[InstCombine] Add test cases for (X & (Y | ~X)) -> (X & Y) where the not is an inverted compare. NFC

Do the same for (X | (Y & ~X)) -> (X | Y)

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@308104 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Craig Topper 2017-07-15 17:09:23 +00:00
parent c301a9eeef
commit 59f9abe0f8
2 changed files with 319 additions and 0 deletions

View File

@ -676,3 +676,163 @@ define i32 @test47(i32 %x, i32 %y) nounwind {
%a = and i32 %y, %o
ret i32 %a
}
; In the next 4 tests, vary the types and predicates for extra coverage.
; (X & (Y | ~X)) -> (X & Y), where 'not' is an inverted cmp
define i1 @and_orn_cmp_1(i32 %a, i32 %b, i32 %c) {
; CHECK-LABEL: @and_orn_cmp_1(
; CHECK-NEXT: [[X:%.*]] = icmp sgt i32 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[X_INV:%.*]] = icmp sle i32 [[A]], [[B]]
; CHECK-NEXT: [[Y:%.*]] = icmp ugt i32 [[C:%.*]], 42
; CHECK-NEXT: [[OR:%.*]] = or i1 [[Y]], [[X_INV]]
; CHECK-NEXT: [[AND:%.*]] = and i1 [[X]], [[OR]]
; CHECK-NEXT: ret i1 [[AND]]
;
%x = icmp sgt i32 %a, %b
%x_inv = icmp sle i32 %a, %b
%y = icmp ugt i32 %c, 42 ; thwart complexity-based ordering
%or = or i1 %y, %x_inv
%and = and i1 %x, %or
ret i1 %and
}
; Commute the 'or':
; ((Y | ~X) & X) -> (X & Y), where 'not' is an inverted cmp
define <2 x i1> @and_orn_cmp_2(<2 x i32> %a, <2 x i32> %b, <2 x i32> %c) {
; CHECK-LABEL: @and_orn_cmp_2(
; CHECK-NEXT: [[X:%.*]] = icmp sge <2 x i32> [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[X_INV:%.*]] = icmp slt <2 x i32> [[A]], [[B]]
; CHECK-NEXT: [[Y:%.*]] = icmp ugt <2 x i32> [[C:%.*]], <i32 42, i32 47>
; CHECK-NEXT: [[OR:%.*]] = or <2 x i1> [[Y]], [[X_INV]]
; CHECK-NEXT: [[AND:%.*]] = and <2 x i1> [[OR]], [[X]]
; CHECK-NEXT: ret <2 x i1> [[AND]]
;
%x = icmp sge <2 x i32> %a, %b
%x_inv = icmp slt <2 x i32> %a, %b
%y = icmp ugt <2 x i32> %c, <i32 42, i32 47> ; thwart complexity-based ordering
%or = or <2 x i1> %y, %x_inv
%and = and <2 x i1> %or, %x
ret <2 x i1> %and
}
; Commute the 'and':
; (X & (~X | Y)) -> (X & Y), where 'not' is an inverted cmp
define i1 @and_orn_cmp_3(i72 %a, i72 %b, i72 %c) {
; CHECK-LABEL: @and_orn_cmp_3(
; CHECK-NEXT: [[X:%.*]] = icmp ugt i72 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[X_INV:%.*]] = icmp ule i72 [[A]], [[B]]
; CHECK-NEXT: [[Y:%.*]] = icmp ugt i72 [[C:%.*]], 42
; CHECK-NEXT: [[OR:%.*]] = or i1 [[X_INV]], [[Y]]
; CHECK-NEXT: [[AND:%.*]] = and i1 [[X]], [[OR]]
; CHECK-NEXT: ret i1 [[AND]]
;
%x = icmp ugt i72 %a, %b
%x_inv = icmp ule i72 %a, %b
%y = icmp ugt i72 %c, 42 ; thwart complexity-based ordering
%or = or i1 %x_inv, %y
%and = and i1 %x, %or
ret i1 %and
}
; Commute the 'or':
; ((~X | Y) & X) -> (X & Y), where 'not' is an inverted cmp
define <3 x i1> @or_andn_cmp_4(<3 x i32> %a, <3 x i32> %b, <3 x i32> %c) {
; CHECK-LABEL: @or_andn_cmp_4(
; CHECK-NEXT: [[X:%.*]] = icmp eq <3 x i32> [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[X_INV:%.*]] = icmp ne <3 x i32> [[A]], [[B]]
; CHECK-NEXT: [[Y:%.*]] = icmp ugt <3 x i32> [[C:%.*]], <i32 42, i32 43, i32 -1>
; CHECK-NEXT: [[OR:%.*]] = or <3 x i1> [[X_INV]], [[Y]]
; CHECK-NEXT: [[AND:%.*]] = and <3 x i1> [[OR]], [[X]]
; CHECK-NEXT: ret <3 x i1> [[AND]]
;
%x = icmp eq <3 x i32> %a, %b
%x_inv = icmp ne <3 x i32> %a, %b
%y = icmp ugt <3 x i32> %c, <i32 42, i32 43, i32 -1> ; thwart complexity-based ordering
%or = or <3 x i1> %x_inv, %y
%and = and <3 x i1> %or, %x
ret <3 x i1> %and
}
; In the next 4 tests, vary the types and predicates for extra coverage.
