mirror of
https://github.com/RPCSX/llvm.git
synced 2024-12-03 17:31:50 +00:00
Transforms: Move GlobalOpt's Evaluator to Utils where it can be reused.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@259621 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
b9d2127857
commit
6f984cbfab
119
include/llvm/Transforms/Utils/Evaluator.h
Normal file
119
include/llvm/Transforms/Utils/Evaluator.h
Normal file
@ -0,0 +1,119 @@
|
||||
//===-- Evaluator.h - LLVM IR evaluator -------------------------*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Function evaluator for LLVM IR.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_TRANSFORMS_UTILS_EVALUATOR_H
|
||||
#define LLVM_TRANSFORMS_UTILS_EVALUATOR_H
|
||||
|
||||
#include "llvm/ADT/DenseMap.h"
|
||||
#include "llvm/ADT/SmallPtrSet.h"
|
||||
#include "llvm/ADT/SmallVector.h"
|
||||
#include "llvm/IR/BasicBlock.h"
|
||||
#include "llvm/IR/Constant.h"
|
||||
#include "llvm/IR/GlobalVariable.h"
|
||||
|
||||
#include <deque>
|
||||
#include <memory>
|
||||
|
||||
namespace llvm {
|
||||
|
||||
class DataLayout;
|
||||
class Function;
|
||||
class TargetLibraryInfo;
|
||||
|
||||
/// This class evaluates LLVM IR, producing the Constant representing each SSA
|
||||
/// instruction. Changes to global variables are stored in a mapping that can
|
||||
/// be iterated over after the evaluation is complete. Once an evaluation call
|
||||
/// fails, the evaluation object should not be reused.
|
||||
class Evaluator {
|
||||
public:
|
||||
Evaluator(const DataLayout &DL, const TargetLibraryInfo *TLI)
|
||||
: DL(DL), TLI(TLI) {
|
||||
ValueStack.emplace_back();
|
||||
}
|
||||
|
||||
~Evaluator() {
|
||||
for (auto &Tmp : AllocaTmps)
|
||||
// If there are still users of the alloca, the program is doing something
|
||||
// silly, e.g. storing the address of the alloca somewhere and using it
|
||||
// later. Since this is undefined, we'll just make it be null.
|
||||
if (!Tmp->use_empty())
|
||||
Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
|
||||
}
|
||||
|
||||
/// Evaluate a call to function F, returning true if successful, false if we
|
||||
/// can't evaluate it. ActualArgs contains the formal arguments for the
|
||||
/// function.
|
||||
bool EvaluateFunction(Function *F, Constant *&RetVal,
|
||||
const SmallVectorImpl<Constant*> &ActualArgs);
|
||||
|
||||
/// Evaluate all instructions in block BB, returning true if successful, false
|
||||
/// if we can't evaluate it. NewBB returns the next BB that control flows
|
||||
/// into, or null upon return.
|
||||
bool EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB);
|
||||
|
||||
Constant *getVal(Value *V) {
|
||||
if (Constant *CV = dyn_cast<Constant>(V)) return CV;
|
||||
Constant *R = ValueStack.back().lookup(V);
|
||||
assert(R && "Reference to an uncomputed value!");
|
||||
return R;
|
||||
}
|
||||
|
||||
void setVal(Value *V, Constant *C) {
|
||||
ValueStack.back()[V] = C;
|
||||
}
|
||||
|
||||
const DenseMap<Constant*, Constant*> &getMutatedMemory() const {
|
||||
return MutatedMemory;
|
||||
}
|
||||
|
||||
const SmallPtrSetImpl<GlobalVariable*> &getInvariants() const {
|
||||
return Invariants;
|
||||
}
|
||||
|
||||
private:
|
||||
Constant *ComputeLoadResult(Constant *P);
|
||||
|
||||
/// As we compute SSA register values, we store their contents here. The back
|
||||
/// of the deque contains the current function and the stack contains the
|
||||
/// values in the calling frames.
|
||||
std::deque<DenseMap<Value*, Constant*>> ValueStack;
|
||||
|
||||
/// This is used to detect recursion. In pathological situations we could hit
|
||||
/// exponential behavior, but at least there is nothing unbounded.
|
||||
SmallVector<Function*, 4> CallStack;
|
||||
|
||||
/// For each store we execute, we update this map. Loads check this to get
|
||||
/// the most up-to-date value. If evaluation is successful, this state is
|
||||
/// committed to the process.
|
||||
DenseMap<Constant*, Constant*> MutatedMemory;
|
||||
|
||||
/// To 'execute' an alloca, we create a temporary global variable to represent
|
||||
/// its body. This vector is needed so we can delete the temporary globals
|
||||
/// when we are done.
|
||||
SmallVector<std::unique_ptr<GlobalVariable>, 32> AllocaTmps;
|
||||
|
||||
/// These global variables have been marked invariant by the static
|
||||
/// constructor.
|
||||
SmallPtrSet<GlobalVariable*, 8> Invariants;
|
||||
|
||||
/// These are constants we have checked and know to be simple enough to live
|
||||
/// in a static initializer of a global.
|
||||
SmallPtrSet<Constant*, 8> SimpleConstants;
|
||||
|
||||
const DataLayout &DL;
|
||||
const TargetLibraryInfo *TLI;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
@ -41,6 +41,7 @@
|
||||
#include "llvm/Support/MathExtras.h"
|
||||
#include "llvm/Support/raw_ostream.h"
|
||||
#include "llvm/Transforms/Utils/CtorUtils.h"
|
||||
#include "llvm/Transforms/Utils/Evaluator.h"
|
||||
#include "llvm/Transforms/Utils/GlobalStatus.h"
|
||||
#include "llvm/Transforms/Utils/ModuleUtils.h"
|
||||
#include <algorithm>
|
||||
@ -2106,138 +2107,6 @@ bool GlobalOpt::OptimizeGlobalVars(Module &M) {
|
||||
return Changed;
|
||||
}
|
||||
|
||||
static inline bool
|
||||
isSimpleEnoughValueToCommit(Constant *C,
|
||||
SmallPtrSetImpl<Constant *> &SimpleConstants,
|
||||
const DataLayout &DL);
|
||||
|
||||
/// Return true if the specified constant can be handled by the code generator.
|
||||
/// We don't want to generate something like:
|
||||
/// void *X = &X/42;
|
||||
/// because the code generator doesn't have a relocation that can handle that.
|
||||
///
|
||||
/// This function should be called if C was not found (but just got inserted)
|
||||
/// in SimpleConstants to avoid having to rescan the same constants all the
|
||||
/// time.
|
||||
static bool
|
||||
isSimpleEnoughValueToCommitHelper(Constant *C,
|
||||
SmallPtrSetImpl<Constant *> &SimpleConstants,
|
||||
const DataLayout &DL) {
|
||||
// Simple global addresses are supported, do not allow dllimport or
|
||||
// thread-local globals.
|
||||
if (auto *GV = dyn_cast<GlobalValue>(C))
|
||||
return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal();
|
||||
|
||||
// Simple integer, undef, constant aggregate zero, etc are all supported.
|
||||
if (C->getNumOperands() == 0 || isa<BlockAddress>(C))
|
||||
return true;
|
||||
|
||||
// Aggregate values are safe if all their elements are.
