Remove trailing spaces.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156257 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Jakub Staszak 2012-05-06 13:52:31 +00:00
parent dc736b0a3e
commit 58c1da84f2

View File

@ -92,25 +92,25 @@ void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
/// type for example, or from a smaller to a larger illegal type.
bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
assert(From->isIntegerTy() && To->isIntegerTy());
// If we don't have TD, we don't know if the source/dest are legal.
if (!TD) return false;
unsigned FromWidth = From->getPrimitiveSizeInBits();
unsigned ToWidth = To->getPrimitiveSizeInBits();
bool FromLegal = TD->isLegalInteger(FromWidth);
bool ToLegal = TD->isLegalInteger(ToWidth);
// If this is a legal integer from type, and the result would be an illegal
// type, don't do the transformation.
if (FromLegal && !ToLegal)
return false;
// Otherwise, if both are illegal, do not increase the size of the result. We
// do allow things like i160 -> i64, but not i64 -> i160.
if (!FromLegal && !ToLegal && ToWidth > FromWidth)
return false;
return true;
}
@ -127,7 +127,7 @@ static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
// We reason about Add and Sub Only.
Instruction::BinaryOps Opcode = I.getOpcode();
if (Opcode != Instruction::Add &&
if (Opcode != Instruction::Add &&
Opcode != Instruction::Sub) {
return false;
}
@ -211,7 +211,7 @@ bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
} else {
I.clearSubclassOptionalData();
}
Changed = true;
++NumReassoc;
continue;
@ -540,7 +540,7 @@ static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
Value *Op0 = SO, *Op1 = ConstOperand;
if (!ConstIsRHS)
std::swap(Op0, Op1);
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
SO->getName()+".op");
@ -579,7 +579,7 @@ Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
return 0;
}
Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
@ -599,7 +599,7 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
unsigned NumPHIValues = PN->getNumIncomingValues();
if (NumPHIValues == 0)
return 0;
// We normally only transform phis with a single use. However, if a PHI has
// multiple uses and they are all the same operation, we can fold *all* of the
// uses into the PHI.
@ -613,7 +613,7 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
}
// Otherwise, we can replace *all* users with the new PHI we form.
}
// Check to see if all of the operands of the PHI are simple constants
// (constantint/constantfp/undef). If there is one non-constant value,
// remember the BB it is in. If there is more than one or if *it* is a PHI,
@ -627,7 +627,7 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
if (isa<PHINode>(InVal)) return 0; // Itself a phi.
if (NonConstBB) return 0; // More than one non-const value.
NonConstBB = PN->getIncomingBlock(i);
// If the InVal is an invoke at the end of the pred block, then we can't
@ -635,14 +635,14 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
if (II->getParent() == NonConstBB)
return 0;
// If the incoming non-constant value is in I's block, we will remove one
// instruction, but insert another equivalent one, leading to infinite
// instcombine.
if (NonConstBB == I.getParent())
return 0;
}
// If there is exactly one non-constant value, we can insert a copy of the
// operation in that block. However, if this is a critical edge, we would be
// inserting the computation one some other paths (e.g. inside a loop). Only
@ -656,12 +656,12 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
InsertNewInstBefore(NewPN, *PN);
NewPN->takeName(PN);
// If we are going to have to insert a new computation, do so right before the
// predecessors terminator.
if (NonConstBB)
Builder->SetInsertPoint(NonConstBB->getTerminator());
// Next, add all of the operands to the PHI.
if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
// We only currently try to fold the condition of a select when it is a phi,
@ -706,20 +706,20 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
PN->getIncomingValue(i), C, "phitmp");
NewPN->addIncoming(InV, PN->getIncomingBlock(i));
}
} else {
} else {
CastInst *CI = cast<CastInst>(&I);
Type *RetTy = CI->getType();
for (unsigned i = 0; i != NumPHIValues; ++i) {
Value *InV;
if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
else
else
InV = Builder->CreateCast(CI->getOpcode(),
PN->getIncomingValue(i), I.getType(), "phitmp");
NewPN->addIncoming(InV, PN->getIncomingBlock(i));
}
}
for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
UI != E; ) {
Instruction *User = cast<Instruction>(*UI++);
@ -734,11 +734,11 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
/// or not there is a sequence of GEP indices into the type that will land us at
/// the specified offset. If so, fill them into NewIndices and return the
/// resultant element type, otherwise return null.