; (~X & (Y | X)) -> (X & Y), where 'not' is an inverted cmp
define i1 @andn_or_cmp_1(i37 %a, i37 %b, i37 %c) {
; CHECK-LABEL: @andn_or_cmp_1(
; CHECK-NEXT: [[X:%.*]] = icmp sgt i37 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[X_INV:%.*]] = icmp sle i37 [[A]], [[B]]
; CHECK-NEXT: [[Y:%.*]] = icmp ugt i37 [[C:%.*]], 42
; CHECK-NEXT: [[OR:%.*]] = or i1 [[Y]], [[X]]
; CHECK-NEXT: [[AND:%.*]] = and i1 [[X_INV]], [[OR]]
; CHECK-NEXT: ret i1 [[AND]]
;
%x = icmp sgt i37 %a, %b
%x_inv = icmp sle i37 %a, %b
%y = icmp ugt i37 %c, 42 ; thwart complexity-based ordering
%or = or i1 %y, %x
%and = and i1 %x_inv, %or
ret i1 %and
}
; Commute the 'or':
; ((Y | X) & ~X) -> (X & Y), where 'not' is an inverted cmp
define i1 @andn_or_cmp_2(i16 %a, i16 %b, i16 %c) {
; CHECK-LABEL: @andn_or_cmp_2(
; CHECK-NEXT: [[X:%.*]] = icmp sge i16 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[X_INV:%.*]] = icmp slt i16 [[A]], [[B]]
; CHECK-NEXT: [[Y:%.*]] = icmp ugt i16 [[C:%.*]], 42
; CHECK-NEXT: [[OR:%.*]] = or i1 [[Y]], [[X]]
; CHECK-NEXT: [[AND:%.*]] = and i1 [[OR]], [[X_INV]]
; CHECK-NEXT: ret i1 [[AND]]
;
%x = icmp sge i16 %a, %b
%x_inv = icmp slt i16 %a, %b
%y = icmp ugt i16 %c, 42 ; thwart complexity-based ordering
%or = or i1 %y, %x
%and = and i1 %or, %x_inv
ret i1 %and
}
; Commute the 'and':
; (~X & (X | Y)) -> (X & Y), where 'not' is an inverted cmp
define <4 x i1> @andn_or_cmp_3(<4 x i32> %a, <4 x i32> %b, <4 x i32> %c) {
; CHECK-LABEL: @andn_or_cmp_3(
; CHECK-NEXT: [[X:%.*]] = icmp ugt <4 x i32> [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[X_INV:%.*]] = icmp ule <4 x i32> [[A]], [[B]]
; CHECK-NEXT: [[Y:%.*]] = icmp ugt <4 x i32> [[C:%.*]], <i32 42, i32 0, i32 1, i32 -1>
; CHECK-NEXT: [[OR:%.*]] = or <4 x i1> [[X]], [[Y]]
; CHECK-NEXT: [[AND:%.*]] = and <4 x i1> [[X_INV]], [[OR]]
; CHECK-NEXT: ret <4 x i1> [[AND]]
;
%x = icmp ugt <4 x i32> %a, %b
%x_inv = icmp ule <4 x i32> %a, %b
%y = icmp ugt <4 x i32> %c, <i32 42, i32 0, i32 1, i32 -1> ; thwart complexity-based ordering
%or = or <4 x i1> %x, %y
%and = and <4 x i1> %x_inv, %or
ret <4 x i1> %and
}
; Commute the 'or':
; ((X | Y) & ~X) -> (X & Y), where 'not' is an inverted cmp
define i1 @andn_or_cmp_4(i32 %a, i32 %b, i32 %c) {
; CHECK-LABEL: @andn_or_cmp_4(
; CHECK-NEXT: [[X:%.*]] = icmp eq i32 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[X_INV:%.*]] = icmp ne i32 [[A]], [[B]]
; CHECK-NEXT: [[Y:%.*]] = icmp ugt i32 [[C:%.*]], 42
; CHECK-NEXT: [[OR:%.*]] = or i1 [[X]], [[Y]]
; CHECK-NEXT: [[AND:%.*]] = and i1 [[OR]], [[X_INV]]
; CHECK-NEXT: ret i1 [[AND]]
;
%x = icmp eq i32 %a, %b
%x_inv = icmp ne i32 %a, %b
%y = icmp ugt i32 %c, 42 ; thwart complexity-based ordering
%or = or i1 %x, %y
%and = and i1 %or, %x_inv
ret i1 %and
}

View File

@ -654,3 +654,162 @@ final:
ret <2 x i32> %value
}
; In the next 4 tests, vary the types and predicates for extra coverage.