|
||||
if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
|
||||
isa<ConstantVector>(C)) {
|
||||
for (Value *Op : C->operands())
|
||||
if (!isSimpleEnoughValueToCommit(cast<Constant>(Op), SimpleConstants, DL))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
// We don't know exactly what relocations are allowed in constant expressions,
|
||||
// so we allow &global+constantoffset, which is safe and uniformly supported
|
||||
// across targets.
|
||||
ConstantExpr *CE = cast<ConstantExpr>(C);
|
||||
switch (CE->getOpcode()) {
|
||||
case Instruction::BitCast:
|
||||
// Bitcast is fine if the casted value is fine.
|
||||
return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
|
||||
|
||||
case Instruction::IntToPtr:
|
||||
case Instruction::PtrToInt:
|
||||
// int <=> ptr is fine if the int type is the same size as the
|
||||
// pointer type.
|
||||
if (DL.getTypeSizeInBits(CE->getType()) !=
|
||||
DL.getTypeSizeInBits(CE->getOperand(0)->getType()))
|
||||
return false;
|
||||
return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
|
||||
|
||||
// GEP is fine if it is simple + constant offset.
|
||||
case Instruction::GetElementPtr:
|
||||
for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
|
||||
if (!isa<ConstantInt>(CE->getOperand(i)))
|
||||
return false;
|
||||
return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
|
||||
|
||||
case Instruction::Add:
|
||||
// We allow simple+cst.
|
||||
if (!isa<ConstantInt>(CE->getOperand(1)))
|
||||
return false;
|
||||
return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
static inline bool
|
||||
isSimpleEnoughValueToCommit(Constant *C,
|
||||
SmallPtrSetImpl<Constant *> &SimpleConstants,
|
||||
const DataLayout &DL) {
|
||||
// If we already checked this constant, we win.
|
||||
if (!SimpleConstants.insert(C).second)
|
||||
return true;
|
||||
// Check the constant.
|
||||
return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL);
|
||||
}
|
||||
|
||||
|
||||
/// Return true if this constant is simple enough for us to understand. In
|
||||
/// particular, if it is a cast to anything other than from one pointer type to
|
||||
/// another pointer type, we punt. We basically just support direct accesses to
|
||||
/// globals and GEP's of globals. This should be kept up to date with
|
||||
/// CommitValueTo.
|
||||
static bool isSimpleEnoughPointerToCommit(Constant *C) {
|
||||
// Conservatively, avoid aggregate types. This is because we don't
|
||||
// want to worry about them partially overlapping other stores.
|
||||
if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
|
||||
return false;
|
||||
|
||||
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
|
||||
// Do not allow weak/*_odr/linkonce linkage or external globals.
|
||||
return GV->hasUniqueInitializer();
|
||||
|
||||
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
|
||||
// Handle a constantexpr gep.
|
||||
if (CE->getOpcode() == Instruction::GetElementPtr &&
|
||||
isa<GlobalVariable>(CE->getOperand(0)) &&
|
||||
cast<GEPOperator>(CE)->isInBounds()) {
|
||||
GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
|
||||
// Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
|
||||
// external globals.
|
||||
if (!GV->hasUniqueInitializer())
|
||||
return false;
|
||||
|
||||
// The first index must be zero.
|
||||
ConstantInt *CI = dyn_cast<ConstantInt>(*std::next(CE->op_begin()));
|
||||
if (!CI || !CI->isZero()) return false;
|
||||
|
||||
// The remaining indices must be compile-time known integers within the
|
||||
// notional bounds of the corresponding static array types.
|
||||
if (!CE->isGEPWithNoNotionalOverIndexing())
|
||||
return false;
|
||||
|
||||
return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
|
||||
|
||||
// A constantexpr bitcast from a pointer to another pointer is a no-op,
|
||||
// and we know how to evaluate it by moving the bitcast from the pointer
|
||||
// operand to the value operand.
|
||||
} else if (CE->getOpcode() == Instruction::BitCast &&
|
||||
isa<GlobalVariable>(CE->getOperand(0))) {
|
||||
// Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
|
||||
// external globals.
|
||||
return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
/// Evaluate a piece of a constantexpr store into a global initializer. This
|
||||
/// returns 'Init' modified to reflect 'Val' stored into it. At this point, the
|
||||
/// GEP operands of Addr [0, OpNo) have been stepped into.
|
||||
@ -2301,529 +2170,6 @@ static void CommitValueTo(Constant *Val, Constant *Addr) {
|
||||
GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
|
||||
}
|
||||
|
||||
namespace {
|
||||
|
||||
/// This class evaluates LLVM IR, producing the Constant representing each SSA
|
||||
/// instruction. Changes to global variables are stored in a mapping that can
|
||||
/// be iterated over after the evaluation is complete. Once an evaluation call
|
||||
/// fails, the evaluation object should not be reused.
|
||||
class Evaluator {
|
||||
public:
|
||||
Evaluator(const DataLayout &DL, const TargetLibraryInfo *TLI)
|
||||
: DL(DL), TLI(TLI) {
|
||||
ValueStack.emplace_back();
|
||||
}
|
||||
|
||||
~Evaluator() {
|
||||
for (auto &Tmp : AllocaTmps)
|
||||
// If there are still users of the alloca, the program is doing something
|
||||
// silly, e.g. storing the address of the alloca somewhere and using it
|
||||
// later. Since this is undefined, we'll just make it be null.
|
||||
if (!Tmp->use_empty())
|
||||
Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
|
||||
}
|
||||
|
||||
/// Evaluate a call to function F, returning true if successful, false if we
|
||||
/// can't evaluate it. ActualArgs contains the formal arguments for the
|
||||
/// function.
|
||||
bool EvaluateFunction(Function *F, Constant *&RetVal,
|
||||
const SmallVectorImpl<Constant*> &ActualArgs);
|
||||
|
||||
/// Evaluate all instructions in block BB, returning true if successful, false
|
||||
/// if we can't evaluate it. NewBB returns the next BB that control flows
|
||||
/// into, or null upon return.
|
||||
bool EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB);
|
||||
|
||||
Constant *getVal(Value *V) {
|
||||
if (Constant *CV = dyn_cast<Constant>(V)) return CV;
|
||||
Constant *R = ValueStack.back().lookup(V);
|
||||
assert(R && "Reference to an uncomputed value!");
|
||||
return R;
|
||||
}
|
||||
|
||||
void setVal(Value *V, Constant *C) {
|
||||
ValueStack.back()[V] = C;
|
||||
}
|
||||
|
||||
const DenseMap<Constant*, Constant*> &getMutatedMemory() const {
|
||||
return MutatedMemory;
|
||||
}
|
||||
|
||||
const SmallPtrSetImpl<GlobalVariable*> &getInvariants() const {
|
||||
return Invariants;
|
||||
}
|
||||
|
||||
private:
|
||||
Constant *ComputeLoadResult(Constant *P);
|
||||
|
||||
/// As we compute SSA register values, we store their contents here. The back
|
||||
/// of the deque contains the current function and the stack contains the
|
||||
/// values in the calling frames.
|
||||
std::deque<DenseMap<Value*, Constant*>> ValueStack;
|
||||
|
||||
/// This is used to detect recursion. In pathological situations we could hit
|
||||
/// exponential behavior, but at least there is nothing unbounded.