Type *InstCombiner::FindElementAtOffset(Type *Ty, int64_t Offset,
Type *InstCombiner::FindElementAtOffset(Type *Ty, int64_t Offset,
SmallVectorImpl<Value*> &NewIndices) {
if (!TD) return 0;
if (!Ty->isSized()) return 0;
// Start with the index over the outer type. Note that the type size
// might be zero (even if the offset isn't zero) if the indexed type
// is something like [0 x {int, int}]
@ -747,7 +747,7 @@ Type *InstCombiner::FindElementAtOffset(Type *Ty, int64_t Offset,
if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
FirstIdx = Offset/TySize;
Offset -= FirstIdx*TySize;
// Handle hosts where % returns negative instead of values [0..TySize).
if (Offset < 0) {
--FirstIdx;
@ -756,24 +756,24 @@ Type *InstCombiner::FindElementAtOffset(Type *Ty, int64_t Offset,
}
assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
}
NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
// Index into the types. If we fail, set OrigBase to null.
while (Offset) {
// Indexing into tail padding between struct/array elements.
if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty))
return 0;
if (StructType *STy = dyn_cast<StructType>(Ty)) {
const StructLayout *SL = TD->getStructLayout(STy);
assert(Offset < (int64_t)SL->getSizeInBytes() &&
"Offset must stay within the indexed type");
unsigned Elt = SL->getElementContainingOffset(Offset);
NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
Elt));
Offset -= SL->getElementOffset(Elt);
Ty = STy->getElementType(Elt);
} else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
@ -787,7 +787,7 @@ Type *InstCombiner::FindElementAtOffset(Type *Ty, int64_t Offset,
return 0;
}
}
return Ty;
}
@ -948,7 +948,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
Res->setIsInBounds(GEP.isInBounds());
return Res;
}
if (ArrayType *XATy =
dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
// GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
@ -981,16 +981,16 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// V and GEP are both pointer types --> BitCast
return new BitCastInst(NewGEP, GEP.getType());
}
// Transform things like:
// getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
// (where tmp = 8*tmp2) into:
// getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
if (TD && SrcElTy->isArrayTy() && ResElTy->isIntegerTy(8)) {
uint64_t ArrayEltSize =
TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType());
// Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
// allow either a mul, shift, or constant here.
Value *NewIdx = 0;
@ -1015,7 +1015,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
NewIdx = Inst->getOperand(0);
}
}
// If the index will be to exactly the right offset with the scale taken
// out, perform the transformation. Note, we don't know whether Scale is
// signed or not. We'll use unsigned version of division/modulo
@ -1078,7 +1078,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
}
return new BitCastInst(BCI->getOperand(0), GEP.getType());
}
// Otherwise, if the offset is non-zero, we need to find out if there is a
// field at Offset in 'A's type. If so, we can pull the cast through the
// GEP.
@ -1089,15 +1089,15 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
Value *NGEP = GEP.isInBounds() ?
Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices) :
Builder->CreateGEP(BCI->getOperand(0), NewIndices);
if (NGEP->getType() == GEP.getType())
return ReplaceInstUsesWith(GEP, NGEP);
NGEP->takeName(&GEP);
return new BitCastInst(NGEP, GEP.getType());
}
}
}
}
return 0;
}
@ -1181,7 +1181,7 @@ Instruction *InstCombiner::visitFree(CallInst &FI) {
UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
return EraseInstFromFunction(FI);
}
// If we have 'free null' delete the instruction. This can happen in stl code
// when lots of inlining happens.
if (isa<ConstantPointerNull>(Op))
@ -1207,14 +1207,14 @@ Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
// Cannonicalize fcmp_one -> fcmp_oeq
FCmpInst::Predicate FPred; Value *Y;
if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
TrueDest, FalseDest)) &&
BI.getCondition()->hasOneUse())
if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
FPred == FCmpInst::FCMP_OGE) {
FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
// Swap Destinations and condition.
BI.swapSuccessors();
Worklist.Add(Cond);
@ -1280,7 +1280,7 @@ Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
}
return 0; // Can't handle other constants
}
if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
// We're extracting from an insertvalue instruction, compare the indices
const unsigned *exti, *exte, *insi, *inse;
@ -1329,7 +1329,7 @@ Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
// %E = extractvalue { i32, { i32 } } %I, 1, 0
// with
// %E extractvalue { i32 } { i32 42 }, 0
return ExtractValueInst::Create(IV->getInsertedValueOperand(),
return ExtractValueInst::Create(IV->getInsertedValueOperand(),
makeArrayRef(exti, exte));
}
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
@ -1349,7 +1349,7 @@ Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
EraseInstFromFunction(*II);
return BinaryOperator::CreateAdd(LHS, RHS);
}
// If the normal result of the add is dead, and the RHS is a constant,
// we can transform this into a range comparison.
