additions and bug fixes

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2794 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Anand Shukla 2002-06-25 21:14:58 +00:00
parent 881ed6bad4
commit 5cafcfbab4
5 changed files with 1392 additions and 442 deletions

View File

@ -7,7 +7,7 @@
//top block of cfg
//===----------------------------------------------------------------------===//
#include "Graph.h"
#include "llvm/Transforms/Instrumentation/Graph.h"
#include "llvm/BasicBlock.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
@ -16,15 +16,89 @@
#include "llvm/iOther.h"
#include "llvm/iOperators.h"
#include "llvm/iPHINode.h"
#include "llvm/Module.h"
#include "llvm/SymbolTable.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Constants.h"//llvm/ConstantVals.h"
#include "llvm/BasicBlock.h"
#include "llvm/Function.h"
#include <string.h>
#include <stdio.h>
#include <iostream>
#define INSERT_LOAD_COUNT
#define INSERT_STORE
using std::vector;
void getTriggerCode(Module *M, BasicBlock *BB, int MethNo, Value *pathNo,
Value *cnt){
// return;
//cerr<<"In trigger code"<<endl;
static int i=-1;
i++;
char gstr[100];
sprintf(gstr,"globalVar%d",i);
std::string globalVarName=gstr;
SymbolTable *ST = M->getSymbolTable();
vector<const Type*> args;
args.push_back(PointerType::get(Type::SByteTy));
args.push_back(Type::IntTy);
args.push_back(Type::IntTy);
args.push_back(Type::IntTy);
const FunctionType *MTy =
FunctionType::get(Type::VoidTy, args, false);
// Function *triggerMeth = M->getOrInsertFunction("trigger", MTy);
Function *trigMeth = M->getOrInsertFunction("trigger", MTy);
assert(trigMeth && "trigger method could not be inserted!");
//if (Value *triggerMeth = ST->lookup(PointerType::get(MTy), "trigger")) {
//Function *trigMeth = cast<Function>(triggerMeth);
vector<Value *> trargs;
//pred_iterator piter=BB->pred_begin();
std::string predName=BB->getName();
Constant *bbName=ConstantArray::get(predName);//BB->getName());
GlobalVariable *gbl=new GlobalVariable(ArrayType::get(Type::SByteTy,
predName.size()+1),
true, true, bbName, gstr);
M->getGlobalList().push_back(gbl);
vector<Value *> elargs;
elargs.push_back(ConstantUInt::get(Type::UIntTy, 0));
elargs.push_back(ConstantUInt::get(Type::UIntTy, 0));
Instruction *getElmntInst=new GetElementPtrInst(gbl,elargs,"elmntInst");
//trargs.push_back(ConstantArray::get(BB->getName()));
trargs.push_back(getElmntInst);
trargs.push_back(ConstantSInt::get(Type::IntTy,MethNo));
//trargs.push_back(ConstantSInt::get(Type::IntTy,-1));//erase this
trargs.push_back(pathNo);
trargs.push_back(cnt);
Instruction *callInst=new CallInst(trigMeth,trargs);
BasicBlock::InstListType& instList=BB->getInstList();
BasicBlock::iterator here=instList.begin();
here = ++instList.insert(here, getElmntInst);
instList.insert(here,callInst);
//}
//else{
//insert trigger method
//assert(0&&"No method trigger");
//}
}
//get the code to be inserted on the edge
//This is determined from cond (1-6)
void getEdgeCode::getCode(Instruction *rInst,
Instruction *countInst,
Function *M,
BasicBlock *BB){
BasicBlock *BB, int numPaths, int MethNo){
BasicBlock::InstListType& instList=BB->getInstList();
BasicBlock::iterator here=instList.begin();
@ -33,35 +107,46 @@ void getEdgeCode::getCode(Instruction *rInst,
switch(cond){
case 1:{
Value *val=ConstantSInt::get(Type::IntTy,inc);
#ifdef INSERT_STORE
Instruction *stInst=new StoreInst(val, rInst);
here=++instList.insert(here,stInst);
here = ++instList.insert(here,stInst);
#endif
break;
}
//case: r=0 to be inserted
case 2:{
Value *val=ConstantSInt::get(Type::IntTy,0);
#ifdef INSERT_STORE
Instruction *stInst=new StoreInst(val, rInst);
here=++instList.insert(here,stInst);
here = ++instList.insert(here,stInst);
#endif
break;
}
//r+=k
case 3:{
Instruction *ldInst=new LoadInst(rInst, "ti1");
Value *val=ConstantSInt::get(Type::IntTy,inc);
Instruction *addIn=BinaryOperator::
create(Instruction::Add, ldInst, val,"ti2");
#ifdef INSERT_STORE
Instruction *stInst=new StoreInst(addIn, rInst);
here=++instList.insert(here,ldInst);
here=++instList.insert(here,addIn);
here=++instList.insert(here,stInst);
#endif
here = ++instList.insert(here,ldInst);
here = ++instList.insert(here,addIn);
#ifdef INSERT_STORE
here = ++instList.insert(here,stInst);
#endif
break;
}
//count[inc]++
case 4:{
assert(inc>=0 && inc<=numPaths && "inc out of bound!");
Instruction *ldInst=new
LoadInst(countInst,vector<Value *>
(1,ConstantUInt::get(Type::UIntTy, inc)), "ti1");
@ -69,53 +154,76 @@ void getEdgeCode::getCode(Instruction *rInst,
Instruction *addIn=BinaryOperator::
create(Instruction::Add, ldInst, val,"ti2");
//insert trigger
getTriggerCode(M->getParent(), BB, MethNo,
ConstantSInt::get(Type::IntTy,inc), addIn);
here=instList.begin();
//end trigger code
assert(inc>=0 && "IT MUST BE POSITIVE NOW");
#ifdef INSERT_STORE
Instruction *stInst=new
StoreInst(addIn, countInst, vector<Value *>
(1, ConstantUInt::get(Type::UIntTy,inc)));
here=++instList.insert(here,ldInst);
here=++instList.insert(here,addIn);
here=++instList.insert(here,stInst);
#endif
here = ++instList.insert(here,ldInst);
here = ++instList.insert(here,addIn);
#ifdef INSERT_STORE
here = ++instList.insert(here,stInst);
#endif
break;
}
//case: count[r+inc]++
case 5:{
//ti1=inc+r
Instruction *ldIndex=new LoadInst(rInst, "ti1");
Value *val=ConstantSInt::get(Type::IntTy,inc);
Instruction *addIndex=BinaryOperator::
create(Instruction::Add, ldIndex, val,"ti2");
//erase following 1 line
//Value *valtemp=ConstantSInt::get(Type::IntTy,999);
//now load count[addIndex]
Instruction *castInst=new CastInst(addIndex,
Type::UIntTy,"ctin");
Instruction *ldInst=new
LoadInst(countInst, vector<Value *>(1,castInst), "ti3");
Value *cons=ConstantSInt::get(Type::IntTy,1);
//count[addIndex]++
Instruction *addIn=BinaryOperator::
create(Instruction::Add, ldInst, cons,"ti4");
//insert trigger
getTriggerCode(M->getParent(), BB, MethNo, addIndex, addIn);
here=instList.begin();
//end trigger code
#ifdef INSERT_STORE
///*
Instruction *stInst=new
StoreInst(addIn, countInst,
vector<Value *>(1,castInst));
here=++instList.insert(here,ldIndex);
here=++instList.insert(here,addIndex);
here=++instList.insert(here,castInst);
here=++instList.insert(here,ldInst);
here=++instList.insert(here,addIn);
here=++instList.insert(here,stInst);
//*/
#endif
here = ++instList.insert(here,ldIndex);
here = ++instList.insert(here,addIndex);
here = ++instList.insert(here,castInst);
here = ++instList.insert(here,ldInst);
here = ++instList.insert(here,addIn);
#ifdef INSERT_STORE
here = ++instList.insert(here,stInst);
#endif
break;
}
//case: count[r]+
case 6:{
//ti1=inc+r
Instruction *ldIndex=new LoadInst(rInst, "ti1");
//now load count[addIndex]
Instruction *castInst2=new
CastInst(ldIndex, Type::UIntTy,"ctin");
@ -126,27 +234,34 @@ void getEdgeCode::getCode(Instruction *rInst,
//count[addIndex]++
Instruction *addIn=BinaryOperator::
create(Instruction::Add, ldInst, cons,"ti3");
//insert trigger
getTriggerCode(M->getParent(), BB, MethNo, ldIndex, addIn);
here=instList.begin();
//end trigger code
#ifdef INSERT_STORE
Instruction *stInst=new
StoreInst(addIn, countInst, vector<Value *>(1,castInst2));
here=++instList.insert(here,ldIndex);
here=++instList.insert(here,castInst2);
here=++instList.insert(here,ldInst);
here=++instList.insert(here,addIn);
here=++instList.insert(here,stInst);
#endif
here = ++instList.insert(here,ldIndex);
here = ++instList.insert(here,castInst2);
here = instList.insert(here,ldInst);
here = instList.insert(here,addIn);
#ifdef INSERT_STORE
here = instList.insert(here,stInst);
#endif
break;
}
}
//now check for cdIn and cdOut
//first put cdOut
if(cdOut!=NULL){
cdOut->getCode(rInst, countInst, M, BB);
}
if(cdIn!=NULL){
cdIn->getCode(rInst, countInst, M, BB);
cdIn->getCode(rInst, countInst, M, BB, numPaths, MethNo);
}
if(cdOut!=NULL){
cdOut->getCode(rInst, countInst, M, BB, numPaths, MethNo);
}
}
@ -179,6 +294,7 @@ void insertInTopBB(BasicBlock *front,
here=++front->getInstList().insert(here,countVar);
//Initialize Count[...] with 0
for(int i=0;i<k; i++){
Instruction *stInstrC=new
StoreInst(ConstantInt::get(Type::IntTy, 0),
@ -186,8 +302,8 @@ void insertInTopBB(BasicBlock *front,
(1,ConstantUInt::get(Type::UIntTy, i)));
here=++front->getInstList().insert(here,stInstrC);
}
here=++front->getInstList().insert(here,stInstr);
here = ++front->getInstList().insert(here,stInstr);
}
@ -196,21 +312,30 @@ void insertInTopBB(BasicBlock *front,
void insertBB(Edge ed,
getEdgeCode *edgeCode,
Instruction *rInst,
Instruction *countInst){
Instruction *countInst,
int numPaths, int Methno){
static int i=-1;
i++;
BasicBlock* BB1=ed.getFirst()->getElement();
BasicBlock* BB2=ed.getSecond()->getElement();
DEBUG(cerr << "Edges with codes ######################\n";
cerr << BB1->getName() << "->" << BB2->getName() << "\n";
cerr << "########################\n");
#ifdef DEBUG_PATH_PROFILES
//debugging info
cerr<<"Edges with codes ######################\n";
cerr<<BB1->getName()<<"->"<<BB2->getName()<<"\n";
cerr<<"########################\n";
#endif
char counterstr[100];
sprintf(counterstr,"counter%d",i);
std::string ctr=counterstr;
//We need to insert a BB between BB1 and BB2
TerminatorInst *TI=BB1->getTerminator();
BasicBlock *newBB=new BasicBlock("counter", BB1->getParent());
BasicBlock *newBB=new BasicBlock(ctr, BB1->getParent());
//get code for the new BB
edgeCode->getCode(rInst, countInst, BB1->getParent(), newBB);
edgeCode->getCode(rInst, countInst, BB1->getParent(), newBB, numPaths, Methno);
//Is terminator a branch instruction?
