mirror of
https://github.com/RPCSX/llvm.git
synced 2025-04-03 16:51:42 +00:00
Implement support for a new LLVM 1.3 bytecode format, which uses uint's
to index into structure types and allows arbitrary 32- and 64-bit integer types to index into sequential types. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12651 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
68056127bb
commit
5fa428fda9
@ -15,6 +15,7 @@
|
|||||||
#include "ReaderInternals.h"
|
#include "ReaderInternals.h"
|
||||||
#include "llvm/Module.h"
|
#include "llvm/Module.h"
|
||||||
#include "llvm/Constants.h"
|
#include "llvm/Constants.h"
|
||||||
|
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
||||||
#include <algorithm>
|
#include <algorithm>
|
||||||
using namespace llvm;
|
using namespace llvm;
|
||||||
|
|
||||||
@ -164,6 +165,20 @@ Constant *BytecodeParser::parseConstantValue(const unsigned char *&Buf,
|
|||||||
return ConstantExpr::getCast(ArgVec[0], getType(TypeID));
|
return ConstantExpr::getCast(ArgVec[0], getType(TypeID));
|
||||||
} else if (Opcode == Instruction::GetElementPtr) { // GetElementPtr
|
} else if (Opcode == Instruction::GetElementPtr) { // GetElementPtr
|
||||||
std::vector<Constant*> IdxList(ArgVec.begin()+1, ArgVec.end());
|
std::vector<Constant*> IdxList(ArgVec.begin()+1, ArgVec.end());
|
||||||
|
|
||||||
|
if (hasRestrictedGEPTypes) {
|
||||||
|
const Type *BaseTy = ArgVec[0]->getType();
|
||||||
|
generic_gep_type_iterator<std::vector<Constant*>::iterator>
|
||||||
|
GTI = gep_type_begin(BaseTy, IdxList.begin(), IdxList.end()),
|
||||||
|
E = gep_type_end(BaseTy, IdxList.begin(), IdxList.end());
|
||||||
|
for (unsigned i = 0; GTI != E; ++GTI, ++i)
|
||||||
|
if (isa<StructType>(*GTI)) {
|
||||||
|
if (IdxList[i]->getType() != Type::UByteTy)
|
||||||
|
throw std::string("Invalid index for getelementptr!");
|
||||||
|
IdxList[i] = ConstantExpr::getCast(IdxList[i], Type::UIntTy);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
return ConstantExpr::getGetElementPtr(ArgVec[0], IdxList);
|
return ConstantExpr::getGetElementPtr(ArgVec[0], IdxList);
|
||||||
} else if (Opcode == Instruction::Select) {
|
} else if (Opcode == Instruction::Select) {
|
||||||
assert(ArgVec.size() == 3);
|
assert(ArgVec.size() == 3);
|
||||||
|
@ -308,10 +308,35 @@ void BytecodeParser::ParseInstruction(const unsigned char *&Buf,
|
|||||||
for (unsigned i = 1, e = Args.size(); i != e; ++i) {
|
for (unsigned i = 1, e = Args.size(); i != e; ++i) {
|
||||||
const CompositeType *TopTy = dyn_cast_or_null<CompositeType>(NextTy);
|
const CompositeType *TopTy = dyn_cast_or_null<CompositeType>(NextTy);
|
||||||
if (!TopTy) throw std::string("Invalid getelementptr instruction!");
|
if (!TopTy) throw std::string("Invalid getelementptr instruction!");
|
||||||
// FIXME: when PR82 is resolved.
|
|
||||||
unsigned IdxTy = isa<StructType>(TopTy) ? Type::UByteTyID :Type::LongTyID;
|
unsigned ValIdx = Args[i];
|
||||||
|
unsigned IdxTy;
|
||||||
Idx.push_back(getValue(IdxTy, Args[i]));
|
if (!hasRestrictedGEPTypes) {
|
||||||
|
// Struct indices are always uints, sequential type indices can be any
|
||||||
|
// of the 32 or 64-bit integer types. The actual choice of type is
|
||||||
|
// encoded in the low two bits of the slot number.