// overflow = uadd a, -4 --> overflow = icmp ugt a, 3
@ -1798,7 +1798,7 @@ static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
/// many instructions are dead or constant). Additionally, if we find a branch
/// whose condition is a known constant, we only visit the reachable successors.
///
static bool AddReachableCodeToWorklist(BasicBlock *BB,
static bool AddReachableCodeToWorklist(BasicBlock *BB,
SmallPtrSet<BasicBlock*, 64> &Visited,
InstCombiner &IC,
const TargetData *TD,
@ -1812,13 +1812,13 @@ static bool AddReachableCodeToWorklist(BasicBlock *BB,
do {
BB = Worklist.pop_back_val();
// We have now visited this block! If we've already been here, ignore it.
if (!Visited.insert(BB)) continue;
for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
Instruction *Inst = BBI++;
// DCE instruction if trivially dead.
if (isInstructionTriviallyDead(Inst)) {
++NumDeadInst;
@ -1826,7 +1826,7 @@ static bool AddReachableCodeToWorklist(BasicBlock *BB,
Inst->eraseFromParent();
continue;
}
// ConstantProp instruction if trivially constant.
if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
if (Constant *C = ConstantFoldInstruction(Inst, TD, TLI)) {
@ -1837,7 +1837,7 @@ static bool AddReachableCodeToWorklist(BasicBlock *BB,
Inst->eraseFromParent();
continue;
}
if (TD) {
// See if we can constant fold its operands.
for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
@ -1881,17 +1881,17 @@ static bool AddReachableCodeToWorklist(BasicBlock *BB,
Worklist.push_back(ReachableBB);
continue;
}
// Otherwise it is the default destination.
Worklist.push_back(SI->getDefaultDest());
continue;
}
}
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
Worklist.push_back(TI->getSuccessor(i));
} while (!Worklist.empty());
// Once we've found all of the instructions to add to instcombine's worklist,
// add them in reverse order. This way instcombine will visit from the top
// of the function down. This jives well with the way that it adds all uses
@ -1899,13 +1899,13 @@ static bool AddReachableCodeToWorklist(BasicBlock *BB,
// some N^2 behavior in pathological cases.
IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
InstrsForInstCombineWorklist.size());
return MadeIRChange;
}
bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
MadeIRChange = false;
DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
<< F.getName() << "\n");
@ -1976,13 +1976,13 @@ bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
BasicBlock *BB = I->getParent();
Instruction *UserInst = cast<Instruction>(I->use_back());
BasicBlock *UserParent;
// Get the block the use occurs in.
if (PHINode *PN = dyn_cast<PHINode>(UserInst))
UserParent = PN->getIncomingBlock(I->use_begin().getUse());
else
UserParent = UserInst->getParent();
if (UserParent != BB) {
bool UserIsSuccessor = false;
// See if the user is one of our successors.
@ -2004,7 +2004,7 @@ bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
// Now that we have an instruction, try combining it to simplify it.
Builder->SetInsertPoint(I->getParent(), I);
Builder->SetCurrentDebugLocation(I->getDebugLoc());
#ifndef NDEBUG
std::string OrigI;
#endif
@ -2069,14 +2069,14 @@ bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
bool InstCombiner::runOnFunction(Function &F) {
TD = getAnalysisIfAvailable<TargetData>();
TLI = &getAnalysis<TargetLibraryInfo>();
/// Builder - This is an IRBuilder that automatically inserts new
/// instructions into the worklist when they are created.
IRBuilder<true, TargetFolder, InstCombineIRInserter>
IRBuilder<true, TargetFolder, InstCombineIRInserter>
TheBuilder(F.getContext(), TargetFolder(TD),
InstCombineIRInserter(Worklist));
Builder = &TheBuilder;
bool EverMadeChange = false;
// Lower dbg.declare intrinsics otherwise their value may be clobbered
@ -2087,7 +2087,7 @@ bool InstCombiner::runOnFunction(Function &F) {
unsigned Iteration = 0;
while (DoOneIteration(F, Iteration++))
EverMadeChange = true;
Builder = 0;
return EverMadeChange;
}