//then we need to change branch destinations to include new BB
@ -223,32 +348,26 @@ void insertBB(Edge ed,
newBB->getInstList().push_back(newBI2);
}
else{
Value *cond=BI->getCondition();
BasicBlock *fB, *tB;
if (BI->getSuccessor(0) == BB2){
tB=newBB;
fB=BI->getSuccessor(1);
} else {
fB=newBB;
tB=BI->getSuccessor(0);
}
BB1->getInstList().pop_back();
BB1->getInstList().push_back(new BranchInst(tB,fB,cond));
newBB->getInstList().push_back(new BranchInst(BB2));
if(BI->getSuccessor(0)==BB2)
BI->setSuccessor(0, newBB);
if(BI->getSuccessor(1)==BB2)
BI->setSuccessor(1, newBB);
Instruction *newBI2=new BranchInst(BB2);
newBB->getInstList().push_back(newBI2);
}
//now iterate over BB2, and set its Phi nodes right
//get code for the new BB
//now iterate over BB2, and set its Phi nodes right
for(BasicBlock::iterator BB2Inst = BB2->begin(), BBend = BB2->end();
BB2Inst != BBend; ++BB2Inst){
if(PHINode *phiInst=dyn_cast<PHINode>(&*BB2Inst)){
DEBUG(cerr<<"YYYYYYYYYYYYYYYYY\n");
int bbIndex=phiInst->getBasicBlockIndex(BB1);
if(bbIndex>=0)
phiInst->setIncomingBlock(bbIndex, newBB);
assert(bbIndex>=0);
phiInst->setIncomingBlock(bbIndex, newBB);
}
}
}

View File

@ -5,18 +5,18 @@
//
//===----------------------------------------------------------------------===//
#include "Graph.h"
#include "llvm/Transforms/Instrumentation/Graph.h"
#include "llvm/BasicBlock.h"
#include <algorithm>
#include <iostream>
using std::list;
using std::set;
//using std::list;
//using std::set;
using std::map;
using std::vector;
using std::cerr;
static const graphListElement *findNodeInList(const Graph::nodeList &NL,
const graphListElement *findNodeInList(const Graph::nodeList &NL,
Node *N) {
for(Graph::nodeList::const_iterator NI = NL.begin(), NE=NL.end(); NI != NE;
++NI)
@ -25,7 +25,7 @@ static const graphListElement *findNodeInList(const Graph::nodeList &NL,
return 0;
}
static graphListElement *findNodeInList(Graph::nodeList &NL, Node *N) {
graphListElement *findNodeInList(Graph::nodeList &NL, Node *N) {
for(Graph::nodeList::iterator NI = NL.begin(), NE=NL.end(); NI != NE; ++NI)
if (*NI->element== *N)
return &*NI;
@ -33,17 +33,19 @@ static graphListElement *findNodeInList(Graph::nodeList &NL, Node *N) {
}
//graph constructor with root and exit specified
Graph::Graph(std::set<Node*> n, std::set<Edge> e,
Graph::Graph(std::vector<Node*> n, std::vector<Edge> e,
Node *rt, Node *lt){
strt=rt;
ext=lt;
for(set<Node* >::iterator x=n.begin(), en=n.end(); x!=en; ++x)
nodes[*x] = list<graphListElement>();
for(vector<Node* >::iterator x=n.begin(), en=n.end(); x!=en; ++x)
//nodes[*x] = list<graphListElement>();
nodes[*x] = vector<graphListElement>();
for(set<Edge >::iterator x=e.begin(), en=e.end(); x!=en; ++x){
for(vector<Edge >::iterator x=e.begin(), en=e.end(); x!=en; ++x){
Edge ee=*x;
int w=ee.getWeight();
nodes[ee.getFirst()].push_front(graphListElement(ee.getSecond(),w));
//nodes[ee.getFirst()].push_front(graphListElement(ee.getSecond(),w, ee.getRandId()));
nodes[ee.getFirst()].push_back(graphListElement(ee.getSecond(),w, ee.getRandId()));
}
}
@ -83,14 +85,14 @@ bool Graph::hasEdgeAndWt(Edge ed) const{
//add a node
void Graph::addNode(Node *nd){
list<Node *> lt=getAllNodes();
vector<Node *> lt=getAllNodes();
for(list<Node *>::iterator LI=lt.begin(), LE=lt.end(); LI!=LE;++LI){
for(vector<Node *>::iterator LI=lt.begin(), LE=lt.end(); LI!=LE;++LI){
if(**LI==*nd)
return;
}
nodes[nd] = list<graphListElement>();
//chng
nodes[nd] =vector<graphListElement>(); //list<graphListElement>();
}
//add an edge
@ -105,7 +107,10 @@ void Graph::addEdge(Edge ed, int w){
if(findNodeInList(nodes[ed.getFirst()], nd2))
return;
ndList.push_front(graphListElement(nd2,w));
//ndList.push_front(graphListElement(nd2,w, ed.getRandId()));
ndList.push_back(graphListElement(nd2,w, ed.getRandId()));//chng
//sort(ndList.begin(), ndList.end(), NodeListSort());
}
//add an edge EVEN IF such an edge already exists
@ -113,8 +118,12 @@ void Graph::addEdge(Edge ed, int w){
//which does happen when we add dummy edges
//to the graph, for compensating for back-edges
void Graph::addEdgeForce(Edge ed){
nodes[ed.getFirst()].push_front(graphListElement(ed.getSecond(),
ed.getWeight()));
//nodes[ed.getFirst()].push_front(graphListElement(ed.getSecond(),
//ed.getWeight(), ed.getRandId()));
nodes[ed.getFirst()].push_back
(graphListElement(ed.getSecond(), ed.getWeight(), ed.getRandId()));
//sort(nodes[ed.getFirst()].begin(), nodes[ed.getFirst()].end(), NodeListSort());
}
//remove an edge
@ -132,6 +141,21 @@ void Graph::removeEdge(Edge ed){
}
}
//remove an edge with a given wt
//Note that it removes just one edge,
//the first edge that is encountered
void Graph::removeEdgeWithWt(Edge ed){
nodeList &ndList = nodes[ed.getFirst()];
Node &nd2 = *ed.getSecond();
for(nodeList::iterator NI=ndList.begin(), NE=ndList.end(); NI!=NE ;++NI) {
if(*NI->element == nd2 && NI->weight==ed.getWeight()) {
ndList.erase(NI);
break;
}
}
}
//set the weight of an edge
void Graph::setWeight(Edge ed){
graphListElement *El = findNodeInList(nodes[ed.getFirst()], ed.getSecond());
@ -142,21 +166,34 @@ void Graph::setWeight(Edge ed){
//get the list of successor nodes
list<Node *> Graph::getSuccNodes(Node *nd) const {
vector<Node *> Graph::getSuccNodes(Node *nd) const {
nodeMapTy::const_iterator nli = nodes.find(nd);
assert(nli != nodes.end() && "Node must be in nodes map");
const nodeList &nl = nli->second;
list<Node *> lt;
vector<Node *> lt;
for(nodeList::const_iterator NI=nl.begin(), NE=nl.end(); NI!=NE; ++NI)
lt.push_back(NI->element);
return lt;
}
//get the number of outgoing edges
int Graph::getNumberOfOutgoingEdges(Node *nd) const {
nodeMapTy::const_iterator nli = nodes.find(nd);
assert(nli != nodes.end() && "Node must be in nodes map");
const nodeList &nl = nli->second;
int count=0;
for(nodeList::const_iterator NI=nl.begin(), NE=nl.end(); NI!=NE; ++NI)
count++;
return count;
}
//get the list of predecessor nodes
list<Node *> Graph::getPredNodes(Node *nd) const{
list<Node *> lt;
vector<Node *> Graph::getPredNodes(Node *nd) const{
vector<Node *> lt;
for(nodeMapTy::const_iterator EI=nodes.begin(), EE=nodes.end(); EI!=EE ;++EI){
Node *lnode=EI->first;
const nodeList &nl = getNodeList(lnode);
@ -167,15 +204,37 @@ list<Node *> Graph::getPredNodes(Node *nd) const{
return lt;
}
//get the number of predecessor nodes
int Graph::getNumberOfIncomingEdges(Node *nd) const{
int count=0;
for(nodeMapTy::const_iterator EI=nodes.begin(), EE=nodes.end(); EI!=EE ;++EI){
Node *lnode=EI->first;
const nodeList &nl = getNodeList(lnode);
for(Graph::nodeList::const_iterator NI = nl.begin(), NE=nl.end(); NI != NE;
++NI)
if (*NI->element== *nd)
count++;
}
return count;
}
//get the list of all the vertices in graph
list<Node *> Graph::getAllNodes() const{
list<Node *> lt;
vector<Node *> Graph::getAllNodes() const{
vector<Node *> lt;
for(nodeMapTy::const_iterator x=nodes.begin(), en=nodes.end(); x != en; ++x)
lt.push_back(x->first);
return lt;
}
//get the list of all the vertices in graph
vector<Node *> Graph::getAllNodes(){
vector<Node *> lt;
for(nodeMapTy::const_iterator x=nodes.begin(), en=nodes.end(); x != en; ++x)
lt.push_back(x->first);
return lt;
}
//class to compare two nodes in graph
//based on their wt: this is used in
@ -198,7 +257,7 @@ Graph* Graph::getMaxSpanningTree(){
Graph *st=new Graph();//max spanning tree, undirected edges
int inf=9999999;//largest key
list<Node *> lt = getAllNodes();
vector<Node *> lt = getAllNodes();
//initially put all vertices in vector vt
//assign wt(root)=0
@ -221,7 +280,7 @@ Graph* Graph::getMaxSpanningTree(){
//initialize: wt(root)=0, wt(others)=infinity
//parent(root)=NULL, parent(others) not defined (but not null)
for(list<Node *>::iterator LI=lt.begin(), LE=lt.end(); LI!=LE; ++LI){
for(vector<Node *>::iterator LI=lt.begin(), LE=lt.end(); LI!=LE; ++LI){
Node *thisNode=*LI;
if(*thisNode == *getRoot()){
thisNode->setWeight(0);
@ -295,9 +354,9 @@ Graph* Graph::getMaxSpanningTree(){
//print the graph (for debugging)
void Graph::printGraph(){
list<Node *> lt=getAllNodes();
vector<Node *> lt=getAllNodes();
cerr<<"Graph---------------------\n";
for(list<Node *>::iterator LI=lt.begin(), LE=lt.end(); LI!=LE; ++LI){
for(vector<Node *>::iterator LI=lt.begin(), LE=lt.end(); LI!=LE; ++LI){
cerr<<((*LI)->getElement())->getName()<<"->";
Graph::nodeList nl=getNodeList(*LI);
for(Graph::nodeList::iterator NI=nl.begin(), NE=nl.end(); NI!=NE; ++NI){
@ -312,10 +371,10 @@ void Graph::printGraph(){
//get a list of nodes in the graph
//in r-topological sorted order
//note that we assumed graph to be connected
list<Node *> Graph::reverseTopologicalSort() const{
list <Node *> toReturn;
list<Node *> lt=getAllNodes();
for(list<Node *>::iterator LI=lt.begin(), LE=lt.end(); LI!=LE; ++LI){
vector<Node *> Graph::reverseTopologicalSort() const{
vector <Node *> toReturn;
vector<Node *> lt=getAllNodes();
for(vector<Node *>::iterator LI=lt.begin(), LE=lt.end(); LI!=LE; ++LI){
if((*LI)->getWeight()!=GREY && (*LI)->getWeight()!=BLACK)
DFS_Visit(*LI, toReturn);
}
@ -325,10 +384,10 @@ list<Node *> Graph::reverseTopologicalSort() const{
//a private method for doing DFS traversal of graph
//this is used in determining the reverse topological sort
//of the graph
void Graph::DFS_Visit(Node *nd, list<Node *> &toReturn) const {
void Graph::DFS_Visit(Node *nd, vector<Node *> &toReturn) const {
nd->setWeight(GREY);
list<Node *> lt=getSuccNodes(nd);
for(list<Node *>::iterator LI=lt.begin(), LE=lt.end(); LI!=LE; ++LI){
vector<Node *> lt=getSuccNodes(nd);
for(vector<Node *>::iterator LI=lt.begin(), LE=lt.end(); LI!=LE; ++LI){
if((*LI)->getWeight()!=GREY && (*LI)->getWeight()!=BLACK)
DFS_Visit(*LI, toReturn);
}
@ -341,8 +400,8 @@ void Graph::DFS_Visit(Node *nd, list<Node *> &toReturn) const {
//This is done by adding an edge
//v->u for all existing edges u->v
void Graph::makeUnDirectional(){
list<Node* > allNodes=getAllNodes();
for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
vector<Node* > allNodes=getAllNodes();
for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
++NI) {
nodeList nl=getNodeList(*NI);
for(nodeList::iterator NLI=nl.begin(), NLE=nl.end(); NLI!=NLE; ++NLI){
@ -360,8 +419,8 @@ void Graph::makeUnDirectional(){
//this way, max-spanning tree could be obtained
//usin min-spanning tree, and vice versa
void Graph::reverseWts(){
list<Node *> allNodes=getAllNodes();
for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
vector<Node *> allNodes=getAllNodes();
for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
++NI) {
nodeList node_list=getNodeList(*NI);
for(nodeList::iterator NLI=nodes[*NI].begin(), NLE=nodes[*NI].end();
@ -385,9 +444,9 @@ void Graph::reverseWts(){
void Graph::getBackEdges(vector<Edge > &be) const{
