mirror of
https://github.com/RPCSX/llvm.git
synced 2024-11-28 06:00:28 +00:00
Implement support for a new LLVM 1.3 bytecode format, which uses uint's
to index into structure types and allows arbitrary 32- and 64-bit integer types to index into sequential types. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12651 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
68056127bb
commit
5fa428fda9
@ -15,6 +15,7 @@
|
||||
#include "ReaderInternals.h"
|
||||
#include "llvm/Module.h"
|
||||
#include "llvm/Constants.h"
|
||||
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
||||
#include <algorithm>
|
||||
using namespace llvm;
|
||||
|
||||
@ -164,6 +165,20 @@ Constant *BytecodeParser::parseConstantValue(const unsigned char *&Buf,
|
||||
return ConstantExpr::getCast(ArgVec[0], getType(TypeID));
|
||||
} else if (Opcode == Instruction::GetElementPtr) { // GetElementPtr
|
||||
std::vector<Constant*> IdxList(ArgVec.begin()+1, ArgVec.end());
|
||||
|
||||
if (hasRestrictedGEPTypes) {
|
||||
const Type *BaseTy = ArgVec[0]->getType();
|
||||
generic_gep_type_iterator<std::vector<Constant*>::iterator>
|
||||
GTI = gep_type_begin(BaseTy, IdxList.begin(), IdxList.end()),
|
||||
E = gep_type_end(BaseTy, IdxList.begin(), IdxList.end());
|
||||
for (unsigned i = 0; GTI != E; ++GTI, ++i)
|
||||
if (isa<StructType>(*GTI)) {
|
||||
if (IdxList[i]->getType() != Type::UByteTy)
|
||||
throw std::string("Invalid index for getelementptr!");
|
||||
IdxList[i] = ConstantExpr::getCast(IdxList[i], Type::UIntTy);
|
||||
}
|
||||
}
|
||||
|
||||
return ConstantExpr::getGetElementPtr(ArgVec[0], IdxList);
|
||||
} else if (Opcode == Instruction::Select) {
|
||||
assert(ArgVec.size() == 3);
|
||||
|
@ -308,10 +308,35 @@ void BytecodeParser::ParseInstruction(const unsigned char *&Buf,
|
||||
for (unsigned i = 1, e = Args.size(); i != e; ++i) {
|
||||
const CompositeType *TopTy = dyn_cast_or_null<CompositeType>(NextTy);
|
||||
if (!TopTy) throw std::string("Invalid getelementptr instruction!");
|
||||
// FIXME: when PR82 is resolved.
|
||||
unsigned IdxTy = isa<StructType>(TopTy) ? Type::UByteTyID :Type::LongTyID;
|
||||
|
||||
Idx.push_back(getValue(IdxTy, Args[i]));
|
||||
|
||||
unsigned ValIdx = Args[i];
|
||||
unsigned IdxTy;
|
||||
if (!hasRestrictedGEPTypes) {
|
||||
// Struct indices are always uints, sequential type indices can be any
|
||||
// of the 32 or 64-bit integer types. The actual choice of type is
|
||||
// encoded in the low two bits of the slot number.
|
||||
if (isa<StructType>(TopTy))
|
||||
IdxTy = Type::UIntTyID;
|
||||
else {
|
||||
switch (ValIdx & 3) {
|
||||
case 0: IdxTy = Type::UIntTyID; break;
|
||||
case 1: IdxTy = Type::IntTyID; break;
|
||||
case 2: IdxTy = Type::ULongTyID; break;
|
||||
case 3: IdxTy = Type::LongTyID; break;
|
||||
}
|
||||
ValIdx >>= 2;
|
||||
}
|
||||
} else {
|
||||
IdxTy = isa<StructType>(TopTy) ? Type::UByteTyID : Type::LongTyID;
|
||||
}
|
||||
|
||||
Idx.push_back(getValue(IdxTy, ValIdx));
|
||||
|
||||
// Convert ubyte struct indices into uint struct indices.
|
||||
if (isa<StructType>(TopTy) && hasRestrictedGEPTypes)
|
||||
if (ConstantUInt *C = dyn_cast<ConstantUInt>(Idx.back()))
|
||||
Idx[Idx.size()-1] = ConstantExpr::getCast(C, Type::UIntTy);
|
||||
|
||||
NextTy = GetElementPtrInst::getIndexedType(InstTy, Idx, true);
|
||||
}
|
||||
|
||||
|
@ -647,12 +647,10 @@ void BytecodeParser::ParseVersionInfo(const unsigned char *&Buf,
|
||||
// Default values for the current bytecode version
|
||||
hasInconsistentModuleGlobalInfo = false;
|
||||
hasExplicitPrimitiveZeros = false;
|
||||
hasRestrictedGEPTypes = false;
|
||||
|
||||
switch (RevisionNum) {
|
||||
case 0: // LLVM 1.0, 1.1 release version
|
||||
// Compared to rev #2, we added support for weak linkage, a more dense
|
||||
// encoding, and better varargs support.