|
||||
SmallVector<Function*, 4> CallStack;
|
||||
|
||||
/// For each store we execute, we update this map. Loads check this to get
|
||||
/// the most up-to-date value. If evaluation is successful, this state is
|
||||
/// committed to the process.
|
||||
DenseMap<Constant*, Constant*> MutatedMemory;
|
||||
|
||||
/// To 'execute' an alloca, we create a temporary global variable to represent
|
||||
/// its body. This vector is needed so we can delete the temporary globals
|
||||
/// when we are done.
|
||||
SmallVector<std::unique_ptr<GlobalVariable>, 32> AllocaTmps;
|
||||
|
||||
/// These global variables have been marked invariant by the static
|
||||
/// constructor.
|
||||
SmallPtrSet<GlobalVariable*, 8> Invariants;
|
||||
|
||||
/// These are constants we have checked and know to be simple enough to live
|
||||
/// in a static initializer of a global.
|
||||
SmallPtrSet<Constant*, 8> SimpleConstants;
|
||||
|
||||
const DataLayout &DL;
|
||||
const TargetLibraryInfo *TLI;
|
||||
};
|
||||
|
||||
} // anonymous namespace
|
||||
|
||||
/// Return the value that would be computed by a load from P after the stores
|
||||
/// reflected by 'memory' have been performed. If we can't decide, return null.
|
||||
Constant *Evaluator::ComputeLoadResult(Constant *P) {
|
||||
// If this memory location has been recently stored, use the stored value: it
|
||||
// is the most up-to-date.
|
||||
DenseMap<Constant*, Constant*>::const_iterator I = MutatedMemory.find(P);
|
||||
if (I != MutatedMemory.end()) return I->second;
|
||||
|
||||
// Access it.
|
||||
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
|
||||
if (GV->hasDefinitiveInitializer())
|
||||
return GV->getInitializer();
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// Handle a constantexpr getelementptr.
|
||||
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
|
||||
if (CE->getOpcode() == Instruction::GetElementPtr &&
|
||||
isa<GlobalVariable>(CE->getOperand(0))) {
|
||||
GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
|
||||
if (GV->hasDefinitiveInitializer())
|
||||
return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
|
||||
}
|
||||
|
||||
return nullptr; // don't know how to evaluate.
|
||||
}
|
||||
|
||||
/// Evaluate all instructions in block BB, returning true if successful, false
|
||||
/// if we can't evaluate it. NewBB returns the next BB that control flows into,
|
||||
/// or null upon return.
|
||||
bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
|
||||
BasicBlock *&NextBB) {
|
||||
// This is the main evaluation loop.
|
||||
while (1) {
|
||||
Constant *InstResult = nullptr;
|
||||
|
||||
DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n");
|
||||
|
||||
if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
|
||||
if (!SI->isSimple()) {
|
||||
DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n");
|
||||
return false; // no volatile/atomic accesses.
|
||||
}
|
||||
Constant *Ptr = getVal(SI->getOperand(1));
|
||||
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
|
||||
DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr);
|
||||
Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
|
||||
DEBUG(dbgs() << "; To: " << *Ptr << "\n");
|
||||
}
|
||||
if (!isSimpleEnoughPointerToCommit(Ptr)) {
|
||||
// If this is too complex for us to commit, reject it.
|
||||
DEBUG(dbgs() << "Pointer is too complex for us to evaluate store.");
|
||||
return false;
|
||||
}
|
||||
|
||||
Constant *Val = getVal(SI->getOperand(0));
|
||||
|
||||
// If this might be too difficult for the backend to handle (e.g. the addr
|
||||
// of one global variable divided by another) then we can't commit it.
|
||||
if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) {
|
||||
DEBUG(dbgs() << "Store value is too complex to evaluate store. " << *Val
|
||||
<< "\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
|
||||
if (CE->getOpcode() == Instruction::BitCast) {
|
||||
DEBUG(dbgs() << "Attempting to resolve bitcast on constant ptr.\n");
|
||||
// If we're evaluating a store through a bitcast, then we need
|
||||
// to pull the bitcast off the pointer type and push it onto the
|
||||
// stored value.
|
||||
Ptr = CE->getOperand(0);
|
||||
|
||||
Type *NewTy = cast<PointerType>(Ptr->getType())->getElementType();
|
||||
|
||||
// In order to push the bitcast onto the stored value, a bitcast
|
||||
// from NewTy to Val's type must be legal. If it's not, we can try
|
||||
// introspecting NewTy to find a legal conversion.
|
||||
while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) {
|
||||
// If NewTy is a struct, we can convert the pointer to the struct
|
||||
// into a pointer to its first member.
|
||||
// FIXME: This could be extended to support arrays as well.
|
||||
if (StructType *STy = dyn_cast<StructType>(NewTy)) {
|
||||
NewTy = STy->getTypeAtIndex(0U);
|
||||
|
||||
IntegerType *IdxTy = IntegerType::get(NewTy->getContext(), 32);
|
||||
Constant *IdxZero = ConstantInt::get(IdxTy, 0, false);
|
||||
Constant * const IdxList[] = {IdxZero, IdxZero};
|
||||
|
||||
Ptr = ConstantExpr::getGetElementPtr(nullptr, Ptr, IdxList);
|
||||
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
|
||||
Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
|
||||
|
||||
// If we can't improve the situation by introspecting NewTy,
|
||||
// we have to give up.
|
||||
} else {
|
||||
DEBUG(dbgs() << "Failed to bitcast constant ptr, can not "
|
||||
"evaluate.\n");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// If we found compatible types, go ahead and push the bitcast
|
||||
// onto the stored value.
|
||||
Val = ConstantExpr::getBitCast(Val, NewTy);
|
||||
|
||||
DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n");
|
||||
}
|
||||
}
|
||||
|
||||
MutatedMemory[Ptr] = Val;
|
||||
} else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
|
||||
InstResult = ConstantExpr::get(BO->getOpcode(),
|
||||
getVal(BO->getOperand(0)),
|
||||
getVal(BO->getOperand(1)));
|
||||
DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " << *InstResult
|
||||
<< "\n");
|
||||
} else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
|
||||
InstResult = ConstantExpr::getCompare(CI->getPredicate(),
|
||||
getVal(CI->getOperand(0)),
|
||||
getVal(CI->getOperand(1)));
|
||||
DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult
|
||||
<< "\n");
|
||||
} else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
|
||||
InstResult = ConstantExpr::getCast(CI->getOpcode(),
|
||||
getVal(CI->getOperand(0)),
|
||||
CI->getType());
|
||||
DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult
|
||||
<< "\n");
|
||||
} else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
|
||||
InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)),
|
||||
getVal(SI->getOperand(1)),
|
||||
getVal(SI->getOperand(2)));
|
||||
DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult
|
||||
<< "\n");
|
||||
} else if (auto *EVI = dyn_cast<ExtractValueInst>(CurInst)) {
|
||||
InstResult = ConstantExpr::getExtractValue(
|
||||
getVal(EVI->getAggregateOperand()), EVI->getIndices());
|
||||
DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: " << *InstResult
|
||||
<< "\n");
|
||||
} else if (auto *IVI = dyn_cast<InsertValueInst>(CurInst)) {
|
||||
InstResult = ConstantExpr::getInsertValue(
|
||||
getVal(IVI->getAggregateOperand()),
|
||||
getVal(IVI->getInsertedValueOperand()), IVI->getIndices());
|
||||
DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: " << *InstResult
|
||||
<< "\n");
|
||||
} else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
|
||||
Constant *P = getVal(GEP->getOperand(0));
|
||||
SmallVector<Constant*, 8> GEPOps;
|
||||
for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
|
||||
i != e; ++i)
|
||||
GEPOps.push_back(getVal(*i));
|
||||
InstResult =
|
||||
ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), P, GEPOps,
|
||||
cast<GEPOperator>(GEP)->isInBounds());
|
||||
DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult
|
||||
<< "\n");
|
||||
} else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
|
||||
|
||||
if (!LI->isSimple()) {
|
||||
DEBUG(dbgs() << "Found a Load! Not a simple load, can not evaluate.\n");
|
||||
return false; // no volatile/atomic accesses.