map<Node *, Color > color;
map<Node *, int > d;
list<Node *> allNodes=getAllNodes();
vector<Node *> allNodes=getAllNodes();
int time=0;
for(list<Node *>::const_iterator NI=allNodes.begin(), NE=allNodes.end();
for(vector<Node *>::const_iterator NI=allNodes.begin(), NE=allNodes.end();
NI!=NE; ++NI){
if(color[*NI]!=GREY && color[*NI]!=BLACK)
getBackEdgesVisit(*NI, be, color, d, time);
@ -402,20 +461,24 @@ void Graph::getBackEdgesVisit(Node *u, vector<Edge > &be,
color[u]=GREY;
time++;
d[u]=time;
list<Node *> succ_list=getSuccNodes(u);
for(list<Node *>::const_iterator v=succ_list.begin(), ve=succ_list.end();
v!=ve; ++v){
if(color[*v]!=GREY && color[*v]!=BLACK){
getBackEdgesVisit(*v, be, color, d, time);
vector<graphListElement> succ_list=getNodeList(u);
for(vector<graphListElement>::const_iterator vl=succ_list.begin(),
ve=succ_list.end(); vl!=ve; ++vl){
Node *v=vl->element;
// for(vector<Node *>::const_iterator v=succ_list.begin(), ve=succ_list.end();
// v!=ve; ++v){
if(color[v]!=GREY && color[v]!=BLACK){
getBackEdgesVisit(v, be, color, d, time);
}
//now checking for d and f vals
if(color[*v]==GREY){
if(color[v]==GREY){
//so v is ancestor of u if time of u > time of v
if(d[u] >= d[*v]){
Edge *ed=new Edge(u, *v);
if (!(*u == *getExit() && **v == *getRoot()))
if(d[u] >= d[v]){
Edge *ed=new Edge(u, v,vl->weight, vl->randId);
if (!(*u == *getExit() && *v == *getRoot()))
be.push_back(*ed); // choose the forward edges
}
}

View File

@ -6,12 +6,15 @@
//
//===----------------------------------------------------------------------===//
#include "Graph.h"
#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
#include "llvm/Function.h"
#include "llvm/Pass.h"
#include "llvm/BasicBlock.h"
#include "llvm/Transforms/Instrumentation/Graph.h"
#include <algorithm>
#include <iostream>
using std::list;
//using std::list;
using std::map;
using std::vector;
using std::cerr;
@ -25,13 +28,13 @@ static bool edgesEqual(Edge ed1, Edge ed2){
static void getChords(vector<Edge > &chords, Graph &g, Graph st){
//make sure the spanning tree is directional
//iterate over ALL the edges of the graph
list<Node *> allNodes=g.getAllNodes();
for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
vector<Node *> allNodes=g.getAllNodes();
for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
++NI){
Graph::nodeList node_list=g.getNodeList(*NI);
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
NLI!=NLE; ++NLI){
Edge f(*NI, NLI->element,NLI->weight);
Edge f(*NI, NLI->element,NLI->weight, NLI->randId);
if(!(st.hasEdgeAndWt(f)))//addnl
chords.push_back(f);
}
@ -46,8 +49,8 @@ static void getChords(vector<Edge > &chords, Graph &g, Graph st){
//the tree so that now, all edge directions in the tree match
//the edge directions of corresponding edges in the directed graph
static void removeTreeEdges(Graph &g, Graph& t){
list<Node* > allNodes=t.getAllNodes();
for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
vector<Node* > allNodes=t.getAllNodes();
for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
++NI){
Graph::nodeList nl=t.getNodeList(*NI);
for(Graph::nodeList::iterator NLI=nl.begin(), NLE=nl.end(); NLI!=NLE;++NLI){
@ -64,18 +67,40 @@ static void removeTreeEdges(Graph &g, Graph& t){
//add up the edge values, we get a path number that uniquely
//refers to the path we travelled
int valueAssignmentToEdges(Graph& g){
list<Node *> revtop=g.reverseTopologicalSort();
vector<Node *> revtop=g.reverseTopologicalSort();
/*
std::cerr<<"-----------Reverse topological sort\n";
for(vector<Node *>::iterator RI=revtop.begin(), RE=revtop.end(); RI!=RE; ++RI){
std::cerr<<(*RI)->getElement()->getName()<<":";
}
std::cerr<<"\n----------------------"<<std::endl;
*/
map<Node *,int > NumPaths;
for(list<Node *>::iterator RI=revtop.begin(), RE=revtop.end(); RI!=RE; ++RI){
for(vector<Node *>::iterator RI=revtop.begin(), RE=revtop.end(); RI!=RE; ++RI){
if(g.isLeaf(*RI))
NumPaths[*RI]=1;
else{
NumPaths[*RI]=0;
list<Node *> succ=g.getSuccNodes(*RI);
for(list<Node *>::iterator SI=succ.begin(), SE=succ.end(); SI!=SE; ++SI){
Edge ed(*RI,*SI,NumPaths[*RI]);
g.setWeight(ed);
NumPaths[*RI]+=NumPaths[*SI];
/////
Graph::nodeList &nlist=g.getNodeList(*RI);
//sort nodelist by increasing order of numpaths
int sz=nlist.size();
for(int i=0;i<sz-1; i++){
int min=i;
for(int j=i+1; j<sz; j++)
if(NumPaths[nlist[j].element]<NumPaths[nlist[min].element]) min=j;
graphListElement tempEl=nlist[min];
nlist[min]=nlist[i];
nlist[i]=tempEl;
}
//sorted now!
for(Graph::nodeList::iterator GLI=nlist.begin(), GLE=nlist.end();
GLI!=GLE; ++GLI){
GLI->weight=NumPaths[*RI];
NumPaths[*RI]+=NumPaths[GLI->element];
}
}
}
@ -108,19 +133,26 @@ static int inc_Dir(Edge e, Edge f){
return -1;
}
//used for getting edge increments (read comments above in inc_Dir)
//inc_DFS is a modification of DFS
static void inc_DFS(Graph& g,Graph& t,map<Edge, int>& Increment,
static void inc_DFS(Graph& g,Graph& t,map<Edge, int, EdgeCompare>& Increment,
int events, Node *v, Edge e){
list<Node *> allNodes=t.getAllNodes();
for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
vector<Node *> allNodes=t.getAllNodes();
//cerr<<"Called for\n";
//if(!e.isNull())
//printEdge(e);
for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
++NI){
Graph::nodeList node_list=t.getNodeList(*NI);
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
NLI!= NLE; ++NLI){
Edge f(*NI, NLI->element,NLI->weight);
Edge f(*NI, NLI->element,NLI->weight, NLI->randId);
if(!edgesEqual(f,e) && *v==*(f.getSecond())){
int dir_count=inc_Dir(e,f);
int wt=1*f.getWeight();
@ -129,15 +161,15 @@ static void inc_DFS(Graph& g,Graph& t,map<Edge, int>& Increment,
}
}
for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
++NI){
Graph::nodeList node_list=t.getNodeList(*NI);
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
NLI!=NLE; ++NLI){
Edge f(*NI, NLI->element,NLI->weight);
Edge f(*NI, NLI->element,NLI->weight, NLI->randId);
if(!edgesEqual(f,e) && *v==*(f.getFirst())){
int dir_count=inc_Dir(e,f);
int wt=1*f.getWeight();
int wt=f.getWeight();
inc_DFS(g,t, Increment, dir_count*events+wt,
f.getSecond(), f);
}
@ -145,16 +177,18 @@ static void inc_DFS(Graph& g,Graph& t,map<Edge, int>& Increment,
}
allNodes=g.getAllNodes();
for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
++NI){
Graph::nodeList node_list=g.getNodeList(*NI);
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
NLI!=NLE; ++NLI){
Edge f(*NI, NLI->element,NLI->weight);
Edge f(*NI, NLI->element,NLI->weight, NLI->randId);
if(!(t.hasEdgeAndWt(f)) && (*v==*(f.getSecond()) ||
*v==*(f.getFirst()))){
int dir_count=inc_Dir(e,f);
Increment[f]+=dir_count*events;
//cerr<<"assigned "<<Increment[f]<<" to"<<endl;
//printEdge(f);
}
}
}
@ -164,19 +198,19 @@ static void inc_DFS(Graph& g,Graph& t,map<Edge, int>& Increment,
//and assign them some values such that
//if we consider just this subset, it still represents
//the path sum along any path in the graph
static map<Edge, int> getEdgeIncrements(Graph& g, Graph& t){
static map<Edge, int, EdgeCompare> getEdgeIncrements(Graph& g, Graph& t){
//get all edges in g-t
map<Edge, int> Increment;
map<Edge, int, EdgeCompare> Increment;
list<Node *> allNodes=g.getAllNodes();
vector<Node *> allNodes=g.getAllNodes();
for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
++NI){
Graph::nodeList node_list=g.getNodeList(*NI);
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
NLI!=NLE; ++NLI){
Edge ed(*NI, NLI->element,NLI->weight);
if(!(t.hasEdge(ed))){
Edge ed(*NI, NLI->element,NLI->weight,NLI->randId);
if(!(t.hasEdgeAndWt(ed))){
Increment[ed]=0;;
}
}
@ -185,14 +219,13 @@ static map<Edge, int> getEdgeIncrements(Graph& g, Graph& t){
Edge *ed=new Edge();
inc_DFS(g,t,Increment, 0, g.getRoot(), *ed);
for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
++NI){
Graph::nodeList node_list=g.getNodeList(*NI);
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
NLI!=NLE; ++NLI){
Edge ed(*NI, NLI->element,NLI->weight);
if(!(t.hasEdge(ed))){
Edge ed(*NI, NLI->element,NLI->weight, NLI->randId);
if(!(t.hasEdgeAndWt(ed))){
int wt=ed.getWeight();
Increment[ed]+=wt;
}
@ -202,13 +235,20 @@ static map<Edge, int> getEdgeIncrements(Graph& g, Graph& t){
return Increment;
}
//push it up: TODO
const graphListElement *findNodeInList(const Graph::nodeList &NL,
Node *N);
graphListElement *findNodeInList(Graph::nodeList &NL, Node *N);
//end TODO
//Based on edgeIncrements (above), now obtain
//the kind of code to be inserted along an edge
//The idea here is to minimize the computation
//by inserting only the needed code
static void getCodeInsertions(Graph &g, map<Edge, getEdgeCode *> &instr,
static void getCodeInsertions(Graph &g, map<Edge, getEdgeCode *, EdgeCompare> &instr,
vector<Edge > &chords,
map<Edge,int> &edIncrements){
map<Edge,int, EdgeCompare> &edIncrements){
//Register initialization code
vector<Node *> ws;
@ -224,29 +264,34 @@ static void getCodeInsertions(Graph &g, map<Edge, getEdgeCode *> &instr,
int edgeWt=nl->weight;
Node *w=nl->element;
//if chords has v->w
Edge ed(v,w);
Edge ed(v,w, edgeWt, nl->randId);
//cerr<<"Assign:\n";
//printEdge(ed);
bool hasEdge=false;
for(vector<Edge>::iterator CI=chords.begin(), CE=chords.end();
CI!=CE && !hasEdge;++CI){
if(*CI==ed){
if(*CI==ed && CI->getWeight()==edgeWt){//modf
hasEdge=true;
}
}
if(hasEdge){
if(hasEdge){//so its a chord edge
getEdgeCode *edCd=new getEdgeCode();
edCd->setCond(1);
edCd->setInc(edIncrements[ed]);
instr[ed]=edCd;
//std::cerr<<"Case 1\n";
}
else if((g.getPredNodes(w)).size()==1){
else if(g.getNumberOfIncomingEdges(w)==1){
ws.push_back(w);
//std::cerr<<"Added w\n";
}
else{
getEdgeCode *edCd=new getEdgeCode();
edCd->setCond(2);
edCd->setInc(0);
instr[ed]=edCd;
//std::cerr<<"Case 2\n";
}
}
}
@ -257,44 +302,55 @@ static void getCodeInsertions(Graph &g, map<Edge, getEdgeCode *> &instr,
while(!ws.empty()) {
Node *w=ws.back();
ws.pop_back();
//for each edge v->w
list<Node *> preds=g.getPredNodes(w);
for(list<Node *>::iterator pd=preds.begin(), pe=preds.end(); pd!=pe; ++pd){
Node *v=*pd;
//if chords has v->w
Edge ed(v,w);
getEdgeCode *edCd=new getEdgeCode();
bool hasEdge=false;
for(vector<Edge>::iterator CI=chords.begin(), CE=chords.end(); CI!=CE;
++CI){
if(*CI==ed){
hasEdge=true;
break;
///////
//vector<Node *> lt;
vector<Node *> lllt=g.getAllNodes();
for(vector<Node *>::iterator EII=lllt.begin(); EII!=lllt.end() ;++EII){
Node *lnode=*EII;
Graph::nodeList &nl = g.getNodeList(lnode);
//cerr<<"Size:"<<lllt.size()<<"\n";
//cerr<<lnode->getElement()->getName()<<"\n";
graphListElement *N = findNodeInList(nl, w);
if (N){// lt.push_back(lnode);
//Node *v=*pd;
//Node *v=N->element;
Node *v=lnode;
//if chords has v->w
Edge ed(v,w, N->weight, N->randId);
getEdgeCode *edCd=new getEdgeCode();
bool hasEdge=false;