|
||||
|
||||
// Base LLVM 1.0 bytecode format.
|
||||
hasInconsistentModuleGlobalInfo = true;
|
||||
hasExplicitPrimitiveZeros = true;
|
||||
@ -663,6 +661,13 @@ void BytecodeParser::ParseVersionInfo(const unsigned char *&Buf,
|
||||
// Also, it fixed the problem where the size of the ModuleGlobalInfo block
|
||||
// included the size for the alignment at the end, where the rest of the
|
||||
// blocks did not.
|
||||
|
||||
// LLVM 1.2 and before required that GEP indices be ubyte constants for
|
||||
// structures and longs for sequential types.
|
||||
hasRestrictedGEPTypes = true;
|
||||
|
||||
// FALL THROUGH
|
||||
case 2: // LLVM 1.3 release version
|
||||
break;
|
||||
|
||||
default:
|
||||
|
@ -108,6 +108,13 @@ private:
|
||||
// int/sbyte/etc.
|
||||
bool hasExplicitPrimitiveZeros;
|
||||
|
||||
// Flags to control features specific the LLVM 1.2 and before (revision #1)
|
||||
|
||||
// LLVM 1.2 and earlier required that getelementptr structure indices were
|
||||
// ubyte constants and that sequential type indices were longs.
|
||||
bool hasRestrictedGEPTypes;
|
||||
|
||||
|
||||
typedef std::vector<ValueList*> ValueTable;
|
||||
ValueTable Values;
|
||||
ValueTable ModuleValues;
|
||||
|
@ -16,6 +16,7 @@
|
||||
#include "llvm/Module.h"
|
||||
#include "llvm/DerivedTypes.h"
|
||||
#include "llvm/Instructions.h"
|
||||
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
||||
#include "Support/Statistic.h"
|
||||
#include <algorithm>
|
||||
using namespace llvm;
|
||||
@ -38,20 +39,48 @@ static void outputInstructionFormat0(const Instruction *I, unsigned Opcode,
|
||||
output_vbr(NumArgs + (isa<CastInst>(I) || isa<VANextInst>(I) ||
|
||||
isa<VAArgInst>(I)), Out);
|
||||
|
||||
for (unsigned i = 0; i < NumArgs; ++i) {
|
||||
int Slot = Table.getSlot(I->getOperand(i));
|
||||
assert(Slot >= 0 && "No slot number for value!?!?");
|
||||
output_vbr((unsigned)Slot, Out);
|
||||
}
|
||||
if (!isa<GetElementPtrInst>(&I)) {
|
||||
for (unsigned i = 0; i < NumArgs; ++i) {
|
||||
int Slot = Table.getSlot(I->getOperand(i));
|
||||
assert(Slot >= 0 && "No slot number for value!?!?");
|
||||
output_vbr((unsigned)Slot, Out);
|
||||
}
|
||||
|
||||
if (isa<CastInst>(I) || isa<VAArgInst>(I)) {
|
||||
int Slot = Table.getSlot(I->getType());
|
||||
assert(Slot != -1 && "Cast return type unknown?");
|
||||
output_vbr((unsigned)Slot, Out);
|
||||
} else if (const VANextInst *VAI = dyn_cast<VANextInst>(I)) {
|
||||
int Slot = Table.getSlot(VAI->getArgType());
|
||||
assert(Slot != -1 && "VarArg argument type unknown?");
|
||||
output_vbr((unsigned)Slot, Out);
|
||||
if (isa<CastInst>(I) || isa<VAArgInst>(I)) {
|
||||
int Slot = Table.getSlot(I->getType());
|
||||
assert(Slot != -1 && "Cast return type unknown?");
|
||||
output_vbr((unsigned)Slot, Out);
|
||||
} else if (const VANextInst *VAI = dyn_cast<VANextInst>(I)) {
|
||||
int Slot = Table.getSlot(VAI->getArgType());
|
||||
assert(Slot != -1 && "VarArg argument type unknown?");
|
||||
output_vbr((unsigned)Slot, Out);
|
||||
}
|
||||
|
||||
} else {
|
||||