|
||||||
|
if (isa<StructType>(TopTy))
|
||||||
|
IdxTy = Type::UIntTyID;
|
||||||
|
else {
|
||||||
|
switch (ValIdx & 3) {
|
||||||
|
case 0: IdxTy = Type::UIntTyID; break;
|
||||||
|
case 1: IdxTy = Type::IntTyID; break;
|
||||||
|
case 2: IdxTy = Type::ULongTyID; break;
|
||||||
|
case 3: IdxTy = Type::LongTyID; break;
|
||||||
|
}
|
||||||
|
ValIdx >>= 2;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
IdxTy = isa<StructType>(TopTy) ? Type::UByteTyID : Type::LongTyID;
|
||||||
|
}
|
||||||
|
|
||||||
|
Idx.push_back(getValue(IdxTy, ValIdx));
|
||||||
|
|
||||||
|
// Convert ubyte struct indices into uint struct indices.
|
||||||
|
if (isa<StructType>(TopTy) && hasRestrictedGEPTypes)
|
||||||
|
if (ConstantUInt *C = dyn_cast<ConstantUInt>(Idx.back()))
|
||||||
|
Idx[Idx.size()-1] = ConstantExpr::getCast(C, Type::UIntTy);
|
||||||
|
|
||||||
NextTy = GetElementPtrInst::getIndexedType(InstTy, Idx, true);
|
NextTy = GetElementPtrInst::getIndexedType(InstTy, Idx, true);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -647,12 +647,10 @@ void BytecodeParser::ParseVersionInfo(const unsigned char *&Buf,
|
|||||||
// Default values for the current bytecode version
|
// Default values for the current bytecode version
|
||||||
hasInconsistentModuleGlobalInfo = false;
|
hasInconsistentModuleGlobalInfo = false;
|
||||||
hasExplicitPrimitiveZeros = false;
|
hasExplicitPrimitiveZeros = false;
|
||||||
|
hasRestrictedGEPTypes = false;
|
||||||
|
|
||||||
switch (RevisionNum) {
|
switch (RevisionNum) {
|
||||||
case 0: // LLVM 1.0, 1.1 release version
|
case 0: // LLVM 1.0, 1.1 release version
|
||||||
// Compared to rev #2, we added support for weak linkage, a more dense
|
|
||||||
// encoding, and better varargs support.
|
|
||||||
|
|
||||||
// Base LLVM 1.0 bytecode format.
|
// Base LLVM 1.0 bytecode format.
|
||||||
hasInconsistentModuleGlobalInfo = true;
|
hasInconsistentModuleGlobalInfo = true;
|
||||||
hasExplicitPrimitiveZeros = true;
|
hasExplicitPrimitiveZeros = true;
|
||||||
@ -663,6 +661,13 @@ void BytecodeParser::ParseVersionInfo(const unsigned char *&Buf,
|
|||||||
// Also, it fixed the problem where the size of the ModuleGlobalInfo block
|
// Also, it fixed the problem where the size of the ModuleGlobalInfo block
|
||||||
// included the size for the alignment at the end, where the rest of the
|
// included the size for the alignment at the end, where the rest of the
|
||||||
// blocks did not.
|
// blocks did not.
|
||||||
|
|
||||||
|
// LLVM 1.2 and before required that GEP indices be ubyte constants for
|
||||||
|
// structures and longs for sequential types.
|
||||||
|
hasRestrictedGEPTypes = true;
|
||||||
|
|
||||||
|
// FALL THROUGH
|
||||||
|
case 2: // LLVM 1.3 release version
|
||||||
break;
|
break;
|
||||||
|
|
||||||
default:
|
default:
|
||||||
|
@ -108,6 +108,13 @@ private:
|
|||||||
// int/sbyte/etc.
|
// int/sbyte/etc.