for(vector<Edge>::iterator CI=chords.begin(), CE=chords.end(); CI!=CE;
++CI){
if(*CI==ed && CI->getWeight()==N->weight){
hasEdge=true;
break;
}
}
}
if(hasEdge){
char str[100];
if(instr[ed]!=NULL && instr[ed]->getCond()==1){
instr[ed]->setCond(4);
if(hasEdge){
char str[100];
if(instr[ed]!=NULL && instr[ed]->getCond()==1){
instr[ed]->setCond(4);
}
else{
edCd->setCond(5);
edCd->setInc(edIncrements[ed]);
instr[ed]=edCd;
}
}
else if(g.getNumberOfOutgoingEdges(v)==1)
ws.push_back(v);
else{
edCd->setCond(5);
edCd->setInc(edIncrements[ed]);
edCd->setCond(6);
instr[ed]=edCd;
}
}
else if(g.getSuccNodes(v).size()==1)
ws.push_back(v);
else{
edCd->setCond(6);
instr[ed]=edCd;
}
}
}
///// Register increment code
for(vector<Edge>::iterator CI=chords.begin(), CE=chords.end(); CI!=CE; ++CI){
getEdgeCode *edCd=new getEdgeCode();
@ -310,6 +366,7 @@ static void getCodeInsertions(Graph &g, map<Edge, getEdgeCode *> &instr,
//If a->b is a backedge
//then incoming dummy edge is root->b
//and outgoing dummy edge is a->exit
//changed
void addDummyEdges(vector<Edge > &stDummy,
vector<Edge > &exDummy,
Graph &g, vector<Edge> &be){
@ -320,21 +377,15 @@ void addDummyEdges(vector<Edge > &stDummy,
g.removeEdge(ed);
if(!(*second==*(g.getRoot()))){
Edge *st=new Edge(g.getRoot(), second);
//check if stDummy doesn't have it already
if(find(stDummy.begin(), stDummy.end(), *st) == stDummy.end())
stDummy.push_back(*st);
Edge *st=new Edge(g.getRoot(), second, ed.getWeight(), ed.getRandId());
stDummy.push_back(*st);
g.addEdgeForce(*st);
}
if(!(*first==*(g.getExit()))){
Edge *ex=new Edge(first, g.getExit());
if (find(exDummy.begin(), exDummy.end(), *ex) == exDummy.end()) {
exDummy.push_back(*ex);
g.addEdgeForce(*ex);
}
Edge *ex=new Edge(first, g.getExit(), ed.getWeight(), ed.getRandId());
exDummy.push_back(*ex);
g.addEdgeForce(*ex);
}
}
}
@ -344,34 +395,73 @@ void printEdge(Edge ed){
cerr<<((ed.getFirst())->getElement())
->getName()<<"->"<<((ed.getSecond())
->getElement())->getName()<<
":"<<ed.getWeight()<<"\n";
":"<<ed.getWeight()<<" rndId::"<<ed.getRandId()<<"\n";
}
//Move the incoming dummy edge code and outgoing dummy
//edge code over to the corresponding back edge
static void moveDummyCode(const vector<Edge> &stDummy,
const vector<Edge> &exDummy,
const vector<Edge> &be,
map<Edge, getEdgeCode *> &insertions){
typedef vector<Edge >::const_iterator vec_iter;
static void moveDummyCode(vector<Edge> &stDummy,
vector<Edge> &exDummy,
vector<Edge> &be,
map<Edge, getEdgeCode *, EdgeCompare> &insertions,
Graph &g){
typedef vector<Edge >::iterator vec_iter;
DEBUG( //print all back, st and ex dummy
cerr<<"BackEdges---------------\n";
for(vec_iter VI=be.begin(); VI!=be.end(); ++VI)
printEdge(*VI);
cerr<<"StEdges---------------\n";
for(vec_iter VI=stDummy.begin(); VI!=stDummy.end(); ++VI)
printEdge(*VI);
cerr<<"ExitEdges---------------\n";
for(vec_iter VI=exDummy.begin(); VI!=exDummy.end(); ++VI)
printEdge(*VI);
cerr<<"------end all edges\n");
map<Edge,getEdgeCode *, EdgeCompare> temp;
//iterate over edges with code
std::vector<Edge> toErase;
for(map<Edge,getEdgeCode *>::iterator MI=insertions.begin(),
for(map<Edge,getEdgeCode *, EdgeCompare>::iterator MI=insertions.begin(),
ME=insertions.end(); MI!=ME; ++MI){
Edge ed=MI->first;
getEdgeCode *edCd=MI->second;
///---new code
//iterate over be, and check if its starts and end vertices hv code
for(vector<Edge>::iterator BEI=be.begin(), BEE=be.end(); BEI!=BEE; ++BEI){
if(ed.getRandId()==BEI->getRandId()){
//cerr<<"Looking at edge--------\n";
//printEdge(ed);
if(temp[*BEI]==0)
temp[*BEI]=new getEdgeCode();
//so ed is either in st, or ex!
if(ed.getFirst()==g.getRoot()){
//so its in stDummy
temp[*BEI]->setCdIn(edCd);
toErase.push_back(ed);
}
else if(ed.getSecond()==g.getExit()){
//so its in exDummy
toErase.push_back(ed);
temp[*BEI]->setCdOut(edCd);
}
else{
assert(false && "Not found in either start or end! Rand failed?");
}
}
}
}
for(vector<Edge >::iterator vmi=toErase.begin(), vme=toErase.end(); vmi!=vme;
++vmi){
insertions.erase(*vmi);
//cerr<<"Erasing from insertion\n";
//printEdge(*vmi);
g.removeEdgeWithWt(*vmi);
}
for(map<Edge,getEdgeCode *, EdgeCompare>::iterator MI=temp.begin(),
ME=temp.end(); MI!=ME; ++MI){
insertions[MI->first]=MI->second;
//cerr<<"inserting into insertion-----\n";
//printEdge(MI->first);
}
//cerr<<"----\n";
/*
///---new code end
bool dummyHasIt=false;
DEBUG(cerr<<"Current edge considered---\n";
@ -381,8 +471,10 @@ static void moveDummyCode(const vector<Edge> &stDummy,
for(vec_iter VI=stDummy.begin(), VE=stDummy.end(); VI!=VE && !dummyHasIt;
++VI){
if(*VI==ed){
DEBUG(cerr<<"Edge matched with stDummy\n");
//#ifdef DEBUG_PATH_PROFILES
cerr<<"Edge matched with stDummy\n";
printEdge(ed);
//#endif
dummyHasIt=true;
bool dummyInBe=false;
//dummy edge with code
@ -392,17 +484,24 @@ static void moveDummyCode(const vector<Edge> &stDummy,
Node *dm=ed.getSecond();
if(*dm==*st){
//so this is the back edge to use
DEBUG(cerr<<"Moving to backedge\n";
printEdge(backEdge));
//#ifdef DEBUG_PATH_PROFILES
cerr<<"Moving to backedge\n";
printEdge(backEdge);
//#endif
getEdgeCode *ged=new getEdgeCode();
ged->setCdIn(edCd);
toErase.push_back(ed);
toErase.push_back(ed);//MI);//ed);
insertions[backEdge]=ged;
dummyInBe=true;
}
}
assert(dummyInBe);
//modf
//new
//vec_iter VII=VI;
stDummy.erase(VI);
break;
//end new
}
}
if(!dummyHasIt){
@ -412,7 +511,10 @@ static void moveDummyCode(const vector<Edge> &stDummy,
++VI){
if(*VI==ed){
inExDummy=true;
DEBUG(cerr<<"Edge matched with exDummy\n");
//#ifdef DEBUG_PATH_PROFILES
cerr<<"Edge matched with exDummy\n";
//#endif
bool dummyInBe2=false;
//dummy edge with code
for(vec_iter BE=be.begin(), BEE=be.end(); BE!=BEE && !dummyInBe2;
@ -422,30 +524,45 @@ static void moveDummyCode(const vector<Edge> &stDummy,
Node *dm=ed.getFirst();
if(*dm==*st){
//so this is the back edge to use
cerr<<"Moving to backedge\n";
printEdge(backEdge);
getEdgeCode *ged;
if(insertions[backEdge]==NULL)
ged=new getEdgeCode();
else
ged=insertions[backEdge];
toErase.push_back(ed);
toErase.push_back(ed);//MI);//ed);
ged->setCdOut(edCd);
insertions[backEdge]=ged;
dummyInBe2=true;
}
}
assert(dummyInBe2);
//modf
//vec_iter VII=VI;
exDummy.erase(VI);
break;
//end
}
}
}
}
DEBUG(cerr<<"size of deletions: "<<toErase.size()<<"\n");
*/
#ifdef DEBUG_PATH_PROFILES
cerr<<"size of deletions: "<<toErase.size()<<"\n";
#endif
/*
for(vector<map<Edge, getEdgeCode *>::iterator>::iterator
vmi=toErase.begin(), vme=toErase.end(); vmi!=vme; ++vmi)
for(vector<Edge >::iterator vmi=toErase.begin(), vme=toErase.end(); vmi!=vme;
++vmi)
insertions.erase(*vmi);
*/
#ifdef DEBUG_PATH_PROFILES
cerr<<"SIZE OF INSERTIONS AFTER DEL "<<insertions.size()<<"\n";
#endif
DEBUG(cerr<<"SIZE OF INSERTIONS AFTER DEL "<<insertions.size()<<"\n");
}
//Do graph processing: to determine minimal edge increments,
@ -456,7 +573,11 @@ void processGraph(Graph &g,
Instruction *countInst,
vector<Edge >& be,
vector<Edge >& stDummy,
vector<Edge >& exDummy){
vector<Edge >& exDummy,
int numPaths){
static int MethNo=0;
MethNo++;
//Given a graph: with exit->root edge, do the following in seq:
//1. get back edges
//2. insert dummy edges and remove back edges
@ -502,8 +623,10 @@ void processGraph(Graph &g,
DEBUG(printGraph(g2));
Graph *t=g2.getMaxSpanningTree();
DEBUG(printGraph(*t));
//#ifdef DEBUG_PATH_PROFILES
//cerr<<"Original maxspanning tree\n";
//printGraph(*t);
//#endif
//now edges of tree t have weights reversed
//(negative) because the algorithm used
//to find max spanning tree is
@ -527,9 +650,11 @@ void processGraph(Graph &g,
//the edge directions of corresponding edges in the directed graph
removeTreeEdges(g, *t);
DEBUG(cerr<<"Spanning tree---------\n";
printGraph(*t);
cerr<<"-------end spanning tree\n");
#ifdef DEBUG_PATH_PROFILES
cerr<<"Final Spanning tree---------\n";
printGraph(*t);
cerr<<"-------end spanning tree\n";
#endif
//now remove the exit->root node
//and re-add it with weight 0
@ -551,14 +676,18 @@ void processGraph(Graph &g,
//and assign them some values such that
//if we consider just this subset, it still represents
//the path sum along any path in the graph
map<Edge, int> increment=getEdgeIncrements(g,*t);
DEBUG(//print edge increments for debugging
for(map<Edge, int>::iterator MI=increment.begin(), ME = increment.end();
MI != ME; ++MI) {
printEdge(MI->first);
cerr << "Increment for above:" << MI->second << "\n";
});
map<Edge, int, EdgeCompare> increment=getEdgeIncrements(g,*t);
#ifdef DEBUG_PATH_PROFILES
//print edge increments for debugging
for(map<Edge, int, EdgeCompare>::iterator M_I=increment.begin(), M_E=increment.end();
M_I!=M_E; ++M_I){
printEdge(M_I->first);
cerr<<"Increment for above:"<<M_I->second<<"\n";
}
#endif
//step 6: Get code insertions
@ -569,40 +698,51 @@ void processGraph(Graph &g,
vector<Edge> chords;
getChords(chords, g, *t);
map<Edge, getEdgeCode *> codeInsertions;
//cerr<<"Graph before getCodeInsertion:\n";
//printGraph(g);
map<Edge, getEdgeCode *, EdgeCompare> codeInsertions;
getCodeInsertions(g, codeInsertions, chords,increment);
DEBUG (//print edges with code for debugging
cerr<<"Code inserted in following---------------\n";
for(map<Edge, getEdgeCode *>::iterator cd_i=codeInsertions.begin(),
cd_e=codeInsertions.end(); cd_i!=cd_e; ++cd_i){
printEdge(cd_i->first);
cerr<<cd_i->second->getCond()<<":"<<cd_i->second->getInc()<<"\n";
}
cerr<<"-----end insertions\n");
#ifdef DEBUG_PATH_PROFILES
//print edges with code for debugging
cerr<<"Code inserted in following---------------\n";
for(map<Edge, getEdgeCode *>::iterator cd_i=codeInsertions.begin(),
cd_e=codeInsertions.end(); cd_i!=cd_e; ++cd_i){
printEdge(cd_i->first);
cerr<<cd_i->second->getCond()<<":"<<cd_i->second->getInc()<<"\n";
}
cerr<<"-----end insertions\n";
#endif
//step 7: move code on dummy edges over to the back edges
//Move the incoming dummy edge code and outgoing dummy
//edge code over to the corresponding back edge
moveDummyCode(stDummy, exDummy, be, codeInsertions);
DEBUG(//debugging info
cerr<<"After moving dummy code\n";
for(map<Edge, getEdgeCode *>::iterator cd_i=codeInsertions.begin(),
cd_e=codeInsertions.end(); cd_i != cd_e; ++cd_i){
printEdge(cd_i->first);
cerr<<cd_i->second->getCond()<<":"
<<cd_i->second->getInc()<<"\n";
}
cerr<<"Dummy end------------\n");
moveDummyCode(stDummy, exDummy, be, codeInsertions, g);
//cerr<<"After dummy removals\n";
//printGraph(g);
#ifdef DEBUG_PATH_PROFILES
//debugging info
cerr<<"After moving dummy code\n";
for(map<Edge, getEdgeCode *>::iterator cd_i=codeInsertions.begin(),
cd_e=codeInsertions.end(); cd_i != cd_e; ++cd_i){
printEdge(cd_i->first);
cerr<<cd_i->second->getCond()<<":"
<<cd_i->second->getInc()<<"\n";
}
cerr<<"Dummy end------------\n";
#endif
//see what it looks like...
