mirror of
https://github.com/RPCSX/llvm.git
synced 2024-12-04 10:04:33 +00:00
Transforms: Move GlobalOpt's Evaluator to Utils where it can be reused.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@259621 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
b9d2127857
commit
6f984cbfab
119
include/llvm/Transforms/Utils/Evaluator.h
Normal file
119
include/llvm/Transforms/Utils/Evaluator.h
Normal file
@ -0,0 +1,119 @@
|
|||||||
|
//===-- Evaluator.h - LLVM IR evaluator -------------------------*- C++ -*-===//
|
||||||
|
//
|
||||||
|
// The LLVM Compiler Infrastructure
|
||||||
|
//
|
||||||
|
// This file is distributed under the University of Illinois Open Source
|
||||||
|
// License. See LICENSE.TXT for details.
|
||||||
|
//
|
||||||
|
//===----------------------------------------------------------------------===//
|
||||||
|
//
|
||||||
|
// Function evaluator for LLVM IR.
|
||||||
|
//
|
||||||
|
//===----------------------------------------------------------------------===//
|
||||||
|
|
||||||
|
#ifndef LLVM_TRANSFORMS_UTILS_EVALUATOR_H
|
||||||
|
#define LLVM_TRANSFORMS_UTILS_EVALUATOR_H
|
||||||
|
|
||||||
|
#include "llvm/ADT/DenseMap.h"
|
||||||
|
#include "llvm/ADT/SmallPtrSet.h"
|
||||||
|
#include "llvm/ADT/SmallVector.h"
|
||||||
|
#include "llvm/IR/BasicBlock.h"
|
||||||
|
#include "llvm/IR/Constant.h"
|
||||||
|
#include "llvm/IR/GlobalVariable.h"
|
||||||
|
|
||||||
|
#include <deque>
|
||||||
|
#include <memory>
|
||||||
|
|
||||||
|
namespace llvm {
|
||||||
|
|
||||||
|
class DataLayout;
|
||||||
|
class Function;
|
||||||
|
class TargetLibraryInfo;
|
||||||
|
|
||||||
|
/// This class evaluates LLVM IR, producing the Constant representing each SSA
|
||||||
|
/// instruction. Changes to global variables are stored in a mapping that can
|
||||||
|
/// be iterated over after the evaluation is complete. Once an evaluation call
|
||||||
|
/// fails, the evaluation object should not be reused.
|
||||||
|
class Evaluator {
|
||||||
|
public:
|
||||||
|
Evaluator(const DataLayout &DL, const TargetLibraryInfo *TLI)
|
||||||
|
: DL(DL), TLI(TLI) {
|
||||||
|
ValueStack.emplace_back();
|
||||||
|
}
|
||||||
|
|
||||||
|
~Evaluator() {
|
||||||
|
for (auto &Tmp : AllocaTmps)
|
||||||
|
// If there are still users of the alloca, the program is doing something
|
||||||
|
// silly, e.g. storing the address of the alloca somewhere and using it
|
||||||
|
// later. Since this is undefined, we'll just make it be null.
|
||||||
|
if (!Tmp->use_empty())
|
||||||
|
Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Evaluate a call to function F, returning true if successful, false if we
|
||||||
|
/// can't evaluate it. ActualArgs contains the formal arguments for the
|
||||||
|
/// function.
|
||||||
|
bool EvaluateFunction(Function *F, Constant *&RetVal,
|
||||||
|
const SmallVectorImpl<Constant*> &ActualArgs);
|
||||||
|
|
||||||
|
/// Evaluate all instructions in block BB, returning true if successful, false
|
||||||
|
/// if we can't evaluate it. NewBB returns the next BB that control flows
|
||||||
|
/// into, or null upon return.
|
||||||
|
bool EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB);
|
||||||
|
|
||||||
|
Constant *getVal(Value *V) {
|
||||||
|
if (Constant *CV = dyn_cast<Constant>(V)) return CV;
|
||||||
|
Constant *R = ValueStack.back().lookup(V);
|
||||||
|
assert(R && "Reference to an uncomputed value!");
|
||||||
|
return R;
|
||||||
|
}
|
||||||
|
|
||||||
|
void setVal(Value *V, Constant *C) {
|
||||||
|
ValueStack.back()[V] = C;
|
||||||
|
}
|
||||||
|
|
||||||
|
const DenseMap<Constant*, Constant*> &getMutatedMemory() const {
|
||||||
|
return MutatedMemory;
|
||||||
|
}
|
||||||
|
|
||||||
|
const SmallPtrSetImpl<GlobalVariable*> &getInvariants() const {
|
||||||
|
return Invariants;
|
||||||
|
}
|
||||||
|
|
||||||
|
private:
|
||||||
|
Constant *ComputeLoadResult(Constant *P);
|
||||||
|
|
||||||
|
/// As we compute SSA register values, we store their contents here. The back
|
||||||
|
/// of the deque contains the current function and the stack contains the
|
||||||
|
/// values in the calling frames.
|
||||||
|
std::deque<DenseMap<Value*, Constant*>> ValueStack;
|
||||||
|
|
||||||
|
/// This is used to detect recursion. In pathological situations we could hit
|
||||||
|
/// exponential behavior, but at least there is nothing unbounded.
|
||||||
|
SmallVector<Function*, 4> CallStack;
|
||||||
|
|
||||||
|
/// For each store we execute, we update this map. Loads check this to get
|
||||||
|
/// the most up-to-date value. If evaluation is successful, this state is
|
||||||
|
/// committed to the process.
|
||||||
|
DenseMap<Constant*, Constant*> MutatedMemory;
|
||||||
|
|
||||||
|
/// To 'execute' an alloca, we create a temporary global variable to represent
|
||||||
|
/// its body. This vector is needed so we can delete the temporary globals
|
||||||
|
/// when we are done.
|
||||||
|
SmallVector<std::unique_ptr<GlobalVariable>, 32> AllocaTmps;
|
||||||
|
|
||||||
|
/// These global variables have been marked invariant by the static
|
||||||
|
/// constructor.
|
||||||
|
SmallPtrSet<GlobalVariable*, 8> Invariants;
|
||||||
|
|
||||||
|
/// These are constants we have checked and know to be simple enough to live
|
||||||
|
/// in a static initializer of a global.
|
||||||
|
SmallPtrSet<Constant*, 8> SimpleConstants;
|
||||||
|
|
||||||
|
const DataLayout &DL;
|
||||||
|
const TargetLibraryInfo *TLI;
|
||||||
|
};
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif
|
@ -41,6 +41,7 @@
|
|||||||
#include "llvm/Support/MathExtras.h"
|
#include "llvm/Support/MathExtras.h"
|
||||||
#include "llvm/Support/raw_ostream.h"
|
#include "llvm/Support/raw_ostream.h"
|
||||||
#include "llvm/Transforms/Utils/CtorUtils.h"
|
#include "llvm/Transforms/Utils/CtorUtils.h"
|
||||||
|
#include "llvm/Transforms/Utils/Evaluator.h"
|
||||||
#include "llvm/Transforms/Utils/GlobalStatus.h"
|
#include "llvm/Transforms/Utils/GlobalStatus.h"
|
||||||
#include "llvm/Transforms/Utils/ModuleUtils.h"
|
#include "llvm/Transforms/Utils/ModuleUtils.h"
|
||||||
#include <algorithm>
|
#include <algorithm>
|
||||||
@ -2106,138 +2107,6 @@ bool GlobalOpt::OptimizeGlobalVars(Module &M) {
|
|||||||
return Changed;
|
return Changed;
|
||||||
}
|
}
|
||||||
|
|
||||||
static inline bool
|
|
||||||
isSimpleEnoughValueToCommit(Constant *C,
|
|
||||||
SmallPtrSetImpl<Constant *> &SimpleConstants,
|
|
||||||
const DataLayout &DL);
|
|
||||||
|
|
||||||
/// Return true if the specified constant can be handled by the code generator.
|
|
||||||
/// We don't want to generate something like:
|
|
||||||
/// void *X = &X/42;
|
|
||||||
/// because the code generator doesn't have a relocation that can handle that.
|
|
||||||
///
|
|
||||||
/// This function should be called if C was not found (but just got inserted)
|
|
||||||
/// in SimpleConstants to avoid having to rescan the same constants all the
|
|
||||||
/// time.