|
||||
}
|
||||
|
||||
Constant *Ptr = getVal(LI->getOperand(0));
|
||||
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
|
||||
Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
|
||||
DEBUG(dbgs() << "Found a constant pointer expression, constant "
|
||||
"folding: " << *Ptr << "\n");
|
||||
}
|
||||
InstResult = ComputeLoadResult(Ptr);
|
||||
if (!InstResult) {
|
||||
DEBUG(dbgs() << "Failed to compute load result. Can not evaluate load."
|
||||
"\n");
|
||||
return false; // Could not evaluate load.
|
||||
}
|
||||
|
||||
DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n");
|
||||
} else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
|
||||
if (AI->isArrayAllocation()) {
|
||||
DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n");
|
||||
return false; // Cannot handle array allocs.
|
||||
}
|
||||
Type *Ty = AI->getAllocatedType();
|
||||
AllocaTmps.push_back(
|
||||
make_unique<GlobalVariable>(Ty, false, GlobalValue::InternalLinkage,
|
||||
UndefValue::get(Ty), AI->getName()));
|
||||
InstResult = AllocaTmps.back().get();
|
||||
DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n");
|
||||
} else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
|
||||
CallSite CS(&*CurInst);
|
||||
|
||||
// Debug info can safely be ignored here.
|
||||
if (isa<DbgInfoIntrinsic>(CS.getInstruction())) {
|
||||
DEBUG(dbgs() << "Ignoring debug info.\n");
|
||||
++CurInst;
|
||||
continue;
|
||||
}
|
||||
|
||||
// Cannot handle inline asm.
|
||||
if (isa<InlineAsm>(CS.getCalledValue())) {
|
||||
DEBUG(dbgs() << "Found inline asm, can not evaluate.\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
|
||||
if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
|
||||
if (MSI->isVolatile()) {
|
||||
DEBUG(dbgs() << "Can not optimize a volatile memset " <<
|
||||
"intrinsic.\n");
|
||||
return false;
|
||||
}
|
||||
Constant *Ptr = getVal(MSI->getDest());
|
||||
Constant *Val = getVal(MSI->getValue());
|
||||
Constant *DestVal = ComputeLoadResult(getVal(Ptr));
|
||||
if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
|
||||
// This memset is a no-op.
|
||||
DEBUG(dbgs() << "Ignoring no-op memset.\n");
|
||||
++CurInst;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
|
||||
II->getIntrinsicID() == Intrinsic::lifetime_end) {
|
||||
DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n");
|
||||
++CurInst;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (II->getIntrinsicID() == Intrinsic::invariant_start) {
|
||||
// We don't insert an entry into Values, as it doesn't have a
|
||||
// meaningful return value.
|
||||
if (!II->use_empty()) {
|
||||
DEBUG(dbgs() << "Found unused invariant_start. Can't evaluate.\n");
|
||||
return false;
|
||||
}
|
||||
ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
|
||||
Value *PtrArg = getVal(II->getArgOperand(1));
|
||||
Value *Ptr = PtrArg->stripPointerCasts();
|
||||
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
|
||||
Type *ElemTy = GV->getValueType();
|
||||
if (!Size->isAllOnesValue() &&
|
||||
Size->getValue().getLimitedValue() >=
|
||||
DL.getTypeStoreSize(ElemTy)) {
|
||||
Invariants.insert(GV);
|
||||
DEBUG(dbgs() << "Found a global var that is an invariant: " << *GV
|
||||
<< "\n");
|
||||
} else {
|
||||
DEBUG(dbgs() << "Found a global var, but can not treat it as an "
|
||||
"invariant.\n");
|
||||
}
|
||||
}
|
||||
// Continue even if we do nothing.
|
||||
++CurInst;
|
||||
continue;
|
||||
} else if (II->getIntrinsicID() == Intrinsic::assume) {
|
||||
DEBUG(dbgs() << "Skipping assume intrinsic.\n");
|
||||
++CurInst;
|
||||
continue;
|
||||
}
|
||||
|
||||
DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
// Resolve function pointers.
|
||||
Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue()));
|
||||
if (!Callee || Callee->mayBeOverridden()) {
|
||||
DEBUG(dbgs() << "Can not resolve function pointer.\n");
|
||||
return false; // Cannot resolve.
|
||||
}
|
||||
|
||||
SmallVector<Constant*, 8> Formals;
|
||||
for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i)
|
||||
Formals.push_back(getVal(*i));
|
||||
|
||||
if (Callee->isDeclaration()) {
|
||||
// If this is a function we can constant fold, do it.
|
||||
if (Constant *C = ConstantFoldCall(Callee, Formals, TLI)) {
|
||||
InstResult = C;
|
||||
DEBUG(dbgs() << "Constant folded function call. Result: " <<
|
||||
*InstResult << "\n");
|
||||
} else {
|
||||
DEBUG(dbgs() << "Can not constant fold function call.\n");
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
if (Callee->getFunctionType()->isVarArg()) {
|
||||
DEBUG(dbgs() << "Can not constant fold vararg function call.\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
Constant *RetVal = nullptr;
|
||||
// Execute the call, if successful, use the return value.
|
||||
ValueStack.emplace_back();
|
||||
if (!EvaluateFunction(Callee, RetVal, Formals)) {
|
||||
DEBUG(dbgs() << "Failed to evaluate function.\n");
|
||||
return false;
|
||||
}
|
||||
ValueStack.pop_back();
|
||||
InstResult = RetVal;
|
||||
|
||||
if (InstResult) {
|
||||
DEBUG(dbgs() << "Successfully evaluated function. Result: " <<
|
||||
InstResult << "\n\n");
|
||||
} else {
|
||||
DEBUG(dbgs() << "Successfully evaluated function. Result: 0\n\n");
|
||||
}
|
||||
}
|
||||
} else if (isa<TerminatorInst>(CurInst)) {
|
||||
DEBUG(dbgs() << "Found a terminator instruction.\n");
|
||||
|
||||
if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
|
||||
if (BI->isUnconditional()) {
|
||||
NextBB = BI->getSuccessor(0);
|
||||
} else {
|
||||
ConstantInt *Cond =
|
||||
dyn_cast<ConstantInt>(getVal(BI->getCondition()));
|
||||
if (!Cond) return false; // Cannot determine.