//now insert code along edges which have codes on them
for(map<Edge, getEdgeCode *>::iterator MI=codeInsertions.begin(),
ME=codeInsertions.end(); MI!=ME; ++MI){
Edge ed=MI->first;
insertBB(ed, MI->second, rInst, countInst);
insertBB(ed, MI->second, rInst, countInst, numPaths, MethNo);
}
}
@ -610,18 +750,230 @@ void processGraph(Graph &g,
//print the graph (for debugging)
void printGraph(Graph &g){
list<Node *> lt=g.getAllNodes();
vector<Node *> lt=g.getAllNodes();
cerr<<"Graph---------------------\n";
for(list<Node *>::iterator LI=lt.begin();
for(vector<Node *>::iterator LI=lt.begin();
LI!=lt.end(); ++LI){
cerr<<((*LI)->getElement())->getName()<<"->";
Graph::nodeList nl=g.getNodeList(*LI);
for(Graph::nodeList::iterator NI=nl.begin();
NI!=nl.end(); ++NI){
cerr<<":"<<"("<<(NI->element->getElement())
->getName()<<":"<<NI->element->getWeight()<<","<<NI->weight<<")";
->getName()<<":"<<NI->element->getWeight()<<","<<NI->weight<<","
<<NI->randId<<")";
}
cerr<<"\n";
}
cerr<<"--------------------Graph\n";
}
/*
////////// Getting back BBs from path number
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/iMemory.h"
#include "llvm/iTerminators.h"
#include "llvm/iOther.h"
#include "llvm/iOperators.h"
#include "llvm/Support/CFG.h"
#include "llvm/BasicBlock.h"
#include "llvm/Pass.h"
void getPathFrmNode(Node *n, vector<BasicBlock*> &vBB, int pathNo, Graph g,
vector<Edge> &stDummy, vector<Edge> &exDummy, vector<Edge> &be,
double strand){
Graph::nodeList nlist=g.getNodeList(n);
int maxCount=-9999999;
bool isStart=false;
if(*n==*g.getRoot())//its root: so first node of path
isStart=true;
double edgeRnd=0;
Node *nextRoot=n;
for(Graph::nodeList::iterator NLI=nlist.begin(), NLE=nlist.end(); NLI!=NLE;
++NLI){
//cerr<<"Saw:"<<NLI->weight<<endl;
if(NLI->weight>maxCount && NLI->weight<=pathNo){
maxCount=NLI->weight;
nextRoot=NLI->element;
edgeRnd=NLI->randId;
if(isStart)
strand=NLI->randId;
}
}
//cerr<<"Max:"<<maxCount<<endl;
if(!isStart)
assert(strand!=-1 && "strand not assigned!");
assert(!(*nextRoot==*n && pathNo>0) && "No more BBs to go");
assert(!(*nextRoot==*g.getExit() && pathNo-maxCount!=0) && "Reached exit");
vBB.push_back(n->getElement());
if(pathNo-maxCount==0 && *nextRoot==*g.getExit()){
//look for strnd and edgeRnd now:
bool has1=false, has2=false;
//check if exit has it
for(vector<Edge>::iterator VI=exDummy.begin(), VE=exDummy.end(); VI!=VE;
++VI){
if(VI->getRandId()==edgeRnd){
has2=true;
//cerr<<"has2: looking at"<<std::endl;
//printEdge(*VI);
break;
}
}
//check if start has it
for(vector<Edge>::iterator VI=stDummy.begin(), VE=stDummy.end(); VI!=VE;
++VI){
if(VI->getRandId()==strand){
//cerr<<"has1: looking at"<<std::endl;
//printEdge(*VI);
has1=true;
break;
}
}
if(has1){
//find backedge with endpoint vBB[1]
for(vector<Edge>::iterator VI=be.begin(), VE=be.end(); VI!=VE; ++VI){
assert(vBB.size()>0 && "vector too small");
if( VI->getSecond()->getElement() == vBB[1] ){
vBB[0]=VI->getFirst()->getElement();
break;
}
}
}
if(has2){
//find backedge with startpoint vBB[vBB.size()-1]
for(vector<Edge>::iterator VI=be.begin(), VE=be.end(); VI!=VE; ++VI){
assert(vBB.size()>0 && "vector too small");
if( VI->getFirst()->getElement() == vBB[vBB.size()-1] ){
//if(vBB[0]==VI->getFirst()->getElement())
//vBB.erase(vBB.begin()+vBB.size()-1);
//else
vBB.push_back(VI->getSecond()->getElement());
break;
}
}
}
else
vBB.push_back(nextRoot->getElement());
return;
}
assert(pathNo-maxCount>=0);
return getPathFrmNode(nextRoot, vBB, pathNo-maxCount, g, stDummy,
exDummy, be, strand);
}
static Node *findBB(std::vector<Node *> &st, BasicBlock *BB){
for(std::vector<Node *>::iterator si=st.begin(); si!=st.end(); ++si){
if(((*si)->getElement())==BB){
return *si;
}
}
return NULL;
}
void getBBtrace(vector<BasicBlock *> &vBB, int pathNo, Function *M){
//step 1: create graph
//Transform the cfg s.t. we have just one exit node
std::vector<Node *> nodes;
std::vector<Edge> edges;
Node *tmp;
Node *exitNode=0, *startNode=0;
BasicBlock *ExitNode = 0;
for (Function::iterator I = M->begin(), E = M->end(); I != E; ++I) {
BasicBlock *BB = *I;
if (isa<ReturnInst>(BB->getTerminator())) {
ExitNode = BB;
break;
}
}
assert(ExitNode!=0 && "exitnode not found");
//iterating over BBs and making graph
//The nodes must be uniquesly identified:
//That is, no two nodes must hav same BB*
//First enter just nodes: later enter edges
for(Function::iterator BB = M->begin(), BE=M->end(); BB != BE; ++BB){
Node *nd=new Node(*BB);
nodes.push_back(nd);
if(*BB==ExitNode)
exitNode=nd;
if(*BB==M->front())
startNode=nd;
}
assert(exitNode!=0 && startNode!=0 && "Start or exit not found!");
for (Function::iterator BB = M->begin(), BE=M->end(); BB != BE; ++BB){
Node *nd=findBB(nodes, *BB);
assert(nd && "No node for this edge!");
for(BasicBlock::succ_iterator s=succ_begin(*BB), se=succ_end(*BB);
s!=se; ++s){
Node *nd2=findBB(nodes,*s);
assert(nd2 && "No node for this edge!");
Edge ed(nd,nd2,0);
edges.push_back(ed);
}
}
static bool printed=false;
Graph g(nodes,edges, startNode, exitNode);
//if(!printed)
//printGraph(g);
if (M->getBasicBlocks().size() <= 1) return; //uninstrumented
//step 2: getBackEdges
vector<Edge> be;
g.getBackEdges(be);
//cerr<<"BackEdges\n";
//for(vector<Edge>::iterator VI=be.begin(); VI!=be.end(); ++VI){
//printEdge(*VI);
//cerr<<"\n";
//}
//cerr<<"------\n";
//step 3: add dummy edges
vector<Edge> stDummy;
vector<Edge> exDummy;
addDummyEdges(stDummy, exDummy, g, be);
//cerr<<"After adding dummy edges\n";
//printGraph(g);
//step 4: value assgn to edges
int numPaths=valueAssignmentToEdges(g);
//if(!printed){
//printGraph(g);
//printed=true;
//}
//step 5: now travel from root, select max(edge) < pathNo,
//and go on until reach the exit
return getPathFrmNode(g.getRoot(), vBB, pathNo, g, stDummy, exDummy, be, -1);
}
*/

View File

@ -6,12 +6,15 @@
//
//===----------------------------------------------------------------------===//
#include "Graph.h"
#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
#include "llvm/Function.h"
#include "llvm/Pass.h"
#include "llvm/BasicBlock.h"
#include "llvm/Transforms/Instrumentation/Graph.h"
#include <algorithm>
#include <iostream>
using std::list;
//using std::list;
using std::map;
using std::vector;
using std::cerr;
@ -25,13 +28,13 @@ static bool edgesEqual(Edge ed1, Edge ed2){
static void getChords(vector<Edge > &chords, Graph &g, Graph st){
//make sure the spanning tree is directional
//iterate over ALL the edges of the graph
list<Node *> allNodes=g.getAllNodes();
for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
vector<Node *> allNodes=g.getAllNodes();
for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
++NI){
Graph::nodeList node_list=g.getNodeList(*NI);
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
NLI!=NLE; ++NLI){
Edge f(*NI, NLI->element,NLI->weight);
Edge f(*NI, NLI->element,NLI->weight, NLI->randId);
if(!(st.hasEdgeAndWt(f)))//addnl
chords.push_back(f);
}
@ -46,8 +49,8 @@ static void getChords(vector<Edge > &chords, Graph &g, Graph st){
//the tree so that now, all edge directions in the tree match
//the edge directions of corresponding edges in the directed graph
static void removeTreeEdges(Graph &g, Graph& t){
list<Node* > allNodes=t.getAllNodes();
for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
vector<Node* > allNodes=t.getAllNodes();
for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
++NI){
Graph::nodeList nl=t.getNodeList(*NI);
for(Graph::nodeList::iterator NLI=nl.begin(), NLE=nl.end(); NLI!=NLE;++NLI){
@ -64,18 +67,40 @@ static void removeTreeEdges(Graph &g, Graph& t){
//add up the edge values, we get a path number that uniquely
//refers to the path we travelled
int valueAssignmentToEdges(Graph& g){
list<Node *> revtop=g.reverseTopologicalSort();
vector<Node *> revtop=g.reverseTopologicalSort();
/*
std::cerr<<"-----------Reverse topological sort\n";
for(vector<Node *>::iterator RI=revtop.begin(), RE=revtop.end(); RI!=RE; ++RI){
std::cerr<<(*RI)->getElement()->getName()<<":";
}
std::cerr<<"\n----------------------"<<std::endl;
*/
map<Node *,int > NumPaths;
for(list<Node *>::iterator RI=revtop.begin(), RE=revtop.end(); RI!=RE; ++RI){
for(vector<Node *>::iterator RI=revtop.begin(), RE=revtop.end(); RI!=RE; ++RI){
if(g.isLeaf(*RI))
NumPaths[*RI]=1;
else{
NumPaths[*RI]=0;
list<Node *> succ=g.getSuccNodes(*RI);
for(list<Node *>::iterator SI=succ.begin(), SE=succ.end(); SI!=SE; ++SI){
Edge ed(*RI,*SI,NumPaths[*RI]);
g.setWeight(ed);
NumPaths[*RI]+=NumPaths[*SI];
/////
Graph::nodeList &nlist=g.getNodeList(*RI);
//sort nodelist by increasing order of numpaths
int sz=nlist.size();
for(int i=0;i<sz-1; i++){
int min=i;
for(int j=i+1; j<sz; j++)
if(NumPaths[nlist[j].element]<NumPaths[nlist[min].element]) min=j;
graphListElement tempEl=nlist[min];
nlist[min]=nlist[i];
nlist[i]=tempEl;
}
//sorted now!