|
|
||||||
static bool
|
|
||||||
isSimpleEnoughValueToCommitHelper(Constant *C,
|
|
||||||
SmallPtrSetImpl<Constant *> &SimpleConstants,
|
|
||||||
const DataLayout &DL) {
|
|
||||||
// Simple global addresses are supported, do not allow dllimport or
|
|
||||||
// thread-local globals.
|
|
||||||
if (auto *GV = dyn_cast<GlobalValue>(C))
|
|
||||||
return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal();
|
|
||||||
|
|
||||||
// Simple integer, undef, constant aggregate zero, etc are all supported.
|
|
||||||
if (C->getNumOperands() == 0 || isa<BlockAddress>(C))
|
|
||||||
return true;
|
|
||||||
|
|
||||||
// Aggregate values are safe if all their elements are.
|
|
||||||
if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
|
|
||||||
isa<ConstantVector>(C)) {
|
|
||||||
for (Value *Op : C->operands())
|
|
||||||
if (!isSimpleEnoughValueToCommit(cast<Constant>(Op), SimpleConstants, DL))
|
|
||||||
return false;
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
// We don't know exactly what relocations are allowed in constant expressions,
|
|
||||||
// so we allow &global+constantoffset, which is safe and uniformly supported
|
|
||||||
// across targets.
|
|
||||||
ConstantExpr *CE = cast<ConstantExpr>(C);
|
|
||||||
switch (CE->getOpcode()) {
|
|
||||||
case Instruction::BitCast:
|
|
||||||
// Bitcast is fine if the casted value is fine.
|
|
||||||
return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
|
|
||||||
|
|
||||||
case Instruction::IntToPtr:
|
|
||||||
case Instruction::PtrToInt:
|
|
||||||
// int <=> ptr is fine if the int type is the same size as the
|
|
||||||
// pointer type.
|
|
||||||
if (DL.getTypeSizeInBits(CE->getType()) !=
|
|
||||||
DL.getTypeSizeInBits(CE->getOperand(0)->getType()))
|
|
||||||
return false;
|
|
||||||
return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
|
|
||||||
|
|
||||||
// GEP is fine if it is simple + constant offset.
|
|
||||||
case Instruction::GetElementPtr:
|
|
||||||
for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
|
|
||||||
if (!isa<ConstantInt>(CE->getOperand(i)))
|
|
||||||
return false;
|
|
||||||
return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
|
|
||||||
|
|
||||||
case Instruction::Add:
|
|
||||||
// We allow simple+cst.
|
|
||||||
if (!isa<ConstantInt>(CE->getOperand(1)))
|
|
||||||
return false;
|
|
||||||
return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
|
|
||||||
}
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
static inline bool
|
|
||||||
isSimpleEnoughValueToCommit(Constant *C,
|
|
||||||
SmallPtrSetImpl<Constant *> &SimpleConstants,
|
|
||||||
const DataLayout &DL) {
|
|
||||||
// If we already checked this constant, we win.
|
|
||||||
if (!SimpleConstants.insert(C).second)
|
|
||||||
return true;
|
|
||||||
// Check the constant.
|
|
||||||
return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL);
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
/// Return true if this constant is simple enough for us to understand. In
|
|
||||||
/// particular, if it is a cast to anything other than from one pointer type to
|
|
||||||
/// another pointer type, we punt. We basically just support direct accesses to
|
|
||||||
/// globals and GEP's of globals. This should be kept up to date with
|
|
||||||
/// CommitValueTo.
|
|
||||||
static bool isSimpleEnoughPointerToCommit(Constant *C) {
|
|
||||||
// Conservatively, avoid aggregate types. This is because we don't
|
|
||||||
// want to worry about them partially overlapping other stores.
|
|
||||||
if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
|
|
||||||
return false;
|
|
||||||
|
|
||||||
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
|
|
||||||
// Do not allow weak/*_odr/linkonce linkage or external globals.
|
|
||||||
return GV->hasUniqueInitializer();
|
|
||||||
|
|
||||||
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
|
|
||||||
// Handle a constantexpr gep.
|
|
||||||
if (CE->getOpcode() == Instruction::GetElementPtr &&
|
|
||||||
isa<GlobalVariable>(CE->getOperand(0)) &&
|
|
||||||
cast<GEPOperator>(CE)->isInBounds()) {
|
|
||||||
GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
|
|
||||||
// Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
|
|
||||||
// external globals.
|
|
||||||
if (!GV->hasUniqueInitializer())
|
|
||||||
return false;
|
|
||||||
|
|
||||||
// The first index must be zero.
|
|
||||||
ConstantInt *CI = dyn_cast<ConstantInt>(*std::next(CE->op_begin()));
|
|
||||||
if (!CI || !CI->isZero()) return false;
|
|
||||||
|
|
||||||
// The remaining indices must be compile-time known integers within the
|
|
||||||
// notional bounds of the corresponding static array types.
|
|
||||||
if (!CE->isGEPWithNoNotionalOverIndexing())
|
|
||||||
return false;
|
|
||||||
|
|
||||||
return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
|
|
||||||
|
|
||||||
// A constantexpr bitcast from a pointer to another pointer is a no-op,
|
|
||||||
// and we know how to evaluate it by moving the bitcast from the pointer
|
|
||||||
// operand to the value operand.
|
|
||||||
} else if (CE->getOpcode() == Instruction::BitCast &&
|
|
||||||
isa<GlobalVariable>(CE->getOperand(0))) {
|
|
||||||
// Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
|
|
||||||
// external globals.
|
|
||||||
return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Evaluate a piece of a constantexpr store into a global initializer. This
|
/// Evaluate a piece of a constantexpr store into a global initializer. This
|
||||||
/// returns 'Init' modified to reflect 'Val' stored into it. At this point, the
|
/// returns 'Init' modified to reflect 'Val' stored into it. At this point, the
|
||||||
/// GEP operands of Addr [0, OpNo) have been stepped into.
|
/// GEP operands of Addr [0, OpNo) have been stepped into.
|
||||||
@ -2301,529 +2170,6 @@ static void CommitValueTo(Constant *Val, Constant *Addr) {
|
|||||||
GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
|
GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
|
||||||
}
|
}
|
||||||
|
|
||||||
namespace {
|
|
||||||
|
|
||||||
/// This class evaluates LLVM IR, producing the Constant representing each SSA
|
|
||||||
/// instruction. Changes to global variables are stored in a mapping that can
|
|
||||||
/// be iterated over after the evaluation is complete. Once an evaluation call
|
|
||||||
/// fails, the evaluation object should not be reused.
|
|
||||||
class Evaluator {
|
|
||||||
public:
|
|
||||||
Evaluator(const DataLayout &DL, const TargetLibraryInfo *TLI)
|
|
||||||
: DL(DL), TLI(TLI) {
|
|
||||||
ValueStack.emplace_back();
|
|
||||||
}
|
|
||||||
|
|
||||||
~Evaluator() {
|
|
||||||
for (auto &Tmp : AllocaTmps)
|
|
||||||
// If there are still users of the alloca, the program is doing something
|
|
||||||
// silly, e.g. storing the address of the alloca somewhere and using it
|
|
||||||
// later. Since this is undefined, we'll just make it be null.
|
|
||||||
if (!Tmp->use_empty())
|
|
||||||
Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Evaluate a call to function F, returning true if successful, false if we
|
|
||||||
/// can't evaluate it. ActualArgs contains the formal arguments for the
|
|
||||||
/// function.
|
|
||||||
bool EvaluateFunction(Function *F, Constant *&RetVal,
|
|
||||||
const SmallVectorImpl<Constant*> &ActualArgs);
|
|
||||||
|
|
||||||
/// Evaluate all instructions in block BB, returning true if successful, false
|
|
||||||
/// if we can't evaluate it. NewBB returns the next BB that control flows
|
|
||||||
/// into, or null upon return.