|
||||||
bool hasExplicitPrimitiveZeros;
|
bool hasExplicitPrimitiveZeros;
|
||||||
|
|
||||||
|
// Flags to control features specific the LLVM 1.2 and before (revision #1)
|
||||||
|
|
||||||
|
// LLVM 1.2 and earlier required that getelementptr structure indices were
|
||||||
|
// ubyte constants and that sequential type indices were longs.
|
||||||
|
bool hasRestrictedGEPTypes;
|
||||||
|
|
||||||
|
|
||||||
typedef std::vector<ValueList*> ValueTable;
|
typedef std::vector<ValueList*> ValueTable;
|
||||||
ValueTable Values;
|
ValueTable Values;
|
||||||
ValueTable ModuleValues;
|
ValueTable ModuleValues;
|
||||||
|
@ -16,6 +16,7 @@
|
|||||||
#include "llvm/Module.h"
|
#include "llvm/Module.h"
|
||||||
#include "llvm/DerivedTypes.h"
|
#include "llvm/DerivedTypes.h"
|
||||||
#include "llvm/Instructions.h"
|
#include "llvm/Instructions.h"
|
||||||
|
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
||||||
#include "Support/Statistic.h"
|
#include "Support/Statistic.h"
|
||||||
#include <algorithm>
|
#include <algorithm>
|
||||||
using namespace llvm;
|
using namespace llvm;
|
||||||
@ -38,20 +39,48 @@ static void outputInstructionFormat0(const Instruction *I, unsigned Opcode,
|
|||||||
output_vbr(NumArgs + (isa<CastInst>(I) || isa<VANextInst>(I) ||
|
output_vbr(NumArgs + (isa<CastInst>(I) || isa<VANextInst>(I) ||
|
||||||
isa<VAArgInst>(I)), Out);
|
isa<VAArgInst>(I)), Out);
|
||||||
|
|
||||||
for (unsigned i = 0; i < NumArgs; ++i) {
|
if (!isa<GetElementPtrInst>(&I)) {
|
||||||
int Slot = Table.getSlot(I->getOperand(i));
|
for (unsigned i = 0; i < NumArgs; ++i) {
|
||||||
assert(Slot >= 0 && "No slot number for value!?!?");
|
int Slot = Table.getSlot(I->getOperand(i));
|
||||||
output_vbr((unsigned)Slot, Out);
|
assert(Slot >= 0 && "No slot number for value!?!?");
|
||||||
}
|
output_vbr((unsigned)Slot, Out);
|
||||||
|
}
|
||||||
|
|
||||||
if (isa<CastInst>(I) || isa<VAArgInst>(I)) {
|
if (isa<CastInst>(I) || isa<VAArgInst>(I)) {
|
||||||
int Slot = Table.getSlot(I->getType());
|
int Slot = Table.getSlot(I->getType());
|
||||||
assert(Slot != -1 && "Cast return type unknown?");
|
assert(Slot != -1 && "Cast return type unknown?");
|
||||||
output_vbr((unsigned)Slot, Out);
|
output_vbr((unsigned)Slot, Out);
|
||||||
} else if (const VANextInst *VAI = dyn_cast<VANextInst>(I)) {
|
} else if (const VANextInst *VAI = dyn_cast<VANextInst>(I)) {
|
||||||
int Slot = Table.getSlot(VAI->getArgType());
|
int Slot = Table.getSlot(VAI->getArgType());
|
||||||
assert(Slot != -1 && "VarArg argument type unknown?");
|
assert(Slot != -1 && "VarArg argument type unknown?");
|
||||||
output_vbr((unsigned)Slot, Out);
|
output_vbr((unsigned)Slot, Out);
|
||||||
|
}
|
||||||
|
|
||||||
|
} else {
|
||||||
|
int Slot = Table.getSlot(I->getOperand(0));
|
||||||
|
assert(Slot >= 0 && "No slot number for value!?!?");
|
||||||
|
output_vbr(unsigned(Slot), Out);
|
||||||
|
|
||||||
|
// We need to encode the type of sequential type indices into their slot #
|
||||||
|
unsigned Idx = 1;
|
||||||
|
for (gep_type_iterator TI = gep_type_begin(I), E = gep_type_end(I);
|
||||||