|
||||
|
||||
NextBB = BI->getSuccessor(!Cond->getZExtValue());
|
||||
}
|
||||
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
|
||||
ConstantInt *Val =
|
||||
dyn_cast<ConstantInt>(getVal(SI->getCondition()));
|
||||
if (!Val) return false; // Cannot determine.
|
||||
NextBB = SI->findCaseValue(Val).getCaseSuccessor();
|
||||
} else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
|
||||
Value *Val = getVal(IBI->getAddress())->stripPointerCasts();
|
||||
if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
|
||||
NextBB = BA->getBasicBlock();
|
||||
else
|
||||
return false; // Cannot determine.
|
||||
} else if (isa<ReturnInst>(CurInst)) {
|
||||
NextBB = nullptr;
|
||||
} else {
|
||||
// invoke, unwind, resume, unreachable.
|
||||
DEBUG(dbgs() << "Can not handle terminator.");
|
||||
return false; // Cannot handle this terminator.
|
||||
}
|
||||
|
||||
// We succeeded at evaluating this block!
|
||||
DEBUG(dbgs() << "Successfully evaluated block.\n");
|
||||
return true;
|
||||
} else {
|
||||
// Did not know how to evaluate this!
|
||||
DEBUG(dbgs() << "Failed to evaluate block due to unhandled instruction."
|
||||
"\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!CurInst->use_empty()) {
|
||||
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult))
|
||||
InstResult = ConstantFoldConstantExpression(CE, DL, TLI);
|
||||
|
||||
setVal(&*CurInst, InstResult);
|
||||
}
|
||||
|
||||
// If we just processed an invoke, we finished evaluating the block.
|
||||
if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
|
||||
NextBB = II->getNormalDest();
|
||||
DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n");
|
||||
return true;
|
||||
}
|
||||
|
||||
// Advance program counter.
|
||||
++CurInst;
|
||||
}
|
||||
}
|
||||
|
||||
/// Evaluate a call to function F, returning true if successful, false if we
|
||||
/// can't evaluate it. ActualArgs contains the formal arguments for the
|
||||
/// function.
|
||||
bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
|
||||
const SmallVectorImpl<Constant*> &ActualArgs) {
|
||||
// Check to see if this function is already executing (recursion). If so,
|
||||
// bail out. TODO: we might want to accept limited recursion.
|
||||
if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
|
||||
return false;
|
||||
|
||||
CallStack.push_back(F);
|
||||
|
||||
// Initialize arguments to the incoming values specified.
|
||||
unsigned ArgNo = 0;
|
||||
for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
|
||||
++AI, ++ArgNo)
|
||||
setVal(&*AI, ActualArgs[ArgNo]);
|
||||
|
||||
// ExecutedBlocks - We only handle non-looping, non-recursive code. As such,
|
||||
// we can only evaluate any one basic block at most once. This set keeps
|
||||
// track of what we have executed so we can detect recursive cases etc.
|
||||
SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
|
||||
|
||||
// CurBB - The current basic block we're evaluating.
|
||||
BasicBlock *CurBB = &F->front();
|
||||
|
||||
BasicBlock::iterator CurInst = CurBB->begin();
|
||||
|
||||
while (1) {
|
||||
BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings.
|
||||
DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n");
|
||||
|
||||
if (!EvaluateBlock(CurInst, NextBB))
|
||||
return false;
|
||||
|
||||
if (!NextBB) {
|
||||
// Successfully running until there's no next block means that we found
|
||||
// the return. Fill it the return value and pop the call stack.
|
||||
ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator());
|
||||
if (RI->getNumOperands())
|
||||
RetVal = getVal(RI->getOperand(0));
|
||||
CallStack.pop_back();
|
||||
return true;
|
||||
}
|
||||
|
||||
// Okay, we succeeded in evaluating this control flow. See if we have
|
||||
// executed the new block before. If so, we have a looping function,
|
||||
// which we cannot evaluate in reasonable time.
|
||||
if (!ExecutedBlocks.insert(NextBB).second)
|
||||
return false; // looped!
|
||||
|
||||
// Okay, we have never been in this block before. Check to see if there
|
||||
// are any PHI nodes. If so, evaluate them with information about where
|
||||
// we came from.
|
||||
PHINode *PN = nullptr;
|
||||
for (CurInst = NextBB->begin();
|
||||
(PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
|
||||
setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB)));
|
||||
|
||||
// Advance to the next block.
|
||||
CurBB = NextBB;
|
||||
}
|
||||
}
|
||||
|
||||
/// Evaluate static constructors in the function, if we can. Return true if we
|
||||
/// can, false otherwise.
|
||||
static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
|
||||
|
@ -11,6 +11,7 @@ add_llvm_library(LLVMTransformUtils
|
||||
CodeExtractor.cpp
|
||||
CtorUtils.cpp
|
||||
DemoteRegToStack.cpp
|
||||
Evaluator.cpp
|
||||
FlattenCFG.cpp
|
||||
GlobalStatus.cpp
|
||||
InlineFunction.cpp
|
||||
|
596
lib/Transforms/Utils/Evaluator.cpp
Normal file
596
lib/Transforms/Utils/Evaluator.cpp
Normal file
@ -0,0 +1,596 @@
|
||||
//===- Evaluator.cpp - LLVM IR evaluator ----------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Function evaluator for LLVM IR.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Transforms/Utils/Evaluator.h"
|
||||
#include "llvm/Analysis/ConstantFolding.h"
|
||||
#include "llvm/IR/BasicBlock.h"
|
||||
#include "llvm/IR/CallSite.h"
|
||||
#include "llvm/IR/Constants.h"
|
||||
#include "llvm/IR/DerivedTypes.h"
|
||||
#include "llvm/IR/DiagnosticPrinter.h"
|
||||
#include "llvm/IR/GlobalVariable.h"
|
||||
#include "llvm/IR/IntrinsicInst.h"
|
||||
#include "llvm/IR/Instructions.h"
|
||||
#include "llvm/IR/Operator.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
|
||||
#define DEBUG_TYPE "evaluator"
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
static inline bool
|
||||
isSimpleEnoughValueToCommit(Constant *C,
|
||||
SmallPtrSetImpl<Constant *> &SimpleConstants,
|
||||
const DataLayout &DL);
|
||||
|
||||
/// Return true if the specified constant can be handled by the code generator.
|
||||
/// We don't want to generate something like:
|
||||
/// void *X = &X/42;
|
||||
/// because the code generator doesn't have a relocation that can handle that.
|
||||
///
|
||||
/// This function should be called if C was not found (but just got inserted)
|
||||
/// in SimpleConstants to avoid having to rescan the same constants all the
|
||||
/// time.
|
||||
static bool
|
||||
isSimpleEnoughValueToCommitHelper(Constant *C,
|
||||
SmallPtrSetImpl<Constant *> &SimpleConstants,
|
||||
const DataLayout &DL) {
|
||||
// Simple global addresses are supported, do not allow dllimport or
|
||||
// thread-local globals.
|
||||
if (auto *GV = dyn_cast<GlobalValue>(C))
|
||||
return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal();
|
||||
|
||||
// Simple integer, undef, constant aggregate zero, etc are all supported.
|
||||
if (C->getNumOperands() == 0 || isa<BlockAddress>(C))
|
||||
return true;
|
||||
|
||||
// Aggregate values are safe if all their elements are.