|
|
||||||
bool EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB);
|
|
||||||
|
|
||||||
Constant *getVal(Value *V) {
|
|
||||||
if (Constant *CV = dyn_cast<Constant>(V)) return CV;
|
|
||||||
Constant *R = ValueStack.back().lookup(V);
|
|
||||||
assert(R && "Reference to an uncomputed value!");
|
|
||||||
return R;
|
|
||||||
}
|
|
||||||
|
|
||||||
void setVal(Value *V, Constant *C) {
|
|
||||||
ValueStack.back()[V] = C;
|
|
||||||
}
|
|
||||||
|
|
||||||
const DenseMap<Constant*, Constant*> &getMutatedMemory() const {
|
|
||||||
return MutatedMemory;
|
|
||||||
}
|
|
||||||
|
|
||||||
const SmallPtrSetImpl<GlobalVariable*> &getInvariants() const {
|
|
||||||
return Invariants;
|
|
||||||
}
|
|
||||||
|
|
||||||
private:
|
|
||||||
Constant *ComputeLoadResult(Constant *P);
|
|
||||||
|
|
||||||
/// As we compute SSA register values, we store their contents here. The back
|
|
||||||
/// of the deque contains the current function and the stack contains the
|
|
||||||
/// values in the calling frames.
|
|
||||||
std::deque<DenseMap<Value*, Constant*>> ValueStack;
|
|
||||||
|
|
||||||
/// This is used to detect recursion. In pathological situations we could hit
|
|
||||||
/// exponential behavior, but at least there is nothing unbounded.
|
|
||||||
SmallVector<Function*, 4> CallStack;
|
|
||||||
|
|
||||||
/// For each store we execute, we update this map. Loads check this to get
|
|
||||||
/// the most up-to-date value. If evaluation is successful, this state is
|
|
||||||
/// committed to the process.
|
|
||||||
DenseMap<Constant*, Constant*> MutatedMemory;
|
|
||||||
|
|
||||||
/// To 'execute' an alloca, we create a temporary global variable to represent
|
|
||||||
/// its body. This vector is needed so we can delete the temporary globals
|
|
||||||
/// when we are done.
|
|
||||||
SmallVector<std::unique_ptr<GlobalVariable>, 32> AllocaTmps;
|
|
||||||
|
|
||||||
/// These global variables have been marked invariant by the static
|
|
||||||
/// constructor.
|
|
||||||
SmallPtrSet<GlobalVariable*, 8> Invariants;
|
|
||||||
|
|
||||||
/// These are constants we have checked and know to be simple enough to live
|
|
||||||
/// in a static initializer of a global.
|
|
||||||
SmallPtrSet<Constant*, 8> SimpleConstants;
|
|
||||||
|
|
||||||
const DataLayout &DL;
|
|
||||||
const TargetLibraryInfo *TLI;
|
|
||||||
};
|
|
||||||
|
|
||||||
} // anonymous namespace
|
|
||||||
|
|
||||||
/// Return the value that would be computed by a load from P after the stores
|
|
||||||
/// reflected by 'memory' have been performed. If we can't decide, return null.
|
|
||||||
Constant *Evaluator::ComputeLoadResult(Constant *P) {
|
|
||||||
// If this memory location has been recently stored, use the stored value: it
|
|
||||||
// is the most up-to-date.
|
|
||||||
DenseMap<Constant*, Constant*>::const_iterator I = MutatedMemory.find(P);
|
|
||||||
if (I != MutatedMemory.end()) return I->second;
|
|
||||||
|
|
||||||
// Access it.
|
|
||||||
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
|
|
||||||
if (GV->hasDefinitiveInitializer())
|
|
||||||
return GV->getInitializer();
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Handle a constantexpr getelementptr.
|
|
||||||
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
|
|
||||||
if (CE->getOpcode() == Instruction::GetElementPtr &&
|
|
||||||
isa<GlobalVariable>(CE->getOperand(0))) {
|
|
||||||
GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
|
|
||||||
if (GV->hasDefinitiveInitializer())
|
|
||||||
return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
|
|
||||||
}
|
|
||||||
|
|
||||||
return nullptr; // don't know how to evaluate.
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Evaluate all instructions in block BB, returning true if successful, false
|
|
||||||
/// if we can't evaluate it. NewBB returns the next BB that control flows into,
|
|
||||||
/// or null upon return.
|
|
||||||
bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
|
|
||||||
BasicBlock *&NextBB) {
|
|
||||||
// This is the main evaluation loop.
|
|
||||||
while (1) {
|
|
||||||
Constant *InstResult = nullptr;
|
|
||||||
|
|
||||||
DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n");
|
|
||||||
|
|
||||||
if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
|
|
||||||
if (!SI->isSimple()) {
|
|
||||||
DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n");
|
|
||||||
return false; // no volatile/atomic accesses.
|
|
||||||
}
|
|
||||||
Constant *Ptr = getVal(SI->getOperand(1));
|
|
||||||
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
|
|
||||||
DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr);
|
|
||||||
Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
|
|
||||||
DEBUG(dbgs() << "; To: " << *Ptr << "\n");
|
|
||||||
}
|
|
||||||
if (!isSimpleEnoughPointerToCommit(Ptr)) {
|
|
||||||
// If this is too complex for us to commit, reject it.
|
|
||||||
DEBUG(dbgs() << "Pointer is too complex for us to evaluate store.");
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
Constant *Val = getVal(SI->getOperand(0));
|
|
||||||
|
|
||||||
// If this might be too difficult for the backend to handle (e.g. the addr
|
|
||||||
// of one global variable divided by another) then we can't commit it.
|
|
||||||
if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) {
|
|
||||||
DEBUG(dbgs() << "Store value is too complex to evaluate store. " << *Val
|
|
||||||
<< "\n");
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
|
|
||||||
if (CE->getOpcode() == Instruction::BitCast) {
|
|
||||||
DEBUG(dbgs() << "Attempting to resolve bitcast on constant ptr.\n");
|
|
||||||
// If we're evaluating a store through a bitcast, then we need
|
|
||||||
// to pull the bitcast off the pointer type and push it onto the
|
|
||||||
// stored value.
|
|
||||||
Ptr = CE->getOperand(0);
|
|
||||||
|
|
||||||
Type *NewTy = cast<PointerType>(Ptr->getType())->getElementType();
|
|
||||||
|
|
||||||
// In order to push the bitcast onto the stored value, a bitcast
|
|
||||||
// from NewTy to Val's type must be legal. If it's not, we can try
|
|
||||||
// introspecting NewTy to find a legal conversion.
|
|
||||||
while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) {
|
|
||||||
// If NewTy is a struct, we can convert the pointer to the struct
|
|
||||||
// into a pointer to its first member.
|
|
||||||
// FIXME: This could be extended to support arrays as well.
|
|
||||||
if (StructType *STy = dyn_cast<StructType>(NewTy)) {
|
|
||||||
NewTy = STy->getTypeAtIndex(0U);
|
|
||||||
|
|
||||||
IntegerType *IdxTy = IntegerType::get(NewTy->getContext(), 32);
|
|
||||||
Constant *IdxZero = ConstantInt::get(IdxTy, 0, false);
|
|
||||||
Constant * const IdxList[] = {IdxZero, IdxZero};
|
|
||||||
|
|
||||||
Ptr = ConstantExpr::getGetElementPtr(nullptr, Ptr, IdxList);
|
|
||||||
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
|
|
||||||
Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
|
|
||||||
|
|
||||||
// If we can't improve the situation by introspecting NewTy,
|
|
||||||
// we have to give up.
|
|
||||||
} else {
|
|
||||||
DEBUG(dbgs() << "Failed to bitcast constant ptr, can not "
|
|
||||||
"evaluate.\n");
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// If we found compatible types, go ahead and push the bitcast
|
|
||||||
// onto the stored value.