int Slot = Table.getSlot(I->getOperand(0));
|
||||
assert(Slot >= 0 && "No slot number for value!?!?");
|
||||
output_vbr(unsigned(Slot), Out);
|
||||
|
||||
// We need to encode the type of sequential type indices into their slot #
|
||||
unsigned Idx = 1;
|
||||
for (gep_type_iterator TI = gep_type_begin(I), E = gep_type_end(I);
|
||||
Idx != NumArgs; ++TI, ++Idx) {
|
||||
Slot = Table.getSlot(I->getOperand(Idx));
|
||||
assert(Slot >= 0 && "No slot number for value!?!?");
|
||||
|
||||
if (isa<SequentialType>(*TI)) {
|
||||
unsigned IdxId;
|
||||
switch (I->getOperand(Idx)->getType()->getPrimitiveID()) {
|
||||
default: assert(0 && "Unknown index type!");
|
||||
case Type::UIntTyID: IdxId = 0; break;
|
||||
case Type::IntTyID: IdxId = 1; break;
|
||||
case Type::ULongTyID: IdxId = 2; break;
|
||||
case Type::LongTyID: IdxId = 3; break;
|
||||
}
|
||||
Slot = (Slot << 2) | IdxId;
|
||||
}
|
||||
output_vbr(unsigned(Slot), Out);
|
||||
}
|
||||
}
|
||||
|
||||
align32(Out); // We must maintain correct alignment!
|
||||
@ -119,8 +148,9 @@ static void outputInstrVarArgsCall(const Instruction *I, unsigned Opcode,
|
||||
// operand index is >= 2^12.
|
||||
//
|
||||
static void outputInstructionFormat1(const Instruction *I, unsigned Opcode,
|
||||
const SlotCalculator &Table, int *Slots,
|
||||
unsigned Type, std::deque<uchar> &Out) {
|
||||
const SlotCalculator &Table,
|
||||
unsigned *Slots, unsigned Type,
|
||||
std::deque<uchar> &Out) {
|
||||
// bits Instruction format:
|
||||
// --------------------------
|
||||
// 01-00: Opcode type, fixed to 1.
|
||||
@ -138,8 +168,9 @@ static void outputInstructionFormat1(const Instruction *I, unsigned Opcode,
|
||||
// operand index is >= 2^8.
|
||||
//
|
||||
static void outputInstructionFormat2(const Instruction *I, unsigned Opcode,
|
||||
const SlotCalculator &Table, int *Slots,
|
||||
unsigned Type, std::deque<uchar> &Out) {
|
||||
const SlotCalculator &Table,
|
||||
unsigned *Slots, unsigned Type,
|
||||
std::deque<uchar> &Out) {
|
||||
// bits Instruction format:
|
||||
// --------------------------
|
||||
// 01-00: Opcode type, fixed to 2.
|
||||
@ -160,8 +191,9 @@ static void outputInstructionFormat2(const Instruction *I, unsigned Opcode,
|
||||
// operand index is >= 2^6.
|
||||
//
|
||||
static void outputInstructionFormat3(const Instruction *I, unsigned Opcode,
|
||||
const SlotCalculator &Table, int *Slots,
|
||||
unsigned Type, std::deque<uchar> &Out) {
|
||||
const SlotCalculator &Table,
|
||||
unsigned *Slots, unsigned Type,
|
||||
std::deque<uchar> &Out) {
|
||||
// bits Instruction format:
|
||||
// --------------------------
|
||||
// 01-00: Opcode type, fixed to 3.
|
||||
@ -181,6 +213,7 @@ static void outputInstructionFormat3(const Instruction *I, unsigned Opcode,
|
||||
void BytecodeWriter::outputInstruction(const Instruction &I) {
|
||||
assert(I.getOpcode() < 62 && "Opcode too big???");
|
||||
unsigned Opcode = I.getOpcode();
|
||||
unsigned NumOperands = I.getNumOperands();
|
||||
|
||||
// Encode 'volatile load' as 62 and 'volatile store' as 63.
