mirror of
https://github.com/RPCSX/llvm.git
synced 2024-12-02 08:46:23 +00:00
This patch fixes failures in the SingleSource/Regression/C/uint64_to_float
test case on PowerPC caused by rounding errors when converting from a 64-bit integer to a single-precision floating point. The reason for this are double-rounding effects, since on PowerPC we have to convert to an intermediate double-precision value first, which gets rounded to the final single-precision result. The patch fixes the problem by preparing the 64-bit integer so that the first conversion step to double-precision will always be exact, and the final rounding step will result in the correctly-rounded single-precision result. The generated code sequence is equivalent to what GCC would generate. When -enable-unsafe-fp-math is in effect, that extra effort is omitted and we accept possible rounding errors (just like GCC does as well). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166178 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
2360b7ad99
commit
6c28a7eec8
@ -4224,7 +4224,52 @@ SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op,
|
||||
return SDValue();
|
||||
|
||||
if (Op.getOperand(0).getValueType() == MVT::i64) {
|
||||
SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op.getOperand(0));
|
||||
SDValue SINT = Op.getOperand(0);
|
||||
// When converting to single-precision, we actually need to convert
|
||||
// to double-precision first and then round to single-precision.
|
||||
// To avoid double-rounding effects during that operation, we have
|
||||
// to prepare the input operand. Bits that might be truncated when
|
||||
// converting to double-precision are replaced by a bit that won't
|
||||
// be lost at this stage, but is below the single-precision rounding
|
||||
// position.
|
||||
//
|
||||
// However, if -enable-unsafe-fp-math is in effect, accept double
|
||||
// rounding to avoid the extra overhead.
|
||||
if (Op.getValueType() == MVT::f32 &&
|
||||
!DAG.getTarget().Options.UnsafeFPMath) {
|
||||
|
||||
// Twiddle input to make sure the low 11 bits are zero. (If this
|
||||
// is the case, we are guaranteed the value will fit into the 53 bit
|
||||
// mantissa of an IEEE double-precision value without rounding.)
|
||||
// If any of those low 11 bits were not zero originally, make sure
|
||||
// bit 12 (value 2048) is set instead, so that the final rounding
|
||||
// to single-precision gets the correct result.
|
||||
SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
|
||||
SINT, DAG.getConstant(2047, MVT::i64));
|
||||
Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
|
||||
Round, DAG.getConstant(2047, MVT::i64));
|
||||
Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
|
||||
Round = DAG.getNode(ISD::AND, dl, MVT::i64,
|
||||
Round, DAG.getConstant(-2048, MVT::i64));
|
||||
|
||||
// However, we cannot use that value unconditionally: if the magnitude
|
||||
// of the input value is small, the bit-twiddling we did above might
|
||||
// end up visibly changing the output. Fortunately, in that case, we
|
||||
// don't need to twiddle bits since the original input will convert
|
||||
// exactly to double-precision floating-point already. Therefore,
|
||||
// construct a conditional to use the original value if the top 11
|
||||
// bits are all sign-bit copies, and use the rounded value computed
|
||||
// above otherwise.
|
||||
SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
|
||||
SINT, DAG.getConstant(53, MVT::i32));
|
||||
Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
|
||||
Cond, DAG.getConstant(1, MVT::i64));
|
||||
Cond = DAG.getSetCC(dl, MVT::i32,
|
||||
Cond, DAG.getConstant(1, MVT::i64), ISD::SETUGT);
|
||||
|
||||
SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
|
||||
}
|
||||
SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
|
||||
SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
|
||||
if (Op.getValueType() == MVT::f32)
|
||||
FP = DAG.getNode(ISD::FP_ROUND, dl,
|
||||
|
27
test/CodeGen/PowerPC/i64_fp_round.ll
Normal file
27
test/CodeGen/PowerPC/i64_fp_round.ll
Normal file
@ -0,0 +1,27 @@
|
||||
; RUN: llc -mcpu=pwr7 < %s | FileCheck %s
|
||||
target datalayout = "E-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v128:128:128-n32:64"
|
||||
target triple = "powerpc64-unknown-linux-gnu"
|
||||
|
||||
define float @test(i64 %x) nounwind readnone {
|
||||
entry:
|
||||
%conv = sitofp i64 %x to float
|
||||
ret float %conv
|
||||
}
|
||||
|
||||
; Verify that we get the code sequence needed to avoid double-rounding.
|
||||
; Note that only parts of the sequence are checked for here, to allow
|
||||
; for minor code generation differences.
|
||||
|
||||
; CHECK: sradi [[REGISTER:[0-9]+]], 3, 53
|
||||
; CHECK: addi [[REGISTER:[0-9]+]], [[REGISTER]], 1
|
||||
; CHECK: cmpldi 0, [[REGISTER]], 1
|
||||
; CHECK: isel [[REGISTER:[0-9]+]], {{[0-9]+}}, 3, 1
|
||||
; CHECK: std [[REGISTER]], -{{[0-9]+}}(1)
|
||||
|
||||
|
||||
; Also check that with -enable-unsafe-fp-math we do not get that extra
|
||||
; code sequence. Simply verify that there is no "isel" present.
|
||||
|
||||
; RUN: llc -mcpu=pwr7 -enable-unsafe-fp-math < %s | FileCheck %s -check-prefix=UNSAFE
|
||||
; CHECK-UNSAFE-NOT: isel
|
||||
|
Loading…
Reference in New Issue
Block a user