|
|
||||||
Val = ConstantExpr::getBitCast(Val, NewTy);
|
|
||||||
|
|
||||||
DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n");
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
MutatedMemory[Ptr] = Val;
|
|
||||||
} else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
|
|
||||||
InstResult = ConstantExpr::get(BO->getOpcode(),
|
|
||||||
getVal(BO->getOperand(0)),
|
|
||||||
getVal(BO->getOperand(1)));
|
|
||||||
DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " << *InstResult
|
|
||||||
<< "\n");
|
|
||||||
} else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
|
|
||||||
InstResult = ConstantExpr::getCompare(CI->getPredicate(),
|
|
||||||
getVal(CI->getOperand(0)),
|
|
||||||
getVal(CI->getOperand(1)));
|
|
||||||
DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult
|
|
||||||
<< "\n");
|
|
||||||
} else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
|
|
||||||
InstResult = ConstantExpr::getCast(CI->getOpcode(),
|
|
||||||
getVal(CI->getOperand(0)),
|
|
||||||
CI->getType());
|
|
||||||
DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult
|
|
||||||
<< "\n");
|
|
||||||
} else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
|
|
||||||
InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)),
|
|
||||||
getVal(SI->getOperand(1)),
|
|
||||||
getVal(SI->getOperand(2)));
|
|
||||||
DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult
|
|
||||||
<< "\n");
|
|
||||||
} else if (auto *EVI = dyn_cast<ExtractValueInst>(CurInst)) {
|
|
||||||
InstResult = ConstantExpr::getExtractValue(
|
|
||||||
getVal(EVI->getAggregateOperand()), EVI->getIndices());
|
|
||||||
DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: " << *InstResult
|
|
||||||
<< "\n");
|
|
||||||
} else if (auto *IVI = dyn_cast<InsertValueInst>(CurInst)) {
|
|
||||||
InstResult = ConstantExpr::getInsertValue(
|
|
||||||
getVal(IVI->getAggregateOperand()),
|
|
||||||
getVal(IVI->getInsertedValueOperand()), IVI->getIndices());
|
|
||||||
DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: " << *InstResult
|
|
||||||
<< "\n");
|
|
||||||
} else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
|
|
||||||
Constant *P = getVal(GEP->getOperand(0));
|
|
||||||
SmallVector<Constant*, 8> GEPOps;
|
|
||||||
for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
|
|
||||||
i != e; ++i)
|
|
||||||
GEPOps.push_back(getVal(*i));
|
|
||||||
InstResult =
|
|
||||||
ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), P, GEPOps,
|
|
||||||
cast<GEPOperator>(GEP)->isInBounds());
|
|
||||||
DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult
|
|
||||||
<< "\n");
|
|
||||||
} else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
|
|
||||||
|
|
||||||
if (!LI->isSimple()) {
|
|
||||||
DEBUG(dbgs() << "Found a Load! Not a simple load, can not evaluate.\n");
|
|
||||||
return false; // no volatile/atomic accesses.
|
|
||||||
}
|
|
||||||
|
|
||||||
Constant *Ptr = getVal(LI->getOperand(0));
|
|
||||||
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
|
|
||||||
Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
|
|
||||||
DEBUG(dbgs() << "Found a constant pointer expression, constant "
|
|
||||||
"folding: " << *Ptr << "\n");
|
|
||||||
}
|
|
||||||
InstResult = ComputeLoadResult(Ptr);
|
|
||||||
if (!InstResult) {
|
|
||||||
DEBUG(dbgs() << "Failed to compute load result. Can not evaluate load."
|
|
||||||
"\n");
|
|
||||||
return false; // Could not evaluate load.
|
|
||||||
}
|
|
||||||
|
|
||||||
DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n");
|
|
||||||
} else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
|
|
||||||
if (AI->isArrayAllocation()) {
|
|
||||||
DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n");
|
|
||||||
return false; // Cannot handle array allocs.
|
|
||||||
}
|
|
||||||
Type *Ty = AI->getAllocatedType();
|
|
||||||
AllocaTmps.push_back(
|
|
||||||
make_unique<GlobalVariable>(Ty, false, GlobalValue::InternalLinkage,
|
|
||||||
UndefValue::get(Ty), AI->getName()));
|
|
||||||
InstResult = AllocaTmps.back().get();
|
|
||||||
DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n");
|
|
||||||
} else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
|
|
||||||
CallSite CS(&*CurInst);
|
|
||||||
|
|
||||||
// Debug info can safely be ignored here.
|
|
||||||
if (isa<DbgInfoIntrinsic>(CS.getInstruction())) {
|
|
||||||
DEBUG(dbgs() << "Ignoring debug info.\n");
|
|
||||||
++CurInst;
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Cannot handle inline asm.
|
|
||||||
if (isa<InlineAsm>(CS.getCalledValue())) {
|
|
||||||
DEBUG(dbgs() << "Found inline asm, can not evaluate.\n");
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
|
|
||||||
if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
|
|
||||||
if (MSI->isVolatile()) {
|
|
||||||
DEBUG(dbgs() << "Can not optimize a volatile memset " <<
|
|
||||||
"intrinsic.\n");
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
Constant *Ptr = getVal(MSI->getDest());
|
|
||||||
Constant *Val = getVal(MSI->getValue());
|
|
||||||
Constant *DestVal = ComputeLoadResult(getVal(Ptr));
|
|
||||||
if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
|
|
||||||
// This memset is a no-op.
|
|
||||||
DEBUG(dbgs() << "Ignoring no-op memset.\n");
|
|
||||||
++CurInst;
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
|
|
||||||
II->getIntrinsicID() == Intrinsic::lifetime_end) {
|
|
||||||
DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n");
|
|
||||||
++CurInst;
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (II->getIntrinsicID() == Intrinsic::invariant_start) {
|
|
||||||
// We don't insert an entry into Values, as it doesn't have a
|
|
||||||
// meaningful return value.
|
|
||||||
if (!II->use_empty()) {
|
|
||||||
DEBUG(dbgs() << "Found unused invariant_start. Can't evaluate.\n");
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
|
|
||||||
Value *PtrArg = getVal(II->getArgOperand(1));
|
|
||||||
Value *Ptr = PtrArg->stripPointerCasts();
|
|
||||||
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
|
|
||||||
Type *ElemTy = GV->getValueType();
|
|
||||||
if (!Size->isAllOnesValue() &&
|
|
||||||
Size->getValue().getLimitedValue() >=
|
|
||||||
DL.getTypeStoreSize(ElemTy)) {
|
|
||||||
Invariants.insert(GV);
|
|
||||||
DEBUG(dbgs() << "Found a global var that is an invariant: " << *GV
|
|
||||||
<< "\n");
|
|
||||||
} else {
|
|
||||||
DEBUG(dbgs() << "Found a global var, but can not treat it as an "
|
|
||||||
"invariant.\n");
|
|
||||||
}
|
|
||||||
}
|
|
||||||
// Continue even if we do nothing.
|
|
||||||
++CurInst;
|
|
||||||
continue;
|
|
||||||
} else if (II->getIntrinsicID() == Intrinsic::assume) {
|
|
||||||
DEBUG(dbgs() << "Skipping assume intrinsic.\n");
|
|
||||||
++CurInst;
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
|
|
||||||
DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n");
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Resolve function pointers.
|
|
||||||
Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue()));
|
|
||||||
if (!Callee || Callee->mayBeOverridden()) {
|
|
||||||
DEBUG(dbgs() << "Can not resolve function pointer.\n");
|
|
||||||
return false; // Cannot resolve.
|
|
||||||
}
|
|
||||||
|
|
||||||
SmallVector<Constant*, 8> Formals;
|
|
||||||
for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i)
|
|
||||||
Formals.push_back(getVal(*i));
|
|
||||||
|
|
||||||
if (Callee->isDeclaration()) {
|
|
||||||
// If this is a function we can constant fold, do it.
|
|
||||||
if (Constant *C = ConstantFoldCall(Callee, Formals, TLI)) {
|
|
||||||
InstResult = C;
|
|
||||||
DEBUG(dbgs() << "Constant folded function call. Result: " <<
|
|
||||||
*InstResult << "\n");
|
|
||||||
} else {
|
|
||||||
DEBUG(dbgs() << "Can not constant fold function call.\n");
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
if (Callee->getFunctionType()->isVarArg()) {
|
|
||||||
DEBUG(dbgs() << "Can not constant fold vararg function call.\n");
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
Constant *RetVal = nullptr;
|
|
||||||
// Execute the call, if successful, use the return value.
|
|
||||||
ValueStack.emplace_back();
|
|
||||||
if (!EvaluateFunction(Callee, RetVal, Formals)) {
|
|
||||||
DEBUG(dbgs() << "Failed to evaluate function.\n");
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
ValueStack.pop_back();
|
|
||||||
InstResult = RetVal;
|
|
||||||
|
|
||||||
if (InstResult) {
|
|
||||||
DEBUG(dbgs() << "Successfully evaluated function. Result: " <<
|
|
||||||
InstResult << "\n\n");
|
|
||||||
} else {
|
|
||||||
DEBUG(dbgs() << "Successfully evaluated function. Result: 0\n\n");
|
|
||||||
}
|
|
||||||
}
|
|
||||||
} else if (isa<TerminatorInst>(CurInst)) {
|
|
||||||
DEBUG(dbgs() << "Found a terminator instruction.\n");
|
|
||||||
|
|
||||||
if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
|
|
||||||
if (BI->isUnconditional()) {
|
|
||||||
NextBB = BI->getSuccessor(0);
|
|
||||||
} else {
|
|
||||||
ConstantInt *Cond =
|
|
||||||
dyn_cast<ConstantInt>(getVal(BI->getCondition()));
|
|
||||||
if (!Cond) return false; // Cannot determine.