|
||||
if (isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile())
|
||||
@ -188,17 +221,6 @@ void BytecodeWriter::outputInstruction(const Instruction &I) {
|
||||
if (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())
|
||||
Opcode = 63;
|
||||
|
||||
unsigned NumOperands = I.getNumOperands();
|
||||
int MaxOpSlot = 0;
|
||||
int Slots[3]; Slots[0] = (1 << 12)-1; // Marker to signify 0 operands
|
||||
|
||||
for (unsigned i = 0; i != NumOperands; ++i) {
|
||||
int slot = Table.getSlot(I.getOperand(i));
|
||||
assert(slot != -1 && "Broken bytecode!");
|
||||
if (slot > MaxOpSlot) MaxOpSlot = slot;
|
||||
if (i < 3) Slots[i] = slot;
|
||||
}
|
||||
|
||||
// Figure out which type to encode with the instruction. Typically we want
|
||||
// the type of the first parameter, as opposed to the type of the instruction
|
||||
// (for example, with setcc, we always know it returns bool, but the type of
|
||||
@ -226,71 +248,101 @@ void BytecodeWriter::outputInstruction(const Instruction &I) {
|
||||
assert(Slot != -1 && "Type not available!!?!");
|
||||
Type = (unsigned)Slot;
|
||||
|
||||
// Make sure that we take the type number into consideration. We don't want
|
||||
// to overflow the field size for the instruction format we select.
|
||||
//
|
||||
if (Slot > MaxOpSlot) MaxOpSlot = Slot;
|
||||
|
||||
// Handle the special case for cast...
|
||||
if (isa<CastInst>(I) || isa<VAArgInst>(I)) {
|
||||
// Cast has to encode the destination type as the second argument in the
|
||||
// packet, or else we won't know what type to cast to!
|
||||
Slots[1] = Table.getSlot(I.getType());
|
||||
assert(Slots[1] != -1 && "Cast return type unknown?");
|
||||
if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1];
|
||||
NumOperands++;
|
||||
} else if (const VANextInst *VANI = dyn_cast<VANextInst>(&I)) {
|
||||
Slots[1] = Table.getSlot(VANI->getArgType());
|
||||
assert(Slots[1] != -1 && "va_next return type unknown?");
|
||||
if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1];
|
||||
NumOperands++;
|
||||
} else if (const CallInst *CI = dyn_cast<CallInst>(&I)){// Handle VarArg calls
|
||||
const PointerType *Ty = cast<PointerType>(CI->getCalledValue()->getType());
|
||||
// Varargs calls and invokes are encoded entirely different from any other
|
||||
// instructions.
|
||||
if (const CallInst *CI = dyn_cast<CallInst>(&I)){
|
||||
const PointerType *Ty =cast<PointerType>(CI->getCalledValue()->getType());
|
||||
if (cast<FunctionType>(Ty->getElementType())->isVarArg()) {
|
||||
outputInstrVarArgsCall(CI, Opcode, Table, Type, Out);
|
||||
return;
|
||||
}
|
||||
} else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {// ... & Invokes
|
||||
const PointerType *Ty = cast<PointerType>(II->getCalledValue()->getType());
|
||||
} else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
|
||||
const PointerType *Ty =cast<PointerType>(II->getCalledValue()->getType());
|
||||
if (cast<FunctionType>(Ty->getElementType())->isVarArg()) {
|
||||
outputInstrVarArgsCall(II, Opcode, Table, Type, Out);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// Decide which instruction encoding to use. This is determined primarily by
|
||||
// the number of operands, and secondarily by whether or not the max operand
|
||||
// will fit into the instruction encoding. More operands == fewer bits per
|
||||
// operand.
|
||||
//
|
||||
switch (NumOperands) {
|
||||
case 0:
|
||||
case 1:
|
||||
if (MaxOpSlot < (1 << 12)-1) { // -1 because we use 4095 to indicate 0 ops
|
||||
outputInstructionFormat1(&I, Opcode, Table, Slots, Type, Out);
|
||||
return;
|
||||
if (NumOperands <= 3) {
|
||||
// Make sure that we take the type number into consideration. We don't want
|
||||
// to overflow the field size for the instruction format we select.
|
||||
//
|
||||
unsigned MaxOpSlot = Type;
|
||||
unsigned Slots[3]; Slots[0] = (1 << 12)-1; // Marker to signify 0 operands
|
||||
|
||||
for (unsigned i = 0; i != NumOperands; ++i) {
|
||||
int slot = Table.getSlot(I.getOperand(i));
|
||||
assert(slot != -1 && "Broken bytecode!");
|
||||
if (unsigned(slot) > MaxOpSlot) MaxOpSlot = unsigned(slot);
|
||||
Slots[i] = unsigned(slot);
|
||||
}
|
||||
break;
|
||||
|
||||
case 2:
|
||||
if (MaxOpSlot < (1 << 8)) {
|
||||
outputInstructionFormat2(&I, Opcode, Table, Slots, Type, Out);
|
||||
return;
|
||||
// Handle the special cases for various instructions...