for(Graph::nodeList::iterator GLI=nlist.begin(), GLE=nlist.end();
GLI!=GLE; ++GLI){
GLI->weight=NumPaths[*RI];
NumPaths[*RI]+=NumPaths[GLI->element];
}
}
}
@ -108,19 +133,26 @@ static int inc_Dir(Edge e, Edge f){
return -1;
}
//used for getting edge increments (read comments above in inc_Dir)
//inc_DFS is a modification of DFS
static void inc_DFS(Graph& g,Graph& t,map<Edge, int>& Increment,
static void inc_DFS(Graph& g,Graph& t,map<Edge, int, EdgeCompare>& Increment,
int events, Node *v, Edge e){
list<Node *> allNodes=t.getAllNodes();
for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
vector<Node *> allNodes=t.getAllNodes();
//cerr<<"Called for\n";
//if(!e.isNull())
//printEdge(e);
for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
++NI){
Graph::nodeList node_list=t.getNodeList(*NI);
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
NLI!= NLE; ++NLI){
Edge f(*NI, NLI->element,NLI->weight);
Edge f(*NI, NLI->element,NLI->weight, NLI->randId);
if(!edgesEqual(f,e) && *v==*(f.getSecond())){
int dir_count=inc_Dir(e,f);
int wt=1*f.getWeight();
@ -129,15 +161,15 @@ static void inc_DFS(Graph& g,Graph& t,map<Edge, int>& Increment,
}
}
for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
++NI){
Graph::nodeList node_list=t.getNodeList(*NI);
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
NLI!=NLE; ++NLI){
Edge f(*NI, NLI->element,NLI->weight);
Edge f(*NI, NLI->element,NLI->weight, NLI->randId);
if(!edgesEqual(f,e) && *v==*(f.getFirst())){
int dir_count=inc_Dir(e,f);
int wt=1*f.getWeight();
int wt=f.getWeight();
inc_DFS(g,t, Increment, dir_count*events+wt,
f.getSecond(), f);
}
@ -145,16 +177,18 @@ static void inc_DFS(Graph& g,Graph& t,map<Edge, int>& Increment,
}
allNodes=g.getAllNodes();
for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
++NI){
Graph::nodeList node_list=g.getNodeList(*NI);
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
NLI!=NLE; ++NLI){
Edge f(*NI, NLI->element,NLI->weight);
Edge f(*NI, NLI->element,NLI->weight, NLI->randId);
if(!(t.hasEdgeAndWt(f)) && (*v==*(f.getSecond()) ||
*v==*(f.getFirst()))){
int dir_count=inc_Dir(e,f);
Increment[f]+=dir_count*events;
//cerr<<"assigned "<<Increment[f]<<" to"<<endl;
//printEdge(f);
}
}
}
@ -164,19 +198,19 @@ static void inc_DFS(Graph& g,Graph& t,map<Edge, int>& Increment,
//and assign them some values such that
//if we consider just this subset, it still represents
//the path sum along any path in the graph
static map<Edge, int> getEdgeIncrements(Graph& g, Graph& t){
static map<Edge, int, EdgeCompare> getEdgeIncrements(Graph& g, Graph& t){
//get all edges in g-t
map<Edge, int> Increment;
map<Edge, int, EdgeCompare> Increment;
list<Node *> allNodes=g.getAllNodes();
vector<Node *> allNodes=g.getAllNodes();
for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
++NI){
Graph::nodeList node_list=g.getNodeList(*NI);
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
NLI!=NLE; ++NLI){
Edge ed(*NI, NLI->element,NLI->weight);
if(!(t.hasEdge(ed))){
Edge ed(*NI, NLI->element,NLI->weight,NLI->randId);
if(!(t.hasEdgeAndWt(ed))){
Increment[ed]=0;;
}
}
@ -185,14 +219,13 @@ static map<Edge, int> getEdgeIncrements(Graph& g, Graph& t){
Edge *ed=new Edge();
inc_DFS(g,t,Increment, 0, g.getRoot(), *ed);
for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
++NI){
Graph::nodeList node_list=g.getNodeList(*NI);
for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end();
NLI!=NLE; ++NLI){
Edge ed(*NI, NLI->element,NLI->weight);
if(!(t.hasEdge(ed))){
Edge ed(*NI, NLI->element,NLI->weight, NLI->randId);
if(!(t.hasEdgeAndWt(ed))){
int wt=ed.getWeight();
Increment[ed]+=wt;
}
@ -202,13 +235,20 @@ static map<Edge, int> getEdgeIncrements(Graph& g, Graph& t){
return Increment;
}
//push it up: TODO
const graphListElement *findNodeInList(const Graph::nodeList &NL,
Node *N);
graphListElement *findNodeInList(Graph::nodeList &NL, Node *N);
//end TODO
//Based on edgeIncrements (above), now obtain
//the kind of code to be inserted along an edge
//The idea here is to minimize the computation
//by inserting only the needed code
static void getCodeInsertions(Graph &g, map<Edge, getEdgeCode *> &instr,
static void getCodeInsertions(Graph &g, map<Edge, getEdgeCode *, EdgeCompare> &instr,
vector<Edge > &chords,
map<Edge,int> &edIncrements){
map<Edge,int, EdgeCompare> &edIncrements){
//Register initialization code
vector<Node *> ws;
@ -224,29 +264,34 @@ static void getCodeInsertions(Graph &g, map<Edge, getEdgeCode *> &instr,
int edgeWt=nl->weight;
Node *w=nl->element;
//if chords has v->w
Edge ed(v,w);
Edge ed(v,w, edgeWt, nl->randId);
//cerr<<"Assign:\n";
//printEdge(ed);
bool hasEdge=false;
for(vector<Edge>::iterator CI=chords.begin(), CE=chords.end();
CI!=CE && !hasEdge;++CI){
if(*CI==ed){
if(*CI==ed && CI->getWeight()==edgeWt){//modf
hasEdge=true;
}
}
if(hasEdge){
if(hasEdge){//so its a chord edge
getEdgeCode *edCd=new getEdgeCode();
edCd->setCond(1);
edCd->setInc(edIncrements[ed]);
instr[ed]=edCd;
//std::cerr<<"Case 1\n";
}
else if((g.getPredNodes(w)).size()==1){
else if(g.getNumberOfIncomingEdges(w)==1){
ws.push_back(w);
//std::cerr<<"Added w\n";
}
else{
getEdgeCode *edCd=new getEdgeCode();
edCd->setCond(2);
edCd->setInc(0);
instr[ed]=edCd;
//std::cerr<<"Case 2\n";
}
}
}
@ -257,44 +302,55 @@ static void getCodeInsertions(Graph &g, map<Edge, getEdgeCode *> &instr,
while(!ws.empty()) {
Node *w=ws.back();
ws.pop_back();
//for each edge v->w
list<Node *> preds=g.getPredNodes(w);
for(list<Node *>::iterator pd=preds.begin(), pe=preds.end(); pd!=pe; ++pd){
Node *v=*pd;
//if chords has v->w
Edge ed(v,w);
getEdgeCode *edCd=new getEdgeCode();
bool hasEdge=false;
for(vector<Edge>::iterator CI=chords.begin(), CE=chords.end(); CI!=CE;
++CI){
if(*CI==ed){
hasEdge=true;
break;
///////
//vector<Node *> lt;
vector<Node *> lllt=g.getAllNodes();
for(vector<Node *>::iterator EII=lllt.begin(); EII!=lllt.end() ;++EII){
Node *lnode=*EII;
Graph::nodeList &nl = g.getNodeList(lnode);
//cerr<<"Size:"<<lllt.size()<<"\n";
//cerr<<lnode->getElement()->getName()<<"\n";
graphListElement *N = findNodeInList(nl, w);
if (N){// lt.push_back(lnode);
//Node *v=*pd;
//Node *v=N->element;
Node *v=lnode;
//if chords has v->w
Edge ed(v,w, N->weight, N->randId);
getEdgeCode *edCd=new getEdgeCode();
bool hasEdge=false;
for(vector<Edge>::iterator CI=chords.begin(), CE=chords.end(); CI!=CE;
++CI){
if(*CI==ed && CI->getWeight()==N->weight){
hasEdge=true;
break;
}
}
}
if(hasEdge){
char str[100];
if(instr[ed]!=NULL && instr[ed]->getCond()==1){
instr[ed]->setCond(4);
if(hasEdge){
char str[100];
if(instr[ed]!=NULL && instr[ed]->getCond()==1){
instr[ed]->setCond(4);
}
else{
edCd->setCond(5);
edCd->setInc(edIncrements[ed]);
instr[ed]=edCd;
}
}
else if(g.getNumberOfOutgoingEdges(v)==1)
ws.push_back(v);
else{
edCd->setCond(5);
edCd->setInc(edIncrements[ed]);
edCd->setCond(6);
instr[ed]=edCd;
}
}
else if(g.getSuccNodes(v).size()==1)
ws.push_back(v);
else{
edCd->setCond(6);
instr[ed]=edCd;
}
}
}
///// Register increment code
for(vector<Edge>::iterator CI=chords.begin(), CE=chords.end(); CI!=CE; ++CI){
getEdgeCode *edCd=new getEdgeCode();
@ -310,6 +366,7 @@ static void getCodeInsertions(Graph &g, map<Edge, getEdgeCode *> &instr,
//If a->b is a backedge
//then incoming dummy edge is root->b
//and outgoing dummy edge is a->exit
//changed
void addDummyEdges(vector<Edge > &stDummy,
vector<Edge > &exDummy,
Graph &g, vector<Edge> &be){
@ -320,21 +377,15 @@ void addDummyEdges(vector<Edge > &stDummy,
g.removeEdge(ed);
if(!(*second==*(g.getRoot()))){
Edge *st=new Edge(g.getRoot(), second);
//check if stDummy doesn't have it already
if(find(stDummy.begin(), stDummy.end(), *st) == stDummy.end())
stDummy.push_back(*st);
Edge *st=new Edge(g.getRoot(), second, ed.getWeight(), ed.getRandId());
stDummy.push_back(*st);
g.addEdgeForce(*st);
}
if(!(*first==*(g.getExit()))){
Edge *ex=new Edge(first, g.getExit());
if (find(exDummy.begin(), exDummy.end(), *ex) == exDummy.end()) {
exDummy.push_back(*ex);
g.addEdgeForce(*ex);
}
Edge *ex=new Edge(first, g.getExit(), ed.getWeight(), ed.getRandId());
exDummy.push_back(*ex);
g.addEdgeForce(*ex);
}
}
}
@ -344,34 +395,73 @@ void printEdge(Edge ed){
cerr<<((ed.getFirst())->getElement())
->getName()<<"->"<<((ed.getSecond())
->getElement())->getName()<<
":"<<ed.getWeight()<<"\n";
":"<<ed.getWeight()<<" rndId::"<<ed.getRandId()<<"\n";
}
//Move the incoming dummy edge code and outgoing dummy
//edge code over to the corresponding back edge
static void moveDummyCode(const vector<Edge> &stDummy,
const vector<Edge> &exDummy,
const vector<Edge> &be,
map<Edge, getEdgeCode *> &insertions){
typedef vector<Edge >::const_iterator vec_iter;
static void moveDummyCode(vector<Edge> &stDummy,
vector<Edge> &exDummy,
vector<Edge> &be,
map<Edge, getEdgeCode *, EdgeCompare> &insertions,
Graph &g){
typedef vector<Edge >::iterator vec_iter;
DEBUG( //print all back, st and ex dummy
cerr<<"BackEdges---------------\n";
for(vec_iter VI=be.begin(); VI!=be.end(); ++VI)
printEdge(*VI);
cerr<<"StEdges---------------\n";
for(vec_iter VI=stDummy.begin(); VI!=stDummy.end(); ++VI)
printEdge(*VI);
cerr<<"ExitEdges---------------\n";
for(vec_iter VI=exDummy.begin(); VI!=exDummy.end(); ++VI)
printEdge(*VI);
cerr<<"------end all edges\n");
map<Edge,getEdgeCode *, EdgeCompare> temp;
//iterate over edges with code
std::vector<Edge> toErase;
for(map<Edge,getEdgeCode *>::iterator MI=insertions.begin(),
for(map<Edge,getEdgeCode *, EdgeCompare>::iterator MI=insertions.begin(),
ME=insertions.end(); MI!=ME; ++MI){
Edge ed=MI->first;
getEdgeCode *edCd=MI->second;
///---new code
//iterate over be, and check if its starts and end vertices hv code
for(vector<Edge>::iterator BEI=be.begin(), BEE=be.end(); BEI!=BEE; ++BEI){
if(ed.getRandId()==BEI->getRandId()){
//cerr<<"Looking at edge--------\n";
//printEdge(ed);
if(temp[*BEI]==0)
temp[*BEI]=new getEdgeCode();
//so ed is either in st, or ex!