|
|
||||||
|
|
||||||
NextBB = BI->getSuccessor(!Cond->getZExtValue());
|
|
||||||
}
|
|
||||||
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
|
|
||||||
ConstantInt *Val =
|
|
||||||
dyn_cast<ConstantInt>(getVal(SI->getCondition()));
|
|
||||||
if (!Val) return false; // Cannot determine.
|
|
||||||
NextBB = SI->findCaseValue(Val).getCaseSuccessor();
|
|
||||||
} else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
|
|
||||||
Value *Val = getVal(IBI->getAddress())->stripPointerCasts();
|
|
||||||
if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
|
|
||||||
NextBB = BA->getBasicBlock();
|
|
||||||
else
|
|
||||||
return false; // Cannot determine.
|
|
||||||
} else if (isa<ReturnInst>(CurInst)) {
|
|
||||||
NextBB = nullptr;
|
|
||||||
} else {
|
|
||||||
// invoke, unwind, resume, unreachable.
|
|
||||||
DEBUG(dbgs() << "Can not handle terminator.");
|
|
||||||
return false; // Cannot handle this terminator.
|
|
||||||
}
|
|
||||||
|
|
||||||
// We succeeded at evaluating this block!
|
|
||||||
DEBUG(dbgs() << "Successfully evaluated block.\n");
|
|
||||||
return true;
|
|
||||||
} else {
|
|
||||||
// Did not know how to evaluate this!
|
|
||||||
DEBUG(dbgs() << "Failed to evaluate block due to unhandled instruction."
|
|
||||||
"\n");
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (!CurInst->use_empty()) {
|
|
||||||
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult))
|
|
||||||
InstResult = ConstantFoldConstantExpression(CE, DL, TLI);
|
|
||||||
|
|
||||||
setVal(&*CurInst, InstResult);
|
|
||||||
}
|
|
||||||
|
|
||||||
// If we just processed an invoke, we finished evaluating the block.
|
|
||||||
if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
|
|
||||||
NextBB = II->getNormalDest();
|
|
||||||
DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n");
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Advance program counter.
|
|
||||||
++CurInst;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Evaluate a call to function F, returning true if successful, false if we
|
|
||||||
/// can't evaluate it. ActualArgs contains the formal arguments for the
|
|
||||||
/// function.
|
|
||||||
bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
|
|
||||||
const SmallVectorImpl<Constant*> &ActualArgs) {
|
|
||||||
// Check to see if this function is already executing (recursion). If so,
|
|
||||||
// bail out. TODO: we might want to accept limited recursion.
|
|
||||||
if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
|
|
||||||
return false;
|
|
||||||
|
|
||||||
CallStack.push_back(F);
|
|
||||||
|
|
||||||
// Initialize arguments to the incoming values specified.
|
|
||||||
unsigned ArgNo = 0;
|
|
||||||
for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
|
|
||||||
++AI, ++ArgNo)
|
|
||||||
setVal(&*AI, ActualArgs[ArgNo]);
|
|
||||||
|
|
||||||
// ExecutedBlocks - We only handle non-looping, non-recursive code. As such,
|
|
||||||
// we can only evaluate any one basic block at most once. This set keeps
|
|
||||||
// track of what we have executed so we can detect recursive cases etc.
|
|
||||||
SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
|
|
||||||
|
|
||||||
// CurBB - The current basic block we're evaluating.
|
|
||||||
BasicBlock *CurBB = &F->front();
|
|
||||||
|
|
||||||
BasicBlock::iterator CurInst = CurBB->begin();
|
|
||||||
|
|
||||||
while (1) {
|
|
||||||
BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings.
|
|
||||||
DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n");
|
|
||||||
|
|
||||||
if (!EvaluateBlock(CurInst, NextBB))
|
|
||||||
return false;
|
|
||||||
|
|
||||||
if (!NextBB) {
|
|
||||||
// Successfully running until there's no next block means that we found
|
|
||||||
// the return. Fill it the return value and pop the call stack.
|
|
||||||
ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator());
|
|
||||||
if (RI->getNumOperands())
|
|
||||||
RetVal = getVal(RI->getOperand(0));
|
|
||||||
CallStack.pop_back();
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Okay, we succeeded in evaluating this control flow. See if we have
|
|
||||||
// executed the new block before. If so, we have a looping function,
|
|
||||||
// which we cannot evaluate in reasonable time.
|
|
||||||
if (!ExecutedBlocks.insert(NextBB).second)
|
|
||||||
return false; // looped!
|
|
||||||
|
|
||||||
// Okay, we have never been in this block before. Check to see if there
|
|
||||||
// are any PHI nodes. If so, evaluate them with information about where
|
|
||||||
// we came from.
|
|
||||||
PHINode *PN = nullptr;
|
|
||||||
for (CurInst = NextBB->begin();
|
|
||||||
(PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
|
|
||||||
setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB)));
|
|
||||||
|
|
||||||
// Advance to the next block.
|
|
||||||
CurBB = NextBB;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Evaluate static constructors in the function, if we can. Return true if we
|
/// Evaluate static constructors in the function, if we can. Return true if we
|
||||||
/// can, false otherwise.
|
/// can, false otherwise.
|
||||||
static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
|
static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
|
||||||
|
@ -11,6 +11,7 @@ add_llvm_library(LLVMTransformUtils
|
|||||||
CodeExtractor.cpp
|
CodeExtractor.cpp
|
||||||
CtorUtils.cpp
|
CtorUtils.cpp
|
||||||
DemoteRegToStack.cpp
|
DemoteRegToStack.cpp
|
||||||
|
Evaluator.cpp
|
||||||
FlattenCFG.cpp
|
FlattenCFG.cpp
|
||||||
GlobalStatus.cpp
|
GlobalStatus.cpp
|
||||||
InlineFunction.cpp
|
InlineFunction.cpp
|
||||||
|
596
lib/Transforms/Utils/Evaluator.cpp
Normal file
596
lib/Transforms/Utils/Evaluator.cpp
Normal file
@ -0,0 +1,596 @@
|
|||||||
|
//===- Evaluator.cpp - LLVM IR evaluator ----------------------------------===//
|
||||||
|
//
|
||||||
|
// The LLVM Compiler Infrastructure
|
||||||
|
//
|
||||||
|
// This file is distributed under the University of Illinois Open Source
|
||||||
|
// License. See LICENSE.TXT for details.
|
||||||
|
//
|
||||||
|
//===----------------------------------------------------------------------===//
|
||||||
|
//
|
||||||
|
// Function evaluator for LLVM IR.
|
||||||
|
//
|
||||||
|
//===----------------------------------------------------------------------===//
|
||||||
|
|
||||||
|
#include "llvm/Transforms/Utils/Evaluator.h"
|
||||||
|
#include "llvm/Analysis/ConstantFolding.h"
|
||||||
|
#include "llvm/IR/BasicBlock.h"
|
||||||
|
#include "llvm/IR/CallSite.h"
|
||||||
|
#include "llvm/IR/Constants.h"
|
||||||
|
#include "llvm/IR/DerivedTypes.h"
|
||||||
|
#include "llvm/IR/DiagnosticPrinter.h"
|
||||||
|
#include "llvm/IR/GlobalVariable.h"
|
||||||
|
#include "llvm/IR/IntrinsicInst.h"
|
||||||
|
#include "llvm/IR/Instructions.h"
|
||||||
|
#include "llvm/IR/Operator.h"
|
||||||
|
#include "llvm/Support/Debug.h"
|
||||||
|
|
||||||
|
#define DEBUG_TYPE "evaluator"
|
||||||
|
|
||||||
|
using namespace llvm;
|
||||||
|
|
||||||
|
static inline bool
|
||||||
|
isSimpleEnoughValueToCommit(Constant *C,
|
||||||
|
SmallPtrSetImpl<Constant *> &SimpleConstants,
|
||||||
|
const DataLayout &DL);
|
||||||
|
|
||||||
|
/// Return true if the specified constant can be handled by the code generator.
|
||||||
|
/// We don't want to generate something like:
|
||||||
|
/// void *X = &X/42;
|
||||||
|
/// because the code generator doesn't have a relocation that can handle that.