|
Idx != NumArgs; ++TI, ++Idx) {
|
||||||
|
Slot = Table.getSlot(I->getOperand(Idx));
|
||||||
|
assert(Slot >= 0 && "No slot number for value!?!?");
|
||||||
|
|
||||||
|
if (isa<SequentialType>(*TI)) {
|
||||||
|
unsigned IdxId;
|
||||||
|
switch (I->getOperand(Idx)->getType()->getPrimitiveID()) {
|
||||||
|
default: assert(0 && "Unknown index type!");
|
||||||
|
case Type::UIntTyID: IdxId = 0; break;
|
||||||
|
case Type::IntTyID: IdxId = 1; break;
|
||||||
|
case Type::ULongTyID: IdxId = 2; break;
|
||||||
|
case Type::LongTyID: IdxId = 3; break;
|
||||||
|
}
|
||||||
|
Slot = (Slot << 2) | IdxId;
|
||||||
|
}
|
||||||
|
output_vbr(unsigned(Slot), Out);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
align32(Out); // We must maintain correct alignment!
|
align32(Out); // We must maintain correct alignment!
|
||||||
@ -119,8 +148,9 @@ static void outputInstrVarArgsCall(const Instruction *I, unsigned Opcode,
|
|||||||
// operand index is >= 2^12.
|
// operand index is >= 2^12.
|
||||||
//
|
//
|
||||||
static void outputInstructionFormat1(const Instruction *I, unsigned Opcode,
|
static void outputInstructionFormat1(const Instruction *I, unsigned Opcode,
|
||||||
const SlotCalculator &Table, int *Slots,
|
const SlotCalculator &Table,
|
||||||
unsigned Type, std::deque<uchar> &Out) {
|
unsigned *Slots, unsigned Type,
|
||||||
|
std::deque<uchar> &Out) {
|
||||||
// bits Instruction format:
|
// bits Instruction format:
|
||||||
// --------------------------
|
// --------------------------
|
||||||
// 01-00: Opcode type, fixed to 1.
|
// 01-00: Opcode type, fixed to 1.
|
||||||
@ -138,8 +168,9 @@ static void outputInstructionFormat1(const Instruction *I, unsigned Opcode,
|
|||||||
// operand index is >= 2^8.
|
// operand index is >= 2^8.
|
||||||
//
|
//
|
||||||
static void outputInstructionFormat2(const Instruction *I, unsigned Opcode,
|
static void outputInstructionFormat2(const Instruction *I, unsigned Opcode,
|
||||||
const SlotCalculator &Table, int *Slots,
|
const SlotCalculator &Table,
|
||||||
unsigned Type, std::deque<uchar> &Out) {
|
unsigned *Slots, unsigned Type,
|
||||||
|
std::deque<uchar> &Out) {
|
||||||
// bits Instruction format:
|
// bits Instruction format:
|
||||||
// --------------------------
|
// --------------------------
|
||||||
// 01-00: Opcode type, fixed to 2.
|
// 01-00: Opcode type, fixed to 2.
|
||||||
@ -160,8 +191,9 @@ static void outputInstructionFormat2(const Instruction *I, unsigned Opcode,
|
|||||||
// operand index is >= 2^6.
|
// operand index is >= 2^6.
|
||||||
//
|
//
|
||||||
static void outputInstructionFormat3(const Instruction *I, unsigned Opcode,
|
static void outputInstructionFormat3(const Instruction *I, unsigned Opcode,
|
||||||
const SlotCalculator &Table, int *Slots,
|
const SlotCalculator &Table,
|
||||||
unsigned Type, std::deque<uchar> &Out) {
|
unsigned *Slots, unsigned Type,
|
||||||
|
std::deque<uchar> &Out) {
|
||||||
// bits Instruction format:
|
// bits Instruction format:
|
||||||
// --------------------------
|
// --------------------------
|
||||||
// 01-00: Opcode type, fixed to 3.
