.getNumOperands(); i < numOps; i++)
{
const MachineOperand& mop = minstr.getOperand(i);
// if this writes to a machine register other than the hardwired
// "zero" register used on many processors, record the reference.
// "zero" register, record the reference.
if (mop.getOperandType() == MachineOperand::MO_MachineRegister
&& (mop.getMachineRegNum()
== (unsigned) target.getRegInfo().getZeroRegNum()))
!= (unsigned) target.getRegInfo().getZeroRegNum()))
{
regToRefVecMap[mop.getMachineRegNum()].
push_back(make_pair(node, i));
regToRefVecMap[mop.getMachineRegNum()].push_back(make_pair(node, i));
}
// ignore all other def operands
@ -621,10 +623,87 @@ SchedGraph::addEdgesForInstruction(SchedGraphNode* node,
break;
}
}
// add all true, anti,
// and output dependences for this register. but ignore
// Add edges for values implicitly used by the machine instruction sequence
// for the VM instruction but not made explicit operands. Examples include
// function arguments to a Call instructions or the return value of a Ret
// instruction. We'll conservatively add the dependences to every machine
// machine instruction in the instruction sequence for this VM instr
// (at least for now, there is never more than one machine instr).
//
const vector<const Value*>& implicitUses =
instr.getMachineInstrVec().getImplicitUses();
for (unsigned i=0; i < implicitUses.size(); ++i)
addSSAEdge(node, implicitUses[i], target);
}
void
SchedGraph::addNonSSAEdgesForValue(const Instruction* instr,
const TargetMachine& target)
{
assert(instr->isInstruction());
if (instr->isPHINode())
return;
MachineCodeForVMInstr& mvec = instr->getMachineInstrVec();
const MachineInstrInfo& mii = target.getInstrInfo();
RefVec refVec;
for (unsigned i=0, N=mvec.size(); i < N; i++)
for (int o=0, N = mii.getNumOperands(mvec[i]->getOpCode()); o < N; o++)
{
const MachineOperand& op = mvec[i]->getOperand(o);
if ((op.getOperandType() == MachineOperand::MO_VirtualRegister ||
op.getOperandType() == MachineOperand::MO_CCRegister)
&& op.getVRegValue() == (Value*) instr)
{
// this operand is a definition or use of value `instr'
SchedGraphNode* node = this->getGraphNodeForInstr(mvec[i]);
assert(node && "No node for machine instruction in this BB?");
refVec.push_back(make_pair(node, o));
}
}
// refVec is ordered by control flow order of the machine instructions
for (unsigned i=0; i < refVec.size(); ++i)
{
SchedGraphNode* node = refVec[i].first;
unsigned int opNum = refVec[i].second;
bool isDef = node->getMachineInstr()->operandIsDefined(opNum);
if (isDef)
// add output and/or anti deps to this definition
for (unsigned p=0; p < i; ++p)
{
SchedGraphNode* prevNode = refVec[p].first;
if (prevNode != node)
{
bool prevIsDef = prevNode->getMachineInstr()->
operandIsDefined(refVec[p].second);
new SchedGraphEdge(prevNode, node, SchedGraphEdge::DefUseDep,
(prevIsDef)? SchedGraphEdge::OutputDep
: SchedGraphEdge::AntiDep);
}
}
}
}
void
SchedGraph::buildNodesforVMInstr(const TargetMachine& target,
const Instruction* instr)
{
const MachineInstrInfo& mii = target.getInstrInfo();
const MachineCodeForVMInstr& mvec = instr->getMachineInstrVec();
for (unsigned i=0; i < mvec.size(); i++)
if (! mii.isDummyPhiInstr(mvec[i]->getOpCode()))
{
SchedGraphNode* node = new SchedGraphNode(getNumNodes(),
instr, mvec[i], target);
this->noteGraphNodeForInstr(mvec[i], node);
}
}
@ -649,37 +728,46 @@ SchedGraph::buildGraph(const TargetMachine& target)
// single basic block, hence the assertion. Each reference is identified
// by the pair: <node, operand-number>.
//
NodeToRegRefMap regToRefVecMap;
RegToRefVecMap regToRefVecMap;
// Make a dummy root node. We'll add edges to the real roots later.
graphRoot = new SchedGraphNode(0, NULL, NULL, target);
graphLeaf = new SchedGraphNode(1, NULL, NULL, target);
//----------------------------------------------------------------
// First add nodes for all the machine instructions in the basic block.
// This greatly simplifies identifing which edges to add.
// First add nodes for all the machine instructions in the basic block
// because this greatly simplifies identifying which edges to add.
// Do this one VM instruction at a time since the SchedGraphNode needs that.
// Also, remember the load/store instructions to add memory deps later.
//----------------------------------------------------------------
for (BasicBlock::const_iterator II = bb->begin(); II != bb->end(); ++II)
{
const Instruction *instr = *II;
const MachineCodeForVMInstr& mvec = instr->getMachineInstrVec();
for (unsigned i=0, N=mvec.size(); i < N; i++)
if (! mii.isDummyPhiInstr(mvec[i]->getOpCode()))
{
SchedGraphNode* node = new SchedGraphNode(getNumNodes(),
instr, mvec[i], target);
this->noteGraphNodeForInstr(mvec[i], node);
}
// Build graph nodes for this VM instruction
buildNodesforVMInstr(target, instr);
// Remember the load/store instructions to add memory deps later.
if (instr->getOpcode() == Instruction::Load ||
instr->getOpcode() == Instruction::Store)
memVec.push_back(instr);
}
//----------------------------------------------------------------
// Now add the edges.
// Now add edges for the following (all are incoming edges except (4)):
// (1) operands of the machine instruction, including hidden operands
// (2) machine register dependences
// (3) memory load/store dependences
// (3) other resource dependences for the machine instruction, if any
// (4) output dependences when multiple machine instructions define the
// same value; all must have been generated from a single VM instrn
// (5) control dependences to branch instructions generated for the
// terminator instruction of the BB. Because of delay slots and
// 2-way conditional branches, multiple CD edges are needed
// (see addCDEdges for details).
// Also, note any uses or defs of machine registers.
//
//----------------------------------------------------------------
// First, add edges to the terminator instruction of the basic block.
@ -689,10 +777,21 @@ SchedGraph::buildGraph(const TargetMachine& target)
this->addMemEdges(memVec, target);
// Then add other edges for all instructions in the block.
for (SchedGraph::iterator GI = this->begin(); GI != this->end(); ++GI)
// Do this in machine code order and find all references to machine regs.
MachineCodeForBasicBlock& mvec = bb->getMachineInstrVec();
for (unsigned i=0, N=mvec.size(); i < N; i++)
addEdgesForInstruction(*mvec[i], regToRefVecMap, target);
// Since the code is no longer in SSA form, add output dep. edges
// between machine instructions that define the same Value, and anti-dep.
// edges from those to other machine instructions for the same VM instr.
// We assume that all machine instructions that define a value are
// generated from the VM instruction corresponding to that value.
//
for (BasicBlock::const_iterator II = bb->begin(); II != bb->end(); ++II)
{
SchedGraphNode* node = (*GI).second;
addEdgesForInstruction(node, regToRefVecMap, target);
const Instruction *instr = *II;
this->addNonSSAEdgesForValue(instr, target);
}
// Then add edges for dependences on machine registers