|
||||||
|
///
|
||||||
|
/// This function should be called if C was not found (but just got inserted)
|
||||||
|
/// in SimpleConstants to avoid having to rescan the same constants all the
|
||||||
|
/// time.
|
||||||
|
static bool
|
||||||
|
isSimpleEnoughValueToCommitHelper(Constant *C,
|
||||||
|
SmallPtrSetImpl<Constant *> &SimpleConstants,
|
||||||
|
const DataLayout &DL) {
|
||||||
|
// Simple global addresses are supported, do not allow dllimport or
|
||||||
|
// thread-local globals.
|
||||||
|
if (auto *GV = dyn_cast<GlobalValue>(C))
|
||||||
|
return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal();
|
||||||
|
|
||||||
|
// Simple integer, undef, constant aggregate zero, etc are all supported.
|
||||||
|
if (C->getNumOperands() == 0 || isa<BlockAddress>(C))
|
||||||
|
return true;
|
||||||
|
|
||||||
|
// Aggregate values are safe if all their elements are.
|
||||||
|
if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
|
||||||
|
isa<ConstantVector>(C)) {
|
||||||
|
for (Value *Op : C->operands())
|
||||||
|
if (!isSimpleEnoughValueToCommit(cast<Constant>(Op), SimpleConstants, DL))
|
||||||
|
return false;
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
// We don't know exactly what relocations are allowed in constant expressions,
|
||||||
|
// so we allow &global+constantoffset, which is safe and uniformly supported
|
||||||
|
// across targets.
|
||||||
|
ConstantExpr *CE = cast<ConstantExpr>(C);
|
||||||
|
switch (CE->getOpcode()) {
|
||||||
|
case Instruction::BitCast:
|
||||||
|
// Bitcast is fine if the casted value is fine.
|
||||||
|
return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
|
||||||
|
|
||||||
|
case Instruction::IntToPtr:
|
||||||
|
case Instruction::PtrToInt:
|
||||||
|
// int <=> ptr is fine if the int type is the same size as the
|
||||||
|
// pointer type.
|
||||||
|
if (DL.getTypeSizeInBits(CE->getType()) !=
|
||||||
|
DL.getTypeSizeInBits(CE->getOperand(0)->getType()))
|
||||||
|
return false;
|
||||||
|
return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
|
||||||
|
|
||||||
|
// GEP is fine if it is simple + constant offset.
|
||||||
|
case Instruction::GetElementPtr:
|
||||||
|
for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
|
||||||
|
if (!isa<ConstantInt>(CE->getOperand(i)))
|
||||||
|
return false;
|
||||||
|
return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
|
||||||
|
|
||||||
|
case Instruction::Add:
|
||||||
|
// We allow simple+cst.
|
||||||
|
if (!isa<ConstantInt>(CE->getOperand(1)))
|
||||||
|
return false;
|
||||||
|
return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
static inline bool
|
||||||
|
isSimpleEnoughValueToCommit(Constant *C,
|
||||||
|
SmallPtrSetImpl<Constant *> &SimpleConstants,
|
||||||
|
const DataLayout &DL) {
|
||||||
|
// If we already checked this constant, we win.
|
||||||
|
if (!SimpleConstants.insert(C).second)
|
||||||
|
return true;
|
||||||
|
// Check the constant.
|
||||||
|
return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Return true if this constant is simple enough for us to understand. In
|
||||||
|
/// particular, if it is a cast to anything other than from one pointer type to
|
||||||
|
/// another pointer type, we punt. We basically just support direct accesses to
|
||||||
|
/// globals and GEP's of globals. This should be kept up to date with
|
||||||
|
/// CommitValueTo.
|
||||||
|
static bool isSimpleEnoughPointerToCommit(Constant *C) {
|
||||||
|
// Conservatively, avoid aggregate types. This is because we don't
|
||||||
|
// want to worry about them partially overlapping other stores.
|
||||||
|
if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
|
||||||
|
return false;
|
||||||
|
|
||||||
|
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
|
||||||
|
// Do not allow weak/*_odr/linkonce linkage or external globals.
|
||||||
|
return GV->hasUniqueInitializer();
|
||||||
|
|
||||||
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
|
||||||
|
// Handle a constantexpr gep.
|
||||||
|
if (CE->getOpcode() == Instruction::GetElementPtr &&
|
||||||
|
isa<GlobalVariable>(CE->getOperand(0)) &&
|
||||||
|
cast<GEPOperator>(CE)->isInBounds()) {
|
||||||
|
GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
|
||||||
|
// Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
|
||||||
|
// external globals.
|
||||||
|
if (!GV->hasUniqueInitializer())
|
||||||
|
return false;
|
||||||
|
|
||||||
|
// The first index must be zero.
|
||||||
|
ConstantInt *CI = dyn_cast<ConstantInt>(*std::next(CE->op_begin()));
|
||||||
|
if (!CI || !CI->isZero()) return false;
|
||||||
|
|
||||||
|
// The remaining indices must be compile-time known integers within the
|
||||||
|
// notional bounds of the corresponding static array types.
|
||||||
|
if (!CE->isGEPWithNoNotionalOverIndexing())
|
||||||
|
return false;
|
||||||
|
|
||||||
|
return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
|
||||||
|
|
||||||
|
// A constantexpr bitcast from a pointer to another pointer is a no-op,
|
||||||
|
// and we know how to evaluate it by moving the bitcast from the pointer
|
||||||
|
// operand to the value operand.
|
||||||
|
} else if (CE->getOpcode() == Instruction::BitCast &&
|
||||||
|
isa<GlobalVariable>(CE->getOperand(0))) {
|
||||||
|
// Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
|
||||||
|
// external globals.
|
||||||
|
return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Return the value that would be computed by a load from P after the stores
|
||||||
|
/// reflected by 'memory' have been performed. If we can't decide, return null.
|
||||||
|
Constant *Evaluator::ComputeLoadResult(Constant *P) {
|
||||||
|
// If this memory location has been recently stored, use the stored value: it
|
||||||
|
// is the most up-to-date.
|
||||||
|
DenseMap<Constant*, Constant*>::const_iterator I = MutatedMemory.find(P);
|
||||||
|
if (I != MutatedMemory.end()) return I->second;
|
||||||
|
|
||||||
|
// Access it.
|
||||||
|
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
|
||||||
|
if (GV->hasDefinitiveInitializer())
|
||||||
|
return GV->getInitializer();
|
||||||
|
return nullptr;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Handle a constantexpr getelementptr.
|
||||||
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
|
||||||
|
if (CE->getOpcode() == Instruction::GetElementPtr &&
|
||||||
|
isa<GlobalVariable>(CE->getOperand(0))) {
|
||||||
|
GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
|
||||||
|
if (GV->hasDefinitiveInitializer())
|
||||||
|
return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
|
||||||
|
}
|
||||||
|
|
||||||
|
return nullptr; // don't know how to evaluate.
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Evaluate all instructions in block BB, returning true if successful, false
|
||||||
|
/// if we can't evaluate it. NewBB returns the next BB that control flows into,
|
||||||
|
/// or null upon return.
|
||||||
|
bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
|
||||||
|
BasicBlock *&NextBB) {
|
||||||
|
// This is the main evaluation loop.
|
||||||
|
while (1) {
|
||||||
|
Constant *InstResult = nullptr;
|
||||||
|
|
||||||
|
DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n");
|
||||||
|
|
||||||
|
if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
|
||||||
|
if (!SI->isSimple()) {
|
||||||
|
DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n");
|
||||||
|
return false; // no volatile/atomic accesses.
|
||||||
|
}
|
||||||
|
Constant *Ptr = getVal(SI->getOperand(1));
|
||||||
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
|
||||||
|
DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr);
|
||||||
|
Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
|
||||||
|
DEBUG(dbgs() << "; To: " << *Ptr << "\n");
|
||||||
|
}
|
||||||
|
if (!isSimpleEnoughPointerToCommit(Ptr)) {
|
||||||
|
// If this is too complex for us to commit, reject it.
|
||||||
|
DEBUG(dbgs() << "Pointer is too complex for us to evaluate store.");
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
Constant *Val = getVal(SI->getOperand(0));
|
||||||
|
|
||||||
|
// If this might be too difficult for the backend to handle (e.g. the addr
|
||||||
|
// of one global variable divided by another) then we can't commit it.