if(ed.getFirst()==g.getRoot()){
//so its in stDummy
temp[*BEI]->setCdIn(edCd);
toErase.push_back(ed);
}
else if(ed.getSecond()==g.getExit()){
//so its in exDummy
toErase.push_back(ed);
temp[*BEI]->setCdOut(edCd);
}
else{
assert(false && "Not found in either start or end! Rand failed?");
}
}
}
}
for(vector<Edge >::iterator vmi=toErase.begin(), vme=toErase.end(); vmi!=vme;
++vmi){
insertions.erase(*vmi);
//cerr<<"Erasing from insertion\n";
//printEdge(*vmi);
g.removeEdgeWithWt(*vmi);
}
for(map<Edge,getEdgeCode *, EdgeCompare>::iterator MI=temp.begin(),
ME=temp.end(); MI!=ME; ++MI){
insertions[MI->first]=MI->second;
//cerr<<"inserting into insertion-----\n";
//printEdge(MI->first);
}
//cerr<<"----\n";
/*
///---new code end
bool dummyHasIt=false;
DEBUG(cerr<<"Current edge considered---\n";
@ -381,8 +471,10 @@ static void moveDummyCode(const vector<Edge> &stDummy,
for(vec_iter VI=stDummy.begin(), VE=stDummy.end(); VI!=VE && !dummyHasIt;
++VI){
if(*VI==ed){
DEBUG(cerr<<"Edge matched with stDummy\n");
//#ifdef DEBUG_PATH_PROFILES
cerr<<"Edge matched with stDummy\n";
printEdge(ed);
//#endif
dummyHasIt=true;
bool dummyInBe=false;
//dummy edge with code
@ -392,17 +484,24 @@ static void moveDummyCode(const vector<Edge> &stDummy,
Node *dm=ed.getSecond();
if(*dm==*st){
//so this is the back edge to use
DEBUG(cerr<<"Moving to backedge\n";
printEdge(backEdge));
//#ifdef DEBUG_PATH_PROFILES
cerr<<"Moving to backedge\n";
printEdge(backEdge);
//#endif
getEdgeCode *ged=new getEdgeCode();
ged->setCdIn(edCd);
toErase.push_back(ed);
toErase.push_back(ed);//MI);//ed);
insertions[backEdge]=ged;
dummyInBe=true;
}
}
assert(dummyInBe);
//modf
//new
//vec_iter VII=VI;
stDummy.erase(VI);
break;
//end new
}
}
if(!dummyHasIt){
@ -412,7 +511,10 @@ static void moveDummyCode(const vector<Edge> &stDummy,
++VI){
if(*VI==ed){
inExDummy=true;
DEBUG(cerr<<"Edge matched with exDummy\n");
//#ifdef DEBUG_PATH_PROFILES
cerr<<"Edge matched with exDummy\n";
//#endif
bool dummyInBe2=false;
//dummy edge with code
for(vec_iter BE=be.begin(), BEE=be.end(); BE!=BEE && !dummyInBe2;
@ -422,30 +524,45 @@ static void moveDummyCode(const vector<Edge> &stDummy,
Node *dm=ed.getFirst();
if(*dm==*st){
//so this is the back edge to use
cerr<<"Moving to backedge\n";
printEdge(backEdge);
getEdgeCode *ged;
if(insertions[backEdge]==NULL)
ged=new getEdgeCode();
else
ged=insertions[backEdge];
toErase.push_back(ed);
toErase.push_back(ed);//MI);//ed);
ged->setCdOut(edCd);
insertions[backEdge]=ged;
dummyInBe2=true;
}
}
assert(dummyInBe2);
//modf
//vec_iter VII=VI;
exDummy.erase(VI);
break;
//end
}
}
}
}
DEBUG(cerr<<"size of deletions: "<<toErase.size()<<"\n");
*/
#ifdef DEBUG_PATH_PROFILES
cerr<<"size of deletions: "<<toErase.size()<<"\n";
#endif
/*
for(vector<map<Edge, getEdgeCode *>::iterator>::iterator
vmi=toErase.begin(), vme=toErase.end(); vmi!=vme; ++vmi)
for(vector<Edge >::iterator vmi=toErase.begin(), vme=toErase.end(); vmi!=vme;
++vmi)
insertions.erase(*vmi);
*/
#ifdef DEBUG_PATH_PROFILES
cerr<<"SIZE OF INSERTIONS AFTER DEL "<<insertions.size()<<"\n";
#endif
DEBUG(cerr<<"SIZE OF INSERTIONS AFTER DEL "<<insertions.size()<<"\n");
}
//Do graph processing: to determine minimal edge increments,
@ -456,7 +573,11 @@ void processGraph(Graph &g,
Instruction *countInst,
vector<Edge >& be,
vector<Edge >& stDummy,
vector<Edge >& exDummy){
vector<Edge >& exDummy,
int numPaths){
static int MethNo=0;
MethNo++;
//Given a graph: with exit->root edge, do the following in seq:
//1. get back edges
//2. insert dummy edges and remove back edges
@ -502,8 +623,10 @@ void processGraph(Graph &g,
DEBUG(printGraph(g2));
Graph *t=g2.getMaxSpanningTree();
DEBUG(printGraph(*t));
//#ifdef DEBUG_PATH_PROFILES
//cerr<<"Original maxspanning tree\n";
//printGraph(*t);
//#endif
//now edges of tree t have weights reversed
//(negative) because the algorithm used
//to find max spanning tree is
@ -527,9 +650,11 @@ void processGraph(Graph &g,
//the edge directions of corresponding edges in the directed graph
removeTreeEdges(g, *t);
DEBUG(cerr<<"Spanning tree---------\n";
printGraph(*t);
cerr<<"-------end spanning tree\n");
#ifdef DEBUG_PATH_PROFILES
cerr<<"Final Spanning tree---------\n";
printGraph(*t);
cerr<<"-------end spanning tree\n";
#endif
//now remove the exit->root node
//and re-add it with weight 0
@ -551,14 +676,18 @@ void processGraph(Graph &g,
//and assign them some values such that
//if we consider just this subset, it still represents
//the path sum along any path in the graph
map<Edge, int> increment=getEdgeIncrements(g,*t);
DEBUG(//print edge increments for debugging
for(map<Edge, int>::iterator MI=increment.begin(), ME = increment.end();
MI != ME; ++MI) {
printEdge(MI->first);
cerr << "Increment for above:" << MI->second << "\n";
});
map<Edge, int, EdgeCompare> increment=getEdgeIncrements(g,*t);
#ifdef DEBUG_PATH_PROFILES
//print edge increments for debugging
for(map<Edge, int, EdgeCompare>::iterator M_I=increment.begin(), M_E=increment.end();
M_I!=M_E; ++M_I){
printEdge(M_I->first);
cerr<<"Increment for above:"<<M_I->second<<"\n";
}
#endif
//step 6: Get code insertions
@ -569,40 +698,51 @@ void processGraph(Graph &g,
vector<Edge> chords;
getChords(chords, g, *t);
map<Edge, getEdgeCode *> codeInsertions;
//cerr<<"Graph before getCodeInsertion:\n";
//printGraph(g);
map<Edge, getEdgeCode *, EdgeCompare> codeInsertions;
getCodeInsertions(g, codeInsertions, chords,increment);
DEBUG (//print edges with code for debugging
cerr<<"Code inserted in following---------------\n";
for(map<Edge, getEdgeCode *>::iterator cd_i=codeInsertions.begin(),
cd_e=codeInsertions.end(); cd_i!=cd_e; ++cd_i){
printEdge(cd_i->first);
cerr<<cd_i->second->getCond()<<":"<<cd_i->second->getInc()<<"\n";
}
cerr<<"-----end insertions\n");
#ifdef DEBUG_PATH_PROFILES
//print edges with code for debugging
cerr<<"Code inserted in following---------------\n";
for(map<Edge, getEdgeCode *>::iterator cd_i=codeInsertions.begin(),
cd_e=codeInsertions.end(); cd_i!=cd_e; ++cd_i){
printEdge(cd_i->first);
cerr<<cd_i->second->getCond()<<":"<<cd_i->second->getInc()<<"\n";
}
cerr<<"-----end insertions\n";
#endif
//step 7: move code on dummy edges over to the back edges
//Move the incoming dummy edge code and outgoing dummy
//edge code over to the corresponding back edge
moveDummyCode(stDummy, exDummy, be, codeInsertions);
DEBUG(//debugging info
cerr<<"After moving dummy code\n";
for(map<Edge, getEdgeCode *>::iterator cd_i=codeInsertions.begin(),
cd_e=codeInsertions.end(); cd_i != cd_e; ++cd_i){
printEdge(cd_i->first);
cerr<<cd_i->second->getCond()<<":"
<<cd_i->second->getInc()<<"\n";
}
cerr<<"Dummy end------------\n");
moveDummyCode(stDummy, exDummy, be, codeInsertions, g);
//cerr<<"After dummy removals\n";
//printGraph(g);
#ifdef DEBUG_PATH_PROFILES
//debugging info
cerr<<"After moving dummy code\n";
for(map<Edge, getEdgeCode *>::iterator cd_i=codeInsertions.begin(),
cd_e=codeInsertions.end(); cd_i != cd_e; ++cd_i){
printEdge(cd_i->first);
cerr<<cd_i->second->getCond()<<":"
<<cd_i->second->getInc()<<"\n";
}
cerr<<"Dummy end------------\n";
#endif
//see what it looks like...