|
||||
if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
|
||||
isa<ConstantVector>(C)) {
|
||||
for (Value *Op : C->operands())
|
||||
if (!isSimpleEnoughValueToCommit(cast<Constant>(Op), SimpleConstants, DL))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
// We don't know exactly what relocations are allowed in constant expressions,
|
||||
// so we allow &global+constantoffset, which is safe and uniformly supported
|
||||
// across targets.
|
||||
ConstantExpr *CE = cast<ConstantExpr>(C);
|
||||
switch (CE->getOpcode()) {
|
||||
case Instruction::BitCast:
|
||||
// Bitcast is fine if the casted value is fine.
|
||||
return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
|
||||
|
||||
case Instruction::IntToPtr:
|
||||
case Instruction::PtrToInt:
|
||||
// int <=> ptr is fine if the int type is the same size as the
|
||||
// pointer type.
|
||||
if (DL.getTypeSizeInBits(CE->getType()) !=
|
||||
DL.getTypeSizeInBits(CE->getOperand(0)->getType()))
|
||||
return false;
|
||||
return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
|
||||
|
||||
// GEP is fine if it is simple + constant offset.
|
||||
case Instruction::GetElementPtr:
|
||||
for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
|
||||
if (!isa<ConstantInt>(CE->getOperand(i)))
|
||||
return false;
|
||||
return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
|
||||
|
||||
case Instruction::Add:
|
||||
// We allow simple+cst.
|
||||
if (!isa<ConstantInt>(CE->getOperand(1)))
|
||||
return false;
|
||||
return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
static inline bool
|
||||
isSimpleEnoughValueToCommit(Constant *C,
|
||||
SmallPtrSetImpl<Constant *> &SimpleConstants,
|
||||
const DataLayout &DL) {
|
||||
// If we already checked this constant, we win.
|
||||
if (!SimpleConstants.insert(C).second)
|
||||
return true;
|
||||
// Check the constant.
|
||||
return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL);
|
||||
}
|
||||
|
||||
/// Return true if this constant is simple enough for us to understand. In
|
||||
/// particular, if it is a cast to anything other than from one pointer type to
|
||||
/// another pointer type, we punt. We basically just support direct accesses to
|
||||
/// globals and GEP's of globals. This should be kept up to date with
|
||||
/// CommitValueTo.
|
||||
static bool isSimpleEnoughPointerToCommit(Constant *C) {
|
||||
// Conservatively, avoid aggregate types. This is because we don't
|
||||
// want to worry about them partially overlapping other stores.
|
||||
if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
|
||||
return false;
|
||||
|
||||
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
|
||||
// Do not allow weak/*_odr/linkonce linkage or external globals.
|
||||
return GV->hasUniqueInitializer();
|
||||
|
||||
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
|
||||
// Handle a constantexpr gep.
|
||||
if (CE->getOpcode() == Instruction::GetElementPtr &&
|
||||
isa<GlobalVariable>(CE->getOperand(0)) &&
|
||||
cast<GEPOperator>(CE)->isInBounds()) {
|
||||
GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
|
||||
// Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
|
||||
// external globals.
|
||||
if (!GV->hasUniqueInitializer())
|
||||
return false;
|
||||
|
||||
// The first index must be zero.
|
||||
ConstantInt *CI = dyn_cast<ConstantInt>(*std::next(CE->op_begin()));
|
||||
if (!CI || !CI->isZero()) return false;
|
||||
|
||||
// The remaining indices must be compile-time known integers within the
|
||||
// notional bounds of the corresponding static array types.
|
||||
if (!CE->isGEPWithNoNotionalOverIndexing())
|
||||
return false;
|
||||
|
||||
return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
|
||||
|
||||
// A constantexpr bitcast from a pointer to another pointer is a no-op,
|
||||
// and we know how to evaluate it by moving the bitcast from the pointer
|
||||
// operand to the value operand.
|
||||
} else if (CE->getOpcode() == Instruction::BitCast &&
|
||||
isa<GlobalVariable>(CE->getOperand(0))) {
|
||||
// Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
|
||||
// external globals.
|
||||
return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
/// Return the value that would be computed by a load from P after the stores
|
||||
/// reflected by 'memory' have been performed. If we can't decide, return null.
|
||||
Constant *Evaluator::ComputeLoadResult(Constant *P) {
|
||||
// If this memory location has been recently stored, use the stored value: it
|
||||
// is the most up-to-date.
|
||||
DenseMap<Constant*, Constant*>::const_iterator I = MutatedMemory.find(P);
|
||||
if (I != MutatedMemory.end()) return I->second;
|
||||
|
||||
// Access it.
|
||||
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
|
||||
if (GV->hasDefinitiveInitializer())
|
||||
return GV->getInitializer();
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// Handle a constantexpr getelementptr.
|
||||
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
|
||||
if (CE->getOpcode() == Instruction::GetElementPtr &&
|
||||
isa<GlobalVariable>(CE->getOperand(0))) {
|
||||
GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
|
||||
if (GV->hasDefinitiveInitializer())
|
||||
return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
|
||||
}
|
||||
|
||||
return nullptr; // don't know how to evaluate.
|
||||
}
|
||||
|
||||
/// Evaluate all instructions in block BB, returning true if successful, false
|
||||
/// if we can't evaluate it. NewBB returns the next BB that control flows into,
|
||||
/// or null upon return.
|
||||
bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
|
||||
BasicBlock *&NextBB) {
|
||||
// This is the main evaluation loop.
|
||||
while (1) {
|
||||
Constant *InstResult = nullptr;
|
||||
|
||||
DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n");
|
||||
|
||||
if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
|
||||
if (!SI->isSimple()) {
|
||||
DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n");
|
||||
return false; // no volatile/atomic accesses.
|
||||
}
|
||||
Constant *Ptr = getVal(SI->getOperand(1));
|
||||
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
|
||||
DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr);
|
||||
Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
|
||||
DEBUG(dbgs() << "; To: " << *Ptr << "\n");
|
||||
}
|
||||
if (!isSimpleEnoughPointerToCommit(Ptr)) {
|
||||
// If this is too complex for us to commit, reject it.
|
||||
DEBUG(dbgs() << "Pointer is too complex for us to evaluate store.");
|
||||
return false;
|
||||
}
|
||||
|
||||
Constant *Val = getVal(SI->getOperand(0));
|
||||
|
||||
// If this might be too difficult for the backend to handle (e.g. the addr
|
||||
// of one global variable divided by another) then we can't commit it.
|
||||
if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) {
|
||||
DEBUG(dbgs() << "Store value is too complex to evaluate store. " << *Val
|
||||
<< "\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
|
||||
if (CE->getOpcode() == Instruction::BitCast) {
|
||||
DEBUG(dbgs() << "Attempting to resolve bitcast on constant ptr.\n");
|
||||
// If we're evaluating a store through a bitcast, then we need
|
||||
// to pull the bitcast off the pointer type and push it onto the
|
||||
// stored value.
|
||||
Ptr = CE->getOperand(0);
|
||||
|
||||
Type *NewTy = cast<PointerType>(Ptr->getType())->getElementType();
|
||||
|
||||
// In order to push the bitcast onto the stored value, a bitcast
|
||||
// from NewTy to Val's type must be legal. If it's not, we can try
|
||||
// introspecting NewTy to find a legal conversion.
