AVX512F: FMA intrinsic + FNEG - sequence optimization

The previous commit (r280368 - https://reviews.llvm.org/D23313) does not cover AVX-512F, KNL set.
FNEG(x) operation is lowered to (bitcast (vpxor (bitcast x), (bitcast constfp(0x80000000))).
It happens because FP XOR is not supported for 512-bit data types on KNL and we use integer XOR instead.
I added pattern match for integer XOR.

Differential Revision: https://reviews.llvm.org/D24221



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280785 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Elena Demikhovsky 2016-09-07 06:54:28 +00:00
parent 1da68f6209
commit 78405002cf
2 changed files with 117 additions and 110 deletions

View File

@ -29233,28 +29233,6 @@ static SDValue foldVectorXorShiftIntoCmp(SDNode *N, SelectionDAG &DAG,
return DAG.getNode(X86ISD::PCMPGT, SDLoc(N), VT, Shift.getOperand(0), Ones);
}
static SDValue combineXor(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
if (SDValue Cmp = foldVectorXorShiftIntoCmp(N, DAG, Subtarget))
return Cmp;
if (DCI.isBeforeLegalizeOps())
return SDValue();
if (SDValue RV = foldXorTruncShiftIntoCmp(N, DAG))
return RV;
if (Subtarget.hasCMov())
if (SDValue RV = combineIntegerAbs(N, DAG))
return RV;
if (SDValue FPLogic = convertIntLogicToFPLogic(N, DAG, Subtarget))
return FPLogic;
return SDValue();
}
/// This function detects the AVG pattern between vectors of unsigned i8/i16,
/// which is c = (a + b + 1) / 2, and replace this operation with the efficient
/// X86ISD::AVG instruction.
@ -30363,12 +30341,68 @@ static SDValue combineTruncate(SDNode *N, SelectionDAG &DAG,
return combineVectorTruncation(N, DAG, Subtarget);
}
/// Returns the negated value if the node \p N flips sign of FP value.
///
/// FP-negation node may have different forms: FNEG(x) or FXOR (x, 0x80000000).
/// AVX512F does not have FXOR, so FNEG is lowered as
/// (bitcast (xor (bitcast x), (bitcast ConstantFP(0x80000000)))).
/// In this case we go though all bitcasts.
static SDValue isFNEG(SDNode *N) {
if (N->getOpcode() == ISD::FNEG)
return N->getOperand(0);
SDValue Op = peekThroughBitcasts(SDValue(N, 0));
if (Op.getOpcode() != X86ISD::FXOR && Op.getOpcode() != ISD::XOR)
return SDValue();
SDValue Op1 = peekThroughBitcasts(Op.getOperand(1));
if (!Op1.getValueType().isFloatingPoint())
return SDValue();
SDValue Op0 = peekThroughBitcasts(Op.getOperand(0));
unsigned EltBits = Op1.getValueType().getScalarSizeInBits();
auto isSignBitValue = [&](const ConstantFP *C) {
return C->getValueAPF().bitcastToAPInt() == APInt::getSignBit(EltBits);
};
// There is more than one way to represent the same constant on
// the different X86 targets. The type of the node may also depend on size.
// - load scalar value and broadcast
// - BUILD_VECTOR node
// - load from a constant pool.
// We check all variants here.
if (Op1.getOpcode() == X86ISD::VBROADCAST) {
if (auto *C = getTargetConstantFromNode(Op1.getOperand(0)))
if (isSignBitValue(cast<ConstantFP>(C)))
return Op0;
} else if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op1)) {
if (ConstantFPSDNode *CN = BV->getConstantFPSplatNode())
if (isSignBitValue(CN->getConstantFPValue()))
return Op0;
} else if (auto *C = getTargetConstantFromNode(Op1)) {
if (C->getType()->isVectorTy()) {
if (auto *SplatV = C->getSplatValue())
if (isSignBitValue(cast<ConstantFP>(SplatV)))
return Op0;
} else if (auto *FPConst = dyn_cast<ConstantFP>(C))
if (isSignBitValue(FPConst))
return Op0;
}
return SDValue();
}
/// Do target-specific dag combines on floating point negations.
static SDValue combineFneg(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
EVT