|
// 01-00: Opcode type, fixed to 3.
|
||||||
@ -181,6 +213,7 @@ static void outputInstructionFormat3(const Instruction *I, unsigned Opcode,
|
|||||||
void BytecodeWriter::outputInstruction(const Instruction &I) {
|
void BytecodeWriter::outputInstruction(const Instruction &I) {
|
||||||
assert(I.getOpcode() < 62 && "Opcode too big???");
|
assert(I.getOpcode() < 62 && "Opcode too big???");
|
||||||
unsigned Opcode = I.getOpcode();
|
unsigned Opcode = I.getOpcode();
|
||||||
|
unsigned NumOperands = I.getNumOperands();
|
||||||
|
|
||||||
// Encode 'volatile load' as 62 and 'volatile store' as 63.
|
// Encode 'volatile load' as 62 and 'volatile store' as 63.
|
||||||
if (isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile())
|
if (isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile())
|
||||||
@ -188,17 +221,6 @@ void BytecodeWriter::outputInstruction(const Instruction &I) {
|
|||||||
if (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())
|
if (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())
|
||||||
Opcode = 63;
|
Opcode = 63;
|
||||||
|
|
||||||
unsigned NumOperands = I.getNumOperands();
|
|
||||||
int MaxOpSlot = 0;
|
|
||||||
int Slots[3]; Slots[0] = (1 << 12)-1; // Marker to signify 0 operands
|
|
||||||
|
|
||||||
for (unsigned i = 0; i != NumOperands; ++i) {
|
|
||||||
int slot = Table.getSlot(I.getOperand(i));
|
|
||||||
assert(slot != -1 && "Broken bytecode!");
|
|
||||||
if (slot > MaxOpSlot) MaxOpSlot = slot;
|
|
||||||
if (i < 3) Slots[i] = slot;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Figure out which type to encode with the instruction. Typically we want
|
// Figure out which type to encode with the instruction. Typically we want
|
||||||
// the type of the first parameter, as opposed to the type of the instruction
|
// the type of the first parameter, as opposed to the type of the instruction
|
||||||
// (for example, with setcc, we always know it returns bool, but the type of
|
// (for example, with setcc, we always know it returns bool, but the type of
|
||||||
@ -226,71 +248,101 @@ void BytecodeWriter::outputInstruction(const Instruction &I) {
|
|||||||
assert(Slot != -1 && "Type not available!!?!");
|
assert(Slot != -1 && "Type not available!!?!");
|
||||||
Type = (unsigned)Slot;
|
Type = (unsigned)Slot;
|
||||||
|
|
||||||
// Make sure that we take the type number into consideration. We don't want
|
// Varargs calls and invokes are encoded entirely different from any other
|
||||||
// to overflow the field size for the instruction format we select.
|
// instructions.
|
||||||
//
|
if (const CallInst *CI = dyn_cast<CallInst>(&I)){
|
||||||
if (Slot > MaxOpSlot) MaxOpSlot = Slot;
|
const PointerType *Ty =cast<PointerType>(CI->getCalledValue()->getType());
|
||||||
|
|
||||||
// Handle the special case for cast...
|
|
||||||
if (isa<CastInst>(I) || isa<VAArgInst>(I)) {
|
|
||||||
// Cast has to encode the destination type as the second argument in the
|
|
||||||
// packet, or else we won't know what type to cast to!