|
||||
while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) {
|
||||
// If NewTy is a struct, we can convert the pointer to the struct
|
||||
// into a pointer to its first member.
|
||||
// FIXME: This could be extended to support arrays as well.
|
||||
if (StructType *STy = dyn_cast<StructType>(NewTy)) {
|
||||
NewTy = STy->getTypeAtIndex(0U);
|
||||
|
||||
IntegerType *IdxTy = IntegerType::get(NewTy->getContext(), 32);
|
||||
Constant *IdxZero = ConstantInt::get(IdxTy, 0, false);
|
||||
Constant * const IdxList[] = {IdxZero, IdxZero};
|
||||
|
||||
Ptr = ConstantExpr::getGetElementPtr(nullptr, Ptr, IdxList);
|
||||
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
|
||||
Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
|
||||
|
||||
// If we can't improve the situation by introspecting NewTy,
|
||||
// we have to give up.
|
||||
} else {
|
||||
DEBUG(dbgs() << "Failed to bitcast constant ptr, can not "
|
||||
"evaluate.\n");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// If we found compatible types, go ahead and push the bitcast
|
||||
// onto the stored value.
|
||||
Val = ConstantExpr::getBitCast(Val, NewTy);
|
||||
|
||||
DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n");
|
||||
}
|
||||
}
|
||||
|
||||
MutatedMemory[Ptr] = Val;
|
||||
} else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
|
||||
InstResult = ConstantExpr::get(BO->getOpcode(),
|
||||
getVal(BO->getOperand(0)),
|
||||
getVal(BO->getOperand(1)));
|
||||
DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " << *InstResult
|
||||
<< "\n");
|
||||
} else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
|
||||
InstResult = ConstantExpr::getCompare(CI->getPredicate(),
|
||||
getVal(CI->getOperand(0)),
|
||||
getVal(CI->getOperand(1)));
|
||||
DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult
|
||||
<< "\n");
|
||||
} else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
|
||||
InstResult = ConstantExpr::getCast(CI->getOpcode(),
|
||||
getVal(CI->getOperand(0)),
|
||||
CI->getType());
|
||||
DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult
|
||||
<< "\n");
|
||||
} else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
|
||||
InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)),
|
||||
getVal(SI->getOperand(1)),
|
||||
getVal(SI->getOperand(2)));
|
||||
DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult
|
||||
<< "\n");
|
||||
} else if (auto *EVI = dyn_cast<ExtractValueInst>(CurInst)) {
|
||||
InstResult = ConstantExpr::getExtractValue(
|
||||
getVal(EVI->getAggregateOperand()), EVI->getIndices());
|
||||
DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: " << *InstResult
|
||||
<< "\n");
|
||||
} else if (auto *IVI = dyn_cast<InsertValueInst>(CurInst)) {
|
||||
InstResult = ConstantExpr::getInsertValue(
|
||||
getVal(IVI->getAggregateOperand()),
|
||||
getVal(IVI->getInsertedValueOperand()), IVI->getIndices());
|
||||
DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: " << *InstResult
|
||||
<< "\n");
|
||||
} else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
|
||||
Constant *P = getVal(GEP->getOperand(0));
|
||||
SmallVector<Constant*, 8> GEPOps;
|
||||
for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
|
||||
i != e; ++i)
|
||||
GEPOps.push_back(getVal(*i));
|
||||
InstResult =
|
||||
ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), P, GEPOps,
|
||||
cast<GEPOperator>(GEP)->isInBounds());
|
||||
DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult
|
||||
<< "\n");
|
||||
} else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
|
||||
|
||||
if (!LI->isSimple()) {
|
||||
DEBUG(dbgs() << "Found a Load! Not a simple load, can not evaluate.\n");
|
||||
return false; // no volatile/atomic accesses.
|
||||
}
|
||||
|
||||
Constant *Ptr = getVal(LI->getOperand(0));
|
||||
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
|
||||
Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
|
||||
DEBUG(dbgs() << "Found a constant pointer expression, constant "
|
||||
"folding: " << *Ptr << "\n");
|
||||
}
|
||||
InstResult = ComputeLoadResult(Ptr);
|
||||
if (!InstResult) {
|
||||
DEBUG(dbgs() << "Failed to compute load result. Can not evaluate load."
|
||||
"\n");
|
||||
return false; // Could not evaluate load.
|
||||
}
|
||||
|
||||
DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n");
|
||||
} else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
|
||||
if (AI->isArrayAllocation()) {
|
||||
DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n");
|
||||
return false; // Cannot handle array allocs.
|
||||
}
|
||||
Type *Ty = AI->getAllocatedType();
|
||||
AllocaTmps.push_back(
|
||||
make_unique<GlobalVariable>(Ty, false, GlobalValue::InternalLinkage,
|
||||
UndefValue::get(Ty), AI->getName()));
|
||||
InstResult = AllocaTmps.back().get();
|
||||
DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n");
|
||||
} else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
|
||||
CallSite CS(&*CurInst);
|
||||
|
||||
// Debug info can safely be ignored here.
|
||||
if (isa<DbgInfoIntrinsic>(CS.getInstruction())) {
|
||||
DEBUG(dbgs() << "Ignoring debug info.\n");
|
||||
++CurInst;
|
||||
continue;
|
||||
}
|
||||
|
||||
// Cannot handle inline asm.
|
||||
if (isa<InlineAsm>(CS.getCalledValue())) {
|
||||
DEBUG(dbgs() << "Found inline asm, can not evaluate.\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
|
||||
if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
|
||||
if (MSI->isVolatile()) {
|
||||
DEBUG(dbgs() << "Can not optimize a volatile memset " <<
|
||||
"intrinsic.\n");
|
||||
return false;
|
||||
}
|
||||
Constant *Ptr = getVal(MSI->getDest());
|
||||
Constant *Val = getVal(MSI->getValue());
|
||||
Constant *DestVal = ComputeLoadResult(getVal(Ptr));
|
||||
if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
|
||||
// This memset is a no-op.
|
||||
DEBUG(dbgs() << "Ignoring no-op memset.\n");
|
||||
++CurInst;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
|
||||
II->getIntrinsicID() == Intrinsic::lifetime_end) {
|
||||
DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n");
|
||||
++CurInst;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (II->getIntrinsicID() == Intrinsic::invariant_start) {
|
||||
// We don't insert an entry into Values, as it doesn't have a
|
||||
// meaningful return value.
|
||||
if (!II->use_empty()) {
|
||||
DEBUG(dbgs() << "Found unused invariant_start. Can't evaluate.\n");
|
||||
return false;
|
||||
}
|
||||
ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
|
||||
Value *PtrArg = getVal(II->getArgOperand(1));
|
||||
Value *Ptr = PtrArg->stripPointerCasts();
|
||||
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
|
||||
Type *ElemTy = GV->getValueType();
|
||||
if (!Size->isAllOnesValue() &&
|
||||
Size->getValue().getLimitedValue() >=
|
||||
DL.getTypeStoreSize(ElemTy)) {
|
||||
Invariants.insert(GV);
|
||||
DEBUG(dbgs() << "Found a global var that is an invariant: " << *GV
|
||||
<< "\n");
|
||||
} else {
|
||||
DEBUG(dbgs() << "Found a global var, but can not treat it as an "
|
||||
"invariant.\n");
|
||||
}
|
||||
}
|
||||
// Continue even if we do nothing.