//now insert code along edges which have codes on them
for(map<Edge, getEdgeCode *>::iterator MI=codeInsertions.begin(),
ME=codeInsertions.end(); MI!=ME; ++MI){
Edge ed=MI->first;
insertBB(ed, MI->second, rInst, countInst);
insertBB(ed, MI->second, rInst, countInst, numPaths, MethNo);
}
}
@ -610,18 +750,230 @@ void processGraph(Graph &g,
//print the graph (for debugging)
void printGraph(Graph &g){
list<Node *> lt=g.getAllNodes();
vector<Node *> lt=g.getAllNodes();
cerr<<"Graph---------------------\n";
for(list<Node *>::iterator LI=lt.begin();
for(vector<Node *>::iterator LI=lt.begin();
LI!=lt.end(); ++LI){
cerr<<((*LI)->getElement())->getName()<<"->";
Graph::nodeList nl=g.getNodeList(*LI);
for(Graph::nodeList::iterator NI=nl.begin();
NI!=nl.end(); ++NI){
cerr<<":"<<"("<<(NI->element->getElement())
->getName()<<":"<<NI->element->getWeight()<<","<<NI->weight<<")";
->getName()<<":"<<NI->element->getWeight()<<","<<NI->weight<<","
<<NI->randId<<")";
}
cerr<<"\n";
}
cerr<<"--------------------Graph\n";
}
/*
////////// Getting back BBs from path number
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/iMemory.h"
#include "llvm/iTerminators.h"
#include "llvm/iOther.h"
#include "llvm/iOperators.h"
#include "llvm/Support/CFG.h"
#include "llvm/BasicBlock.h"
#include "llvm/Pass.h"
void getPathFrmNode(Node *n, vector<BasicBlock*> &vBB, int pathNo, Graph g,
vector<Edge> &stDummy, vector<Edge> &exDummy, vector<Edge> &be,
double strand){
Graph::nodeList nlist=g.getNodeList(n);
int maxCount=-9999999;
bool isStart=false;
if(*n==*g.getRoot())//its root: so first node of path
isStart=true;
double edgeRnd=0;
Node *nextRoot=n;
for(Graph::nodeList::iterator NLI=nlist.begin(), NLE=nlist.end(); NLI!=NLE;
++NLI){
//cerr<<"Saw:"<<NLI->weight<<endl;
if(NLI->weight>maxCount && NLI->weight<=pathNo){
maxCount=NLI->weight;
nextRoot=NLI->element;
edgeRnd=NLI->randId;
if(isStart)
strand=NLI->randId;
}
}
//cerr<<"Max:"<<maxCount<<endl;
if(!isStart)
assert(strand!=-1 && "strand not assigned!");
assert(!(*nextRoot==*n && pathNo>0) && "No more BBs to go");
assert(!(*nextRoot==*g.getExit() && pathNo-maxCount!=0) && "Reached exit");
vBB.push_back(n->getElement());
if(pathNo-maxCount==0 && *nextRoot==*g.getExit()){
//look for strnd and edgeRnd now:
bool has1=false, has2=false;
//check if exit has it
for(vector<Edge>::iterator VI=exDummy.begin(), VE=exDummy.end(); VI!=VE;
++VI){
if(VI->getRandId()==edgeRnd){
has2=true;
//cerr<<"has2: looking at"<<std::endl;
//printEdge(*VI);
break;
}
}
//check if start has it
for(vector<Edge>::iterator VI=stDummy.begin(), VE=stDummy.end(); VI!=VE;
++VI){
if(VI->getRandId()==strand){
//cerr<<"has1: looking at"<<std::endl;
//printEdge(*VI);
has1=true;
break;
}
}
if(has1){
//find backedge with endpoint vBB[1]
for(vector<Edge>::iterator VI=be.begin(), VE=be.end(); VI!=VE; ++VI){
assert(vBB.size()>0 && "vector too small");
if( VI->getSecond()->getElement() == vBB[1] ){
vBB[0]=VI->getFirst()->getElement();
break;
}
}
}
if(has2){
//find backedge with startpoint vBB[vBB.size()-1]
for(vector<Edge>::iterator VI=be.begin(), VE=be.end(); VI!=VE; ++VI){
assert(vBB.size()>0 && "vector too small");
if( VI->getFirst()->getElement() == vBB[vBB.size()-1] ){
//if(vBB[0]==VI->getFirst()->getElement())
//vBB.erase(vBB.begin()+vBB.size()-1);
//else
vBB.push_back(VI->getSecond()->getElement());
break;
}
}
}
else
vBB.push_back(nextRoot->getElement());
return;
}
assert(pathNo-maxCount>=0);
return getPathFrmNode(nextRoot, vBB, pathNo-maxCount, g, stDummy,
exDummy, be, strand);
}
static Node *findBB(std::vector<Node *> &st, BasicBlock *BB){
for(std::vector<Node *>::iterator si=st.begin(); si!=st.end(); ++si){
if(((*si)->getElement())==BB){
return *si;
}
}
return NULL;
}
void getBBtrace(vector<BasicBlock *> &vBB, int pathNo, Function *M){
//step 1: create graph
//Transform the cfg s.t. we have just one exit node
std::vector<Node *> nodes;
std::vector<Edge> edges;
Node *tmp;
Node *exitNode=0, *startNode=0;
BasicBlock *ExitNode = 0;
for (Function::iterator I = M->begin(), E = M->end(); I != E; ++I) {
BasicBlock *BB = *I;
if (isa<ReturnInst>(BB->getTerminator())) {
ExitNode = BB;
break;
}
}
assert(ExitNode!=0 && "exitnode not found");
//iterating over BBs and making graph
//The nodes must be uniquesly identified:
//That is, no two nodes must hav same BB*
//First enter just nodes: later enter edges
for(Function::iterator BB = M->begin(), BE=M->end(); BB != BE; ++BB){
Node *nd=new Node(*BB);
nodes.push_back(nd);
if(*BB==ExitNode)
exitNode=nd;
if(*BB==M->front())
startNode=nd;
}
assert(exitNode!=0 && startNode!=0 && "Start or exit not found!");
for (Function::iterator BB = M->begin(), BE=M->end(); BB != BE; ++BB){
Node *nd=findBB(nodes, *BB);
assert(nd && "No node for this edge!");
for(BasicBlock::succ_iterator s=succ_begin(*BB), se=succ_end(*BB);
s!=se; ++s){
Node *nd2=findBB(nodes,*s);
assert(nd2 && "No node for this edge!");
Edge ed(nd,nd2,0);
edges.push_back(ed);
}
}
static bool printed=false;
Graph g(nodes,edges, startNode, exitNode);
//if(!printed)
//printGraph(g);
if (M->getBasicBlocks().size() <= 1) return; //uninstrumented
//step 2: getBackEdges
vector<Edge> be;
g.getBackEdges(be);
//cerr<<"BackEdges\n";
//for(vector<Edge>::iterator VI=be.begin(); VI!=be.end(); ++VI){
//printEdge(*VI);
//cerr<<"\n";
//}
//cerr<<"------\n";
//step 3: add dummy edges
vector<Edge> stDummy;
vector<Edge> exDummy;
addDummyEdges(stDummy, exDummy, g, be);
//cerr<<"After adding dummy edges\n";
//printGraph(g);
//step 4: value assgn to edges
int numPaths=valueAssignmentToEdges(g);
//if(!printed){
//printGraph(g);
//printed=true;
//}
//step 5: now travel from root, select max(edge) < pathNo,
//and go on until reach the exit
return getPathFrmNode(g.getRoot(), vBB, pathNo, g, stDummy, exDummy, be, -1);
}
*/

View File

@ -21,7 +21,7 @@
// of a function is identified through a unique number. the code insertion
// is optimal in the sense that its inserted over a minimal set of edges. Also,
// the algorithm makes sure than initialization, path increment and counter
// update can be collapsed into minmimum number of edges.
// update can be collapsed into minimum number of edges.
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Instrumentation/ProfilePaths.h"
@ -30,7 +30,9 @@
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/iMemory.h"
#include "Graph.h"
#include "llvm/Transforms/Instrumentation/Graph.h"
#include <iostream>
#include <fstream>
using std::vector;
@ -54,8 +56,8 @@ Pass *createProfilePathsPass() {
}
static Node *findBB(std::set<Node *> &st, BasicBlock *BB){
for(std::set<Node *>::iterator si=st.begin(); si!=st.end(); ++si){
static Node *findBB(std::vector<Node *> &st, BasicBlock *BB){
for(std::vector<Node *>::iterator si=st.begin(); si!=st.end(); ++si){
if(((*si)->getElement())==BB){
return *si;
}
@ -65,12 +67,15 @@ static Node *findBB(std::set<Node *> &st, BasicBlock *BB){
//Per function pass for inserting counters and trigger code
bool ProfilePaths::runOnFunction(Function &F){
static int mn = -1;
// Transform the cfg s.t. we have just one exit node
BasicBlock *ExitNode = getAnalysis<UnifyFunctionExitNodes>().getExitNode();
// iterating over BBs and making graph
std::set<Node *> nodes;
std::set<Edge> edges;
//iterating over BBs and making graph
std::vector<Node *> nodes;
std::vector<Edge> edges;
Node *tmp;
Node *exitNode, *startNode;
@ -78,10 +83,17 @@ bool ProfilePaths::runOnFunction(Function &F){
// That is, no two nodes must hav same BB*
// First enter just nodes: later enter edges
//<<<<<<< ProfilePaths.cpp
//for (Function::iterator BB = M->begin(), BE=M->end(); BB != BE; ++BB){
//Node *nd=new Node(*BB);
//nodes.push_back(nd);
//if(*BB==ExitNode)
//=======
for (Function::iterator BB = F.begin(), BE = F.end(); BB != BE; ++BB) {
Node *nd=new Node(BB);
nodes.insert(nd);
nodes.push_back(nd);
if(&*BB == ExitNode)
//>>>>>>> 1.13
exitNode=nd;
if(&*BB==F.begin())
startNode=nd;
@ -91,38 +103,62 @@ bool ProfilePaths::runOnFunction(Function &F){
for (Function::iterator BB = F.begin(), BE = F.end(); BB != BE; ++BB){
Node *nd=findBB(nodes, BB);
assert(nd && "No node for this edge!");
for(BasicBlock::succ_iterator s=succ_begin(BB), se=succ_end(BB);
s!=se; ++s){
//tempVec.push_back(*s);
//}
//sort(tempVec.begin(), tempVec.end(), BBSort());
//for(vector<BasicBlock *>::iterator s=tempVec.begin(), se=tempVec.end();
//s!=se; ++s){
Node *nd2=findBB(nodes,*s);
assert(nd2 && "No node for this edge!");
Edge ed(nd,nd2,0);
edges.insert(ed);
edges.push_back(ed);
}
}
Graph g(nodes,edges, startNode, exitNode);
DEBUG(printGraph(g));
//#ifdef DEBUG_PATH_PROFILES
//std::cerr<<"Original graph\n";
//printGraph(g);
//#endif
BasicBlock *fr=&F.front();
// If only one BB, don't instrument
if (++F.begin() == F.end()) {
if (++F.begin() == F.end()) {
mn++;
// The graph is made acyclic: this is done
// by removing back edges for now, and adding them later on
vector<Edge> be;
g.getBackEdges(be);
DEBUG(cerr << "Backedges:" << be.size() << "\n");
// Now we need to reflect the effect of back edges
// This is done by adding dummy edges
// If a->b is a back edge
// Then we add 2 back edges for it:
// 1. from root->b (in vector stDummy)
// and 2. from a->exit (in vector exDummy)
//std::cerr<<"BackEdges-------------\n";
// for(vector<Edge>::iterator VI=be.begin(); VI!=be.end(); ++VI){
//printEdge(*VI);
//cerr<<"\n";
//}
//std::cerr<<"------\n";
#ifdef DEBUG_PATH_PROFILES
cerr<<"Backedges:"<<be.size()<<endl;
#endif
//Now we need to reflect the effect of back edges
//This is done by adding dummy edges
//If a->b is a back edge
//Then we add 2 back edges for it:
//1. from root->b (in vector stDummy)
//and 2. from a->exit (in vector exDummy)
vector<Edge> stDummy;
vector<Edge> exDummy;
addDummyEdges(stDummy, exDummy, g, be);
//std::cerr<<"After adding dummy edges\n";
//printGraph(g);
// Now, every edge in the graph is assigned a weight
// This weight later adds on to assign path
@ -131,13 +167,16 @@ bool ProfilePaths::runOnFunction(Function &F){
// since no back edges in the graph now
// numPaths is the number of acyclic paths in the graph
int numPaths=valueAssignmentToEdges(g);
// create instruction allocation r and count
// r is the variable that'll act like an accumulator
// all along the path, we just add edge values to r
// and at the end, r reflects the path number
// count is an array: count[x] would store
// the number of executions of path numbered x
//std::cerr<<"Numpaths="<<numPaths<<std::endl;
//printGraph(g);
//create instruction allocation r and count
//r is the variable that'll act like an accumulator
//all along the path, we just add edge values to r
//and at the end, r reflects the path number
//count is an array: count[x] would store
//the number of executions of path numbered x
Instruction *rVar=new
AllocaInst(PointerType::get(Type::IntTy),
ConstantUInt::get(Type::UIntTy,1),"R");
@ -150,12 +189,37 @@ bool ProfilePaths::runOnFunction(Function &F){
// this includes initializing r and count
insertInTopBB(&F.getEntryNode(),numPaths, rVar, countVar);
// now process the graph: get path numbers,
// get increments along different paths,
// and assign "increments" and "updates" (to r and count)
// "optimally". Finally, insert llvm code along various edges
processGraph(g, rVar, countVar, be, stDummy, exDummy);
//now process the graph: get path numbers,
//get increments along different paths,
//and assign "increments" and "updates" (to r and count)
//"optimally". Finally, insert llvm code along various edges
processGraph(g, rVar, countVar, be, stDummy, exDummy, numPaths);
/*
//get the paths
static std::ofstream to("paths.sizes");
static std::ofstream bbs("paths.look");
assert(to && "Cannot open file\n");
assert(bbs && "Cannot open file\n");
for(int i=0;i<numPaths; ++i){
std::vector<BasicBlock *> vBB;
getBBtrace(vBB, i, M);
//get total size of vector
int size=0;
bbs<<"Meth:"<<mn<<" Path:"<<i<<"\n-------------\n";
for(vector<BasicBlock *>::iterator VBI=vBB.begin(); VBI!=vBB.end();
++VBI){
BasicBlock *BB=*VBI;
size+=BB->size();
if(BB==M->front())
size-=numPaths;
bbs<<BB->getName()<<"->";
}
bbs<<"\n--------------\n";
to<<"::::: "<<mn<<" "<<i<<" "<<size<<"\n";
}
*/
}
return true; // Always modifies function
}