|
|
||||||
Slots[1] = Table.getSlot(I.getType());
|
|
||||||
assert(Slots[1] != -1 && "Cast return type unknown?");
|
|
||||||
if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1];
|
|
||||||
NumOperands++;
|
|
||||||
} else if (const VANextInst *VANI = dyn_cast<VANextInst>(&I)) {
|
|
||||||
Slots[1] = Table.getSlot(VANI->getArgType());
|
|
||||||
assert(Slots[1] != -1 && "va_next return type unknown?");
|
|
||||||
if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1];
|
|
||||||
NumOperands++;
|
|
||||||
} else if (const CallInst *CI = dyn_cast<CallInst>(&I)){// Handle VarArg calls
|
|
||||||
const PointerType *Ty = cast<PointerType>(CI->getCalledValue()->getType());
|
|
||||||
if (cast<FunctionType>(Ty->getElementType())->isVarArg()) {
|
if (cast<FunctionType>(Ty->getElementType())->isVarArg()) {
|
||||||
outputInstrVarArgsCall(CI, Opcode, Table, Type, Out);
|
outputInstrVarArgsCall(CI, Opcode, Table, Type, Out);
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
} else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {// ... & Invokes
|
} else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
|
||||||
const PointerType *Ty = cast<PointerType>(II->getCalledValue()->getType());
|
const PointerType *Ty =cast<PointerType>(II->getCalledValue()->getType());
|
||||||
if (cast<FunctionType>(Ty->getElementType())->isVarArg()) {
|
if (cast<FunctionType>(Ty->getElementType())->isVarArg()) {
|
||||||
outputInstrVarArgsCall(II, Opcode, Table, Type, Out);
|
outputInstrVarArgsCall(II, Opcode, Table, Type, Out);
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Decide which instruction encoding to use. This is determined primarily by
|
if (NumOperands <= 3) {
|
||||||
// the number of operands, and secondarily by whether or not the max operand
|
// Make sure that we take the type number into consideration. We don't want
|
||||||
// will fit into the instruction encoding. More operands == fewer bits per
|
// to overflow the field size for the instruction format we select.
|
||||||
// operand.
|
//
|
||||||
//
|
unsigned MaxOpSlot = Type;
|
||||||
switch (NumOperands) {
|
unsigned Slots[3]; Slots[0] = (1 << 12)-1; // Marker to signify 0 operands
|
||||||
case 0:
|
|
||||||
case 1:
|
for (unsigned i = 0; i != NumOperands; ++i) {
|
||||||
if (MaxOpSlot < (1 << 12)-1) { // -1 because we use 4095 to indicate 0 ops
|
int slot = Table.getSlot(I.getOperand(i));
|
||||||
outputInstructionFormat1(&I, Opcode, Table, Slots, Type, Out);
|
assert(slot != -1 && "Broken bytecode!");
|
||||||
return;
|
if (unsigned(slot) > MaxOpSlot) MaxOpSlot = unsigned(slot);
|
||||||
|
Slots[i] = unsigned(slot);
|
||||||
}
|
}
|
||||||
break;
|
|
||||||
|
|
||||||
case 2:
|
// Handle the special cases for various instructions...
|
||||||
if (MaxOpSlot < (1 << 8)) {
|
if (isa<CastInst>(I) || isa<VAArgInst>(I)) {
|
||||||
outputInstructionFormat2(&I, Opcode, Table, Slots, Type, Out);
|
// Cast has to encode the destination type as the second argument in the
|
||||||
return;
|
// packet, or else we won't know what type to cast to!