|
||||
++CurInst;
|
||||
continue;
|
||||
} else if (II->getIntrinsicID() == Intrinsic::assume) {
|
||||
DEBUG(dbgs() << "Skipping assume intrinsic.\n");
|
||||
++CurInst;
|
||||
continue;
|
||||
}
|
||||
|
||||
DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
// Resolve function pointers.
|
||||
Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue()));
|
||||
if (!Callee || Callee->mayBeOverridden()) {
|
||||
DEBUG(dbgs() << "Can not resolve function pointer.\n");
|
||||
return false; // Cannot resolve.
|
||||
}
|
||||
|
||||
SmallVector<Constant*, 8> Formals;
|
||||
for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i)
|
||||
Formals.push_back(getVal(*i));
|
||||
|
||||
if (Callee->isDeclaration()) {
|
||||
// If this is a function we can constant fold, do it.
|
||||
if (Constant *C = ConstantFoldCall(Callee, Formals, TLI)) {
|
||||
InstResult = C;
|
||||
DEBUG(dbgs() << "Constant folded function call. Result: " <<
|
||||
*InstResult << "\n");
|
||||
} else {
|
||||
DEBUG(dbgs() << "Can not constant fold function call.\n");
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
if (Callee->getFunctionType()->isVarArg()) {
|
||||
DEBUG(dbgs() << "Can not constant fold vararg function call.\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
Constant *RetVal = nullptr;
|
||||
// Execute the call, if successful, use the return value.
|
||||
ValueStack.emplace_back();
|
||||
if (!EvaluateFunction(Callee, RetVal, Formals)) {
|
||||
DEBUG(dbgs() << "Failed to evaluate function.\n");
|
||||
return false;
|
||||
}
|
||||
ValueStack.pop_back();
|
||||
InstResult = RetVal;
|
||||
|
||||
if (InstResult) {
|
||||
DEBUG(dbgs() << "Successfully evaluated function. Result: "
|
||||
<< *InstResult << "\n\n");
|
||||
} else {
|
||||
DEBUG(dbgs() << "Successfully evaluated function. Result: 0\n\n");
|
||||
}
|
||||
}
|
||||
} else if (isa<TerminatorInst>(CurInst)) {
|
||||
DEBUG(dbgs() << "Found a terminator instruction.\n");
|
||||
|
||||
if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
|
||||
if (BI->isUnconditional()) {
|
||||
NextBB = BI->getSuccessor(0);
|
||||
} else {
|
||||
ConstantInt *Cond =
|
||||
dyn_cast<ConstantInt>(getVal(BI->getCondition()));
|
||||
if (!Cond) return false; // Cannot determine.
|
||||
|
||||
NextBB = BI->getSuccessor(!Cond->getZExtValue());
|
||||
}
|
||||
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
|
||||
ConstantInt *Val =
|
||||
dyn_cast<ConstantInt>(getVal(SI->getCondition()));
|
||||
if (!Val) return false; // Cannot determine.
|
||||
NextBB = SI->findCaseValue(Val).getCaseSuccessor();
|
||||
} else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
|
||||
Value *Val = getVal(IBI->getAddress())->stripPointerCasts();
|
||||
if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
|
||||
NextBB = BA->getBasicBlock();
|
||||
else
|
||||
return false; // Cannot determine.
|
||||
} else if (isa<ReturnInst>(CurInst)) {
|
||||
NextBB = nullptr;
|
||||
} else {
|
||||
// invoke, unwind, resume, unreachable.
|
||||
DEBUG(dbgs() << "Can not handle terminator.");
|
||||
return false; // Cannot handle this terminator.
|
||||
}
|
||||
|
||||
// We succeeded at evaluating this block!
|
||||
DEBUG(dbgs() << "Successfully evaluated block.\n");
|
||||
return true;
|
||||
} else {
|
||||
// Did not know how to evaluate this!
|
||||
DEBUG(dbgs() << "Failed to evaluate block due to unhandled instruction."
|
||||
"\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!CurInst->use_empty()) {
|
||||
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult))
|
||||
InstResult = ConstantFoldConstantExpression(CE, DL, TLI);
|
||||
|
||||
setVal(&*CurInst, InstResult);
|
||||
}
|
||||
|
||||
// If we just processed an invoke, we finished evaluating the block.
|
||||
if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
|
||||
NextBB = II->getNormalDest();
|
||||
DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n");
|
||||
return true;
|
||||
}
|
||||
|
||||
// Advance program counter.
|
||||
++CurInst;
|
||||
}
|
||||
}
|
||||
|
||||
/// Evaluate a call to function F, returning true if successful, false if we
|
||||
/// can't evaluate it. ActualArgs contains the formal arguments for the
|
||||
/// function.
|
||||
bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
|
||||
const SmallVectorImpl<Constant*> &ActualArgs) {
|
||||
// Check to see if this function is already executing (recursion). If so,
|
||||
// bail out. TODO: we might want to accept limited recursion.
|
||||
if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
|
||||
return false;
|
||||
|
||||
CallStack.push_back(F);
|
||||
|
||||
// Initialize arguments to the incoming values specified.
|
||||
unsigned ArgNo = 0;
|
||||
for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
|
||||
++AI, ++ArgNo)
|
||||
setVal(&*AI, ActualArgs[ArgNo]);
|
||||
|
||||
// ExecutedBlocks - We only handle non-looping, non-recursive code. As such,
|
||||
// we can only evaluate any one basic block at most once. This set keeps
|
||||
// track of what we have executed so we can detect recursive cases etc.
|
||||
SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
|
||||
|
||||
// CurBB - The current basic block we're evaluating.
|
||||
BasicBlock *CurBB = &F->front();
|
||||
|
||||
BasicBlock::iterator CurInst = CurBB->begin();
|
||||
|
||||
while (1) {
|
||||
BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings.
|
||||
DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n");
|
||||
|
||||
if (!EvaluateBlock(CurInst, NextBB))
|
||||
return false;
|
||||
|
||||
if (!NextBB) {
|
||||
// Successfully running until there's no next block means that we found
|
||||
// the return. Fill it the return value and pop the call stack.
|
||||
ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator());
|
||||
if (RI->getNumOperands())
|
||||
RetVal = getVal(RI->getOperand(0));
|
||||
CallStack.pop_back();
|
||||
return true;
|
||||
}
|
||||
|
||||
// Okay, we succeeded in evaluating this control flow. See if we have
|
||||
// executed the new block before. If so, we have a looping function,
|
||||
// which we cannot evaluate in reasonable time.
|
||||
if (!ExecutedBlocks.insert(NextBB).second)
|
||||
return false; // looped!
|
||||
|
||||
// Okay, we have never been in this block before. Check to see if there
|
||||
// are any PHI nodes. If so, evaluate them with information about where
|
||||
// we came from.
|
||||
PHINode *PN = nullptr;
|
||||
for (CurInst = NextBB->begin();
|
||||
(PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
|
||||
setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB)));
|
||||
|
||||
// Advance to the next block.
|
||||
CurBB = NextBB;
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user