|
||||||
|
if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) {
|
||||||
|
DEBUG(dbgs() << "Store value is too complex to evaluate store. " << *Val
|
||||||
|
<< "\n");
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
|
||||||
|
if (CE->getOpcode() == Instruction::BitCast) {
|
||||||
|
DEBUG(dbgs() << "Attempting to resolve bitcast on constant ptr.\n");
|
||||||
|
// If we're evaluating a store through a bitcast, then we need
|
||||||
|
// to pull the bitcast off the pointer type and push it onto the
|
||||||
|
// stored value.
|
||||||
|
Ptr = CE->getOperand(0);
|
||||||
|
|
||||||
|
Type *NewTy = cast<PointerType>(Ptr->getType())->getElementType();
|
||||||
|
|
||||||
|
// In order to push the bitcast onto the stored value, a bitcast
|
||||||
|
// from NewTy to Val's type must be legal. If it's not, we can try
|
||||||
|
// introspecting NewTy to find a legal conversion.
|
||||||
|
while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) {
|
||||||
|
// If NewTy is a struct, we can convert the pointer to the struct
|
||||||
|
// into a pointer to its first member.
|
||||||
|
// FIXME: This could be extended to support arrays as well.
|
||||||
|
if (StructType *STy = dyn_cast<StructType>(NewTy)) {
|
||||||
|
NewTy = STy->getTypeAtIndex(0U);
|
||||||
|
|
||||||
|
IntegerType *IdxTy = IntegerType::get(NewTy->getContext(), 32);
|
||||||
|
Constant *IdxZero = ConstantInt::get(IdxTy, 0, false);
|
||||||
|
Constant * const IdxList[] = {IdxZero, IdxZero};
|
||||||
|
|
||||||
|
Ptr = ConstantExpr::getGetElementPtr(nullptr, Ptr, IdxList);
|
||||||
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
|
||||||
|
Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
|
||||||
|
|
||||||
|
// If we can't improve the situation by introspecting NewTy,
|
||||||
|
// we have to give up.
|
||||||
|
} else {
|
||||||
|
DEBUG(dbgs() << "Failed to bitcast constant ptr, can not "
|
||||||
|
"evaluate.\n");
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// If we found compatible types, go ahead and push the bitcast
|
||||||
|
// onto the stored value.
|
||||||
|
Val = ConstantExpr::getBitCast(Val, NewTy);
|
||||||
|
|
||||||
|
DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
MutatedMemory[Ptr] = Val;
|
||||||
|
} else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
|
||||||
|
InstResult = ConstantExpr::get(BO->getOpcode(),
|
||||||
|
getVal(BO->getOperand(0)),
|
||||||
|
getVal(BO->getOperand(1)));
|
||||||
|
DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " << *InstResult
|
||||||
|
<< "\n");
|
||||||
|
} else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
|
||||||
|
InstResult = ConstantExpr::getCompare(CI->getPredicate(),
|
||||||
|
getVal(CI->getOperand(0)),
|
||||||
|
getVal(CI->getOperand(1)));
|
||||||
|
DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult
|
||||||
|
<< "\n");
|
||||||
|
} else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
|
||||||
|
InstResult = ConstantExpr::getCast(CI->getOpcode(),
|
||||||
|
getVal(CI->getOperand(0)),
|
||||||
|
CI->getType());
|
||||||
|
DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult
|
||||||
|
<< "\n");
|
||||||
|
} else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
|
||||||
|
InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)),
|
||||||
|
getVal(SI->getOperand(1)),
|
||||||
|
getVal(SI->getOperand(2)));
|
||||||
|
DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult
|
||||||
|
<< "\n");
|
||||||
|
} else if (auto *EVI = dyn_cast<ExtractValueInst>(CurInst)) {
|
||||||
|
InstResult = ConstantExpr::getExtractValue(
|
||||||
|
getVal(EVI->getAggregateOperand()), EVI->getIndices());
|
||||||
|
DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: " << *InstResult
|
||||||
|
<< "\n");
|
||||||
|
} else if (auto *IVI = dyn_cast<InsertValueInst>(CurInst)) {
|
||||||
|
InstResult = ConstantExpr::getInsertValue(
|
||||||
|
getVal(IVI->getAggregateOperand()),
|
||||||
|
getVal(IVI->getInsertedValueOperand()), IVI->getIndices());
|
||||||
|
DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: " << *InstResult
|
||||||
|
<< "\n");
|
||||||
|
} else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
|
||||||
|
Constant *P = getVal(GEP->getOperand(0));
|
||||||
|
SmallVector<Constant*, 8> GEPOps;
|
||||||
|
for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
|
||||||
|
i != e; ++i)
|
||||||
|
GEPOps.push_back(getVal(*i));
|
||||||
|
InstResult =
|
||||||
|
ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), P, GEPOps,
|
||||||
|
cast<GEPOperator>(GEP)->isInBounds());
|
||||||
|
DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult
|
||||||
|
<< "\n");
|
||||||
|
} else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
|
||||||
|
|
||||||
|
if (!LI->isSimple()) {
|
||||||
|
DEBUG(dbgs() << "Found a Load! Not a simple load, can not evaluate.\n");
|
||||||
|
return false; // no volatile/atomic accesses.
|
||||||
|
}
|
||||||
|
|
||||||
|
Constant *Ptr = getVal(LI->getOperand(0));
|
||||||
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
|
||||||
|
Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
|
||||||
|
DEBUG(dbgs() << "Found a constant pointer expression, constant "
|
||||||
|
"folding: " << *Ptr << "\n");
|
||||||
|
}
|
||||||
|
InstResult = ComputeLoadResult(Ptr);
|
||||||
|
if (!InstResult) {
|
||||||
|
DEBUG(dbgs() << "Failed to compute load result. Can not evaluate load."
|
||||||
|
"\n");
|
||||||
|
return false; // Could not evaluate load.
|
||||||
|
}
|
||||||
|
|
||||||
|
DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n");
|
||||||
|
} else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
|
||||||
|
if (AI->isArrayAllocation()) {
|
||||||
|
DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n");
|
||||||
|
return false; // Cannot handle array allocs.
|
||||||
|
}
|
||||||
|
Type *Ty = AI->getAllocatedType();
|
||||||
|
AllocaTmps.push_back(
|
||||||
|
make_unique<GlobalVariable>(Ty, false, GlobalValue::InternalLinkage,
|
||||||
|
UndefValue::get(Ty), AI->getName()));
|
||||||
|
InstResult = AllocaTmps.back().get();
|
||||||
|
DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n");
|
||||||
|
} else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
|
||||||
|
CallSite CS(&*CurInst);
|
||||||
|
|
||||||
|
// Debug info can safely be ignored here.
|
||||||
|
if (isa<DbgInfoIntrinsic>(CS.getInstruction())) {
|
||||||
|
DEBUG(dbgs() << "Ignoring debug info.\n");
|
||||||
|
++CurInst;
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Cannot handle inline asm.
|
||||||
|
if (isa<InlineAsm>(CS.getCalledValue())) {
|
||||||
|
DEBUG(dbgs() << "Found inline asm, can not evaluate.\n");
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
|
||||||
|
if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
|
||||||
|
if (MSI->isVolatile()) {
|
||||||
|
DEBUG(dbgs() << "Can not optimize a volatile memset " <<
|
||||||
|
"intrinsic.\n");
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
Constant *Ptr = getVal(MSI->getDest());
|
||||||
|
Constant *Val = getVal(MSI->getValue());
|
||||||
|
Constant *DestVal = ComputeLoadResult(getVal(Ptr));
|
||||||
|
if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
|
||||||
|
// This memset is a no-op.
|
||||||
|
DEBUG(dbgs() << "Ignoring no-op memset.\n");
|
||||||
|
++CurInst;
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
|
||||||
|
II->getIntrinsicID() == Intrinsic::lifetime_end) {
|
||||||
|
DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n");
|
||||||
|
++CurInst;
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (II->getIntrinsicID() == Intrinsic::invariant_start) {
|
||||||
|
// We don't insert an entry into Values, as it doesn't have a
|
||||||
|
// meaningful return value.