; (X | (Y & ~X)) -> (X | Y), where 'not' is an inverted cmp
define i1 @or_andn_cmp_1(i32 %a, i32 %b, i32 %c) {
; CHECK-LABEL: @or_andn_cmp_1(
; CHECK-NEXT: [[X:%.*]] = icmp sgt i32 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[X_INV:%.*]] = icmp sle i32 [[A]], [[B]]
; CHECK-NEXT: [[Y:%.*]] = icmp ugt i32 [[C:%.*]], 42
; CHECK-NEXT: [[AND:%.*]] = and i1 [[Y]], [[X_INV]]
; CHECK-NEXT: [[OR:%.*]] = or i1 [[X]], [[AND]]
; CHECK-NEXT: ret i1 [[OR]]
;
%x = icmp sgt i32 %a, %b
%x_inv = icmp sle i32 %a, %b
%y = icmp ugt i32 %c, 42 ; thwart complexity-based ordering
%and = and i1 %y, %x_inv
%or = or i1 %x, %and
ret i1 %or
}
; Commute the 'or':
; ((Y & ~X) | X) -> (X | Y), where 'not' is an inverted cmp
define <2 x i1> @or_andn_cmp_2(<2 x i32> %a, <2 x i32> %b, <2 x i32> %c) {
; CHECK-LABEL: @or_andn_cmp_2(
; CHECK-NEXT: [[X:%.*]] = icmp sge <2 x i32> [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[X_INV:%.*]] = icmp slt <2 x i32> [[A]], [[B]]
; CHECK-NEXT: [[Y:%.*]] = icmp ugt <2 x i32> [[C:%.*]], <i32 42, i32 47>
; CHECK-NEXT: [[AND:%.*]] = and <2 x i1> [[Y]], [[X_INV]]
; CHECK-NEXT: [[OR:%.*]] = or <2 x i1> [[AND]], [[X]]
; CHECK-NEXT: ret <2 x i1> [[OR]]
;
%x = icmp sge <2 x i32> %a, %b
%x_inv = icmp slt <2 x i32> %a, %b
%y = icmp ugt <2 x i32> %c, <i32 42, i32 47> ; thwart complexity-based ordering
%and = and <2 x i1> %y, %x_inv
%or = or <2 x i1> %and, %x
ret <2 x i1> %or
}
; Commute the 'and':
; (X | (~X & Y)) -> (X | Y), where 'not' is an inverted cmp
define i1 @or_andn_cmp_3(i72 %a, i72 %b, i72 %c) {
; CHECK-LABEL: @or_andn_cmp_3(
; CHECK-NEXT: [[X:%.*]] = icmp ugt i72 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[X_INV:%.*]] = icmp ule i72 [[A]], [[B]]
; CHECK-NEXT: [[Y:%.*]] = icmp ugt i72 [[C:%.*]], 42
; CHECK-NEXT: [[AND:%.*]] = and i1 [[X_INV]], [[Y]]
; CHECK-NEXT: [[OR:%.*]] = or i1 [[X]], [[AND]]
; CHECK-NEXT: ret i1 [[OR]]
;
%x = icmp ugt i72 %a, %b
%x_inv = icmp ule i72 %a, %b
%y = icmp ugt i72 %c, 42 ; thwart complexity-based ordering
%and = and i1 %x_inv, %y
%or = or i1 %x, %and
ret i1 %or
}
; Commute the 'or':
; ((~X & Y) | X) -> (X | Y), where 'not' is an inverted cmp
define <3 x i1> @or_andn_cmp_4(<3 x i32> %a, <3 x i32> %b, <3 x i32> %c) {
; CHECK-LABEL: @or_andn_cmp_4(
; CHECK-NEXT: [[X:%.*]] = icmp eq <3 x i32> [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[X_INV:%.*]] = icmp ne <3 x i32> [[A]], [[B]]
; CHECK-NEXT: [[Y:%.*]] = icmp ugt <3 x i32> [[C:%.*]], <i32 42, i32 43, i32 -1>
; CHECK-NEXT: [[AND:%.*]] = and <3 x i1> [[X_INV]], [[Y]]
; CHECK-NEXT: [[OR:%.*]] = or <3 x i1> [[AND]], [[X]]
; CHECK-NEXT: ret <3 x i1> [[OR]]
;
%x = icmp eq <3 x i32> %a, %b
%x_inv = icmp ne <3 x i32> %a, %b
%y = icmp ugt <3 x i32> %c, <i32 42, i32 43, i32 -1> ; thwart complexity-based ordering
%and = and <3 x i1> %x_inv, %y
%or = or <3 x i1> %and, %x
ret <3 x i1> %or
}
; In the next 4 tests, vary the types and predicates for extra coverage.