|
||||||
|
Slots[1] = Table.getSlot(I.getType());
|
||||||
|
assert(Slots[1] != ~0U && "Cast return type unknown?");
|
||||||
|
if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1];
|
||||||
|
NumOperands++;
|
||||||
|
} else if (const VANextInst *VANI = dyn_cast<VANextInst>(&I)) {
|
||||||
|
Slots[1] = Table.getSlot(VANI->getArgType());
|
||||||
|
assert(Slots[1] != ~0U && "va_next return type unknown?");
|
||||||
|
if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1];
|
||||||
|
NumOperands++;
|
||||||
|
} else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
|
||||||
|
// We need to encode the type of sequential type indices into their slot #
|
||||||
|
unsigned Idx = 1;
|
||||||
|
for (gep_type_iterator I = gep_type_begin(GEP), E = gep_type_end(GEP);
|
||||||
|
I != E; ++I, ++Idx)
|
||||||
|
if (isa<SequentialType>(*I)) {
|
||||||
|
unsigned IdxId;
|
||||||
|
switch (GEP->getOperand(Idx)->getType()->getPrimitiveID()) {
|
||||||
|
default: assert(0 && "Unknown index type!");
|
||||||
|
case Type::UIntTyID: IdxId = 0; break;
|
||||||
|
case Type::IntTyID: IdxId = 1; break;
|
||||||
|
case Type::ULongTyID: IdxId = 2; break;
|
||||||
|
case Type::LongTyID: IdxId = 3; break;
|
||||||
|
}
|
||||||
|
Slots[Idx] = (Slots[Idx] << 2) | IdxId;
|
||||||
|
if (Slots[Idx] > MaxOpSlot) MaxOpSlot = Slots[Idx];
|
||||||
|
}
|
||||||
}
|
}
|
||||||
break;
|
|
||||||
|
|
||||||
case 3:
|
// Decide which instruction encoding to use. This is determined primarily
|
||||||
if (MaxOpSlot < (1 << 6)) {
|
// by the number of operands, and secondarily by whether or not the max
|
||||||
outputInstructionFormat3(&I, Opcode, Table, Slots, Type, Out);
|
// operand will fit into the instruction encoding. More operands == fewer
|
||||||
return;
|
// bits per operand.
|
||||||
|
//
|
||||||
|
switch (NumOperands) {
|
||||||
|
case 0:
|
||||||
|
case 1:
|
||||||
|
if (MaxOpSlot < (1 << 12)-1) { // -1 because we use 4095 to indicate 0 ops
|
||||||
|
outputInstructionFormat1(&I, Opcode, Table, Slots, Type, Out);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
|
||||||
|
case 2:
|
||||||
|
if (MaxOpSlot < (1 << 8)) {
|
||||||
|
outputInstructionFormat2(&I, Opcode, Table, Slots, Type, Out);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
|
||||||
|
case 3:
|
||||||
|
if (MaxOpSlot < (1 << 6)) {
|
||||||
|
outputInstructionFormat3(&I, Opcode, Table, Slots, Type, Out);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
break;
|
||||||
}
|
}
|
||||||
break;
|
|
||||||
default:
|
|
||||||
break;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// If we weren't handled before here, we either have a large number of
|
// If we weren't handled before here, we either have a large number of
|
||||||
// operands or a large operand index that we are referring to.
|
// operands or a large operand index that we are referring to.
|
||||||
outputInstructionFormat0(&I, Opcode, Table, Type, Out);
|
outputInstructionFormat0(&I, Opcode, Table, Type, Out);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -54,9 +54,9 @@ BytecodeWriter::BytecodeWriter(std::deque<unsigned char> &o, const Module *M)
|
|||||||
bool hasNoEndianness = M->getEndianness() == Module::AnyEndianness;
|
bool hasNoEndianness = M->getEndianness() == Module::AnyEndianness;
|
||||||
bool hasNoPointerSize = M->getPointerSize() == Module::AnyPointerSize;
|
bool hasNoPointerSize = M->getPointerSize() == Module::AnyPointerSize;
|
||||||
|
|
||||||
// Output the version identifier... we are currently on bytecode version #1,
|
// Output the version identifier... we are currently on bytecode version #2,
|
||||||
// which corresponds to LLVM v1.2.
|
// which corresponds to LLVM v1.3.
|
||||||
unsigned Version = (1 << 4) | isBigEndian | (hasLongPointers << 1) |
|
unsigned Version = (2 << 4) | isBigEndian | (hasLongPointers << 1) |
|
||||||
(hasNoEndianness << 2) | (hasNoPointerSize << 3);
|
(hasNoEndianness << 2) | (hasNoPointerSize << 3);
|
||||||
output_vbr(Version, Out);
|
output_vbr(Version, Out);
|
||||||
align32(Out);
|
align32(Out);
|
||||||
|
Loading…
x
Reference in New Issue
Block a user