|
||||
if (isa<CastInst>(I) || isa<VAArgInst>(I)) {
|
||||
// Cast has to encode the destination type as the second argument in the
|
||||
// packet, or else we won't know what type to cast to!
|
||||
Slots[1] = Table.getSlot(I.getType());
|
||||
assert(Slots[1] != ~0U && "Cast return type unknown?");
|
||||
if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1];
|
||||
NumOperands++;
|
||||
} else if (const VANextInst *VANI = dyn_cast<VANextInst>(&I)) {
|
||||
Slots[1] = Table.getSlot(VANI->getArgType());
|
||||
assert(Slots[1] != ~0U && "va_next return type unknown?");
|
||||
if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1];
|
||||
NumOperands++;
|
||||
} else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
|
||||
// We need to encode the type of sequential type indices into their slot #
|
||||
unsigned Idx = 1;
|
||||
for (gep_type_iterator I = gep_type_begin(GEP), E = gep_type_end(GEP);
|
||||
I != E; ++I, ++Idx)
|
||||
if (isa<SequentialType>(*I)) {
|
||||
unsigned IdxId;
|
||||
switch (GEP->getOperand(Idx)->getType()->getPrimitiveID()) {
|
||||
default: assert(0 && "Unknown index type!");
|
||||
case Type::UIntTyID: IdxId = 0; break;
|
||||
case Type::IntTyID: IdxId = 1; break;
|
||||
case Type::ULongTyID: IdxId = 2; break;
|
||||
case Type::LongTyID: IdxId = 3; break;
|
||||
}
|
||||
Slots[Idx] = (Slots[Idx] << 2) | IdxId;
|
||||
if (Slots[Idx] > MaxOpSlot) MaxOpSlot = Slots[Idx];
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case 3:
|
||||
if (MaxOpSlot < (1 << 6)) {
|
||||
outputInstructionFormat3(&I, Opcode, Table, Slots, Type, Out);
|
||||
return;
|
||||
// Decide which instruction encoding to use. This is determined primarily
|
||||
// by the number of operands, and secondarily by whether or not the max
|
||||
// operand will fit into the instruction encoding. More operands == fewer
|
||||
// bits per operand.
|
||||
//
|
||||
switch (NumOperands) {
|
||||
case 0:
|
||||
case 1:
|
||||
if (MaxOpSlot < (1 << 12)-1) { // -1 because we use 4095 to indicate 0 ops
|
||||
outputInstructionFormat1(&I, Opcode, Table, Slots, Type, Out);
|
||||
return;
|
||||
}
|
||||
break;
|
||||
|
||||
case 2:
|
||||
if (MaxOpSlot < (1 << 8)) {
|
||||
outputInstructionFormat2(&I, Opcode, Table, Slots, Type, Out);
|
||||
return;
|
||||
}
|
||||
break;
|
||||
|
||||
case 3:
|
||||
if (MaxOpSlot < (1 << 6)) {
|
||||
outputInstructionFormat3(&I, Opcode, Table, Slots, Type, Out);
|
||||
return;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
// If we weren't handled before here, we either have a large number of
|
||||
// operands or a large operand index that we are referring to.
|
||||
outputInstructionFormat0(&I, Opcode, Table, Type, Out);
|
||||
}
|
||||
|
||||
|
@ -54,9 +54,9 @@ BytecodeWriter::BytecodeWriter(std::deque<unsigned char> &o, const Module *M)
|
||||
bool hasNoEndianness = M->getEndianness() == Module::AnyEndianness;
|
||||
bool hasNoPointerSize = M->getPointerSize() == Module::AnyPointerSize;
|
||||
|
||||
// Output the version identifier... we are currently on bytecode version #1,
|
||||
// which corresponds to LLVM v1.2.
|
||||
unsigned Version = (1 << 4) | isBigEndian | (hasLongPointers << 1) |
|
||||
// Output the version identifier... we are currently on bytecode version #2,
|
||||
// which corresponds to LLVM v1.3.
|
||||
unsigned Version = (2 << 4) | isBigEndian | (hasLongPointers << 1) |
|
||||
(hasNoEndianness << 2) | (hasNoPointerSize << 3);
|
||||
output_vbr(Version, Out);
|
||||
align32(Out);
|
||||
|
Loading…
Reference in New Issue
Block a user