; (~X | (Y & X)) -> (X | Y), where 'not' is an inverted cmp
define i1 @orn_and_cmp_1(i37 %a, i37 %b, i37 %c) {
; CHECK-LABEL: @orn_and_cmp_1(
; CHECK-NEXT: [[X:%.*]] = icmp sgt i37 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[X_INV:%.*]] = icmp sle i37 [[A]], [[B]]
; CHECK-NEXT: [[Y:%.*]] = icmp ugt i37 [[C:%.*]], 42
; CHECK-NEXT: [[AND:%.*]] = and i1 [[Y]], [[X]]
; CHECK-NEXT: [[OR:%.*]] = or i1 [[X_INV]], [[AND]]
; CHECK-NEXT: ret i1 [[OR]]
;
%x = icmp sgt i37 %a, %b
%x_inv = icmp sle i37 %a, %b
%y = icmp ugt i37 %c, 42 ; thwart complexity-based ordering
%and = and i1 %y, %x
%or = or i1 %x_inv, %and
ret i1 %or
}
; Commute the 'or':
; ((Y & X) | ~X) -> (X | Y), where 'not' is an inverted cmp
define i1 @orn_and_cmp_2(i16 %a, i16 %b, i16 %c) {
; CHECK-LABEL: @orn_and_cmp_2(
; CHECK-NEXT: [[X:%.*]] = icmp sge i16 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[X_INV:%.*]] = icmp slt i16 [[A]], [[B]]
; CHECK-NEXT: [[Y:%.*]] = icmp ugt i16 [[C:%.*]], 42
; CHECK-NEXT: [[AND:%.*]] = and i1 [[Y]], [[X]]
; CHECK-NEXT: [[OR:%.*]] = or i1 [[AND]], [[X_INV]]
; CHECK-NEXT: ret i1 [[OR]]
;
%x = icmp sge i16 %a, %b
%x_inv = icmp slt i16 %a, %b
%y = icmp ugt i16 %c, 42 ; thwart complexity-based ordering
%and = and i1 %y, %x
%or = or i1 %and, %x_inv
ret i1 %or
}
; Commute the 'and':
; (~X | (X & Y)) -> (X | Y), where 'not' is an inverted cmp
define <4 x i1> @orn_and_cmp_3(<4 x i32> %a, <4 x i32> %b, <4 x i32> %c) {
; CHECK-LABEL: @orn_and_cmp_3(
; CHECK-NEXT: [[X:%.*]] = icmp ugt <4 x i32> [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[X_INV:%.*]] = icmp ule <4 x i32> [[A]], [[B]]
; CHECK-NEXT: [[Y:%.*]] = icmp ugt <4 x i32> [[C:%.*]], <i32 42, i32 0, i32 1, i32 -1>
; CHECK-NEXT: [[AND:%.*]] = and <4 x i1> [[X]], [[Y]]
; CHECK-NEXT: [[OR:%.*]] = or <4 x i1> [[X_INV]], [[AND]]
; CHECK-NEXT: ret <4 x i1> [[OR]]
;
%x = icmp ugt <4 x i32> %a, %b
%x_inv = icmp ule <4 x i32> %a, %b
%y = icmp ugt <4 x i32> %c, <i32 42, i32 0, i32 1, i32 -1> ; thwart complexity-based ordering
%and = and <4 x i1> %x, %y
%or = or <4 x i1> %x_inv, %and
ret <4 x i1> %or
}
; Commute the 'or':
; ((X & Y) | ~X) -> (X | Y), where 'not' is an inverted cmp
define i1 @orn_and_cmp_4(i32 %a, i32 %b, i32 %c) {
; CHECK-LABEL: @orn_and_cmp_4(
; CHECK-NEXT: [[X:%.*]] = icmp eq i32 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[X_INV:%.*]] = icmp ne i32 [[A]], [[B]]
; CHECK-NEXT: [[Y:%.*]] = icmp ugt i32 [[C:%.*]], 42
; CHECK-NEXT: [[AND:%.*]] = and i1 [[X]], [[Y]]
; CHECK-NEXT: [[OR:%.*]] = or i1 [[AND]], [[X_INV]]
; CHECK-NEXT: ret i1 [[OR]]
;
%x = icmp eq i32 %a, %b
%x_inv = icmp ne i32 %a, %b
%y = icmp ugt i32 %c, 42 ; thwart complexity-based ordering
%and = and i1 %x, %y
%or = or i1 %and, %x_inv
ret i1 %or
}