|
||||||
|
if (!II->use_empty()) {
|
||||||
|
DEBUG(dbgs() << "Found unused invariant_start. Can't evaluate.\n");
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
|
||||||
|
Value *PtrArg = getVal(II->getArgOperand(1));
|
||||||
|
Value *Ptr = PtrArg->stripPointerCasts();
|
||||||
|
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
|
||||||
|
Type *ElemTy = GV->getValueType();
|
||||||
|
if (!Size->isAllOnesValue() &&
|
||||||
|
Size->getValue().getLimitedValue() >=
|
||||||
|
DL.getTypeStoreSize(ElemTy)) {
|
||||||
|
Invariants.insert(GV);
|
||||||
|
DEBUG(dbgs() << "Found a global var that is an invariant: " << *GV
|
||||||
|
<< "\n");
|
||||||
|
} else {
|
||||||
|
DEBUG(dbgs() << "Found a global var, but can not treat it as an "
|
||||||
|
"invariant.\n");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// Continue even if we do nothing.
|
||||||
|
++CurInst;
|
||||||
|
continue;
|
||||||
|
} else if (II->getIntrinsicID() == Intrinsic::assume) {
|
||||||
|
DEBUG(dbgs() << "Skipping assume intrinsic.\n");
|
||||||
|
++CurInst;
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n");
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Resolve function pointers.
|
||||||
|
Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue()));
|
||||||
|
if (!Callee || Callee->mayBeOverridden()) {
|
||||||
|
DEBUG(dbgs() << "Can not resolve function pointer.\n");
|
||||||
|
return false; // Cannot resolve.
|
||||||
|
}
|
||||||
|
|
||||||
|
SmallVector<Constant*, 8> Formals;
|
||||||
|
for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i)
|
||||||
|
Formals.push_back(getVal(*i));
|
||||||
|
|
||||||
|
if (Callee->isDeclaration()) {
|
||||||
|
// If this is a function we can constant fold, do it.
|
||||||
|
if (Constant *C = ConstantFoldCall(Callee, Formals, TLI)) {
|
||||||
|
InstResult = C;
|
||||||
|
DEBUG(dbgs() << "Constant folded function call. Result: " <<
|
||||||
|
*InstResult << "\n");
|
||||||
|
} else {
|
||||||
|
DEBUG(dbgs() << "Can not constant fold function call.\n");
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
if (Callee->getFunctionType()->isVarArg()) {
|
||||||
|
DEBUG(dbgs() << "Can not constant fold vararg function call.\n");
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
Constant *RetVal = nullptr;
|
||||||
|
// Execute the call, if successful, use the return value.
|
||||||
|
ValueStack.emplace_back();
|
||||||
|
if (!EvaluateFunction(Callee, RetVal, Formals)) {
|
||||||
|
DEBUG(dbgs() << "Failed to evaluate function.\n");
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
ValueStack.pop_back();
|
||||||
|
InstResult = RetVal;
|
||||||
|
|
||||||
|
if (InstResult) {
|
||||||
|
DEBUG(dbgs() << "Successfully evaluated function. Result: "
|
||||||
|
<< *InstResult << "\n\n");
|
||||||
|
} else {
|
||||||
|
DEBUG(dbgs() << "Successfully evaluated function. Result: 0\n\n");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} else if (isa<TerminatorInst>(CurInst)) {
|
||||||
|
DEBUG(dbgs() << "Found a terminator instruction.\n");
|
||||||
|
|
||||||
|
if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
|
||||||
|
if (BI->isUnconditional()) {
|
||||||
|
NextBB = BI->getSuccessor(0);
|
||||||
|
} else {
|
||||||
|
ConstantInt *Cond =
|
||||||
|
dyn_cast<ConstantInt>(getVal(BI->getCondition()));
|
||||||
|
if (!Cond) return false; // Cannot determine.
|
||||||
|
|
||||||
|
NextBB = BI->getSuccessor(!Cond->getZExtValue());
|
||||||
|
}
|
||||||
|
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
|
||||||
|
ConstantInt *Val =
|
||||||
|
dyn_cast<ConstantInt>(getVal(SI->getCondition()));
|
||||||
|
if (!Val) return false; // Cannot determine.
|
||||||
|
NextBB = SI->findCaseValue(Val).getCaseSuccessor();
|
||||||
|
} else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
|
||||||
|
Value *Val = getVal(IBI->getAddress())->stripPointerCasts();
|
||||||
|
if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
|
||||||
|
NextBB = BA->getBasicBlock();
|
||||||
|
else
|
||||||
|
return false; // Cannot determine.
|
||||||
|
} else if (isa<ReturnInst>(CurInst)) {
|
||||||
|
NextBB = nullptr;
|
||||||
|
} else {
|
||||||
|
// invoke, unwind, resume, unreachable.
|
||||||
|
DEBUG(dbgs() << "Can not handle terminator.");
|
||||||
|
return false; // Cannot handle this terminator.
|
||||||
|
}
|
||||||
|
|
||||||
|
// We succeeded at evaluating this block!
|
||||||
|
DEBUG(dbgs() << "Successfully evaluated block.\n");
|
||||||
|
return true;
|
||||||
|
} else {
|
||||||
|
// Did not know how to evaluate this!
|
||||||
|
DEBUG(dbgs() << "Failed to evaluate block due to unhandled instruction."
|
||||||
|
"\n");
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!CurInst->use_empty()) {
|
||||||
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult))
|
||||||
|
InstResult = ConstantFoldConstantExpression(CE, DL, TLI);
|
||||||
|
|
||||||
|
setVal(&*CurInst, InstResult);
|
||||||
|
}
|
||||||
|
|
||||||
|
// If we just processed an invoke, we finished evaluating the block.
|
||||||
|
if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
|
||||||
|
NextBB = II->getNormalDest();
|
||||||
|
DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n");
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Advance program counter.
|
||||||
|
++CurInst;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Evaluate a call to function F, returning true if successful, false if we
|
||||||
|
/// can't evaluate it. ActualArgs contains the formal arguments for the
|
||||||
|
/// function.
|
||||||
|
bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
|
||||||
|
const SmallVectorImpl<Constant*> &ActualArgs) {
|
||||||
|
// Check to see if this function is already executing (recursion). If so,
|
||||||
|
// bail out. TODO: we might want to accept limited recursion.
|
||||||
|
if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
|
||||||
|
return false;
|
||||||
|
|
||||||
|
CallStack.push_back(F);
|
||||||
|
|
||||||
|
// Initialize arguments to the incoming values specified.
|
||||||
|
unsigned ArgNo = 0;
|
||||||
|
for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
|
||||||
|
++AI, ++ArgNo)
|
||||||
|
setVal(&*AI, ActualArgs[ArgNo]);
|
||||||
|
|
||||||
|
// ExecutedBlocks - We only handle non-looping, non-recursive code. As such,
|
||||||
|
// we can only evaluate any one basic block at most once. This set keeps
|
||||||
|
// track of what we have executed so we can detect recursive cases etc.
|
||||||
|
SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
|
||||||
|
|
||||||
|
// CurBB - The current basic block we're evaluating.
|
||||||
|
BasicBlock *CurBB = &F->front();
|
||||||
|
|
||||||
|
BasicBlock::iterator CurInst = CurBB->begin();
|
||||||
|
|
||||||
|
while (1) {
|
||||||
|
BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings.
|
||||||
|
DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n");
|
||||||
|
|
||||||
|
if (!EvaluateBlock(CurInst, NextBB))
|
||||||
|
return false;
|
||||||
|
|
||||||
|
if (!NextBB) {
|
||||||
|
// Successfully running until there's no next block means that we found
|
||||||
|
// the return. Fill it the return value and pop the call stack.
|
||||||
|
ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator());
|
||||||
|
if (RI->getNumOperands())
|
||||||
|
RetVal = getVal(RI->getOperand(0));
|
||||||
|
CallStack.pop_back();
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Okay, we succeeded in evaluating this control flow. See if we have
|
||||||
|
// executed the new block before. If so, we have a looping function,
|
||||||
|
// which we cannot evaluate in reasonable time.
|
||||||
|
if (!ExecutedBlocks.insert(NextBB).second)
|
||||||
|
return false; // looped!
|
||||||
|
|
||||||
|
// Okay, we have never been in this block before. Check to see if there
|
||||||
|
// are any PHI nodes. If so, evaluate them with information about where
|
||||||
|
// we came from.
|
||||||
|
PHINode *PN = nullptr;
|
||||||
|
for (CurInst = NextBB->begin();
|
||||||
|
(PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
|
||||||
|
setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB)));
|
||||||
|
|
||||||
|
// Advance to the next block.
|
||||||
|
CurBB = NextBB;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
Loading…
Reference in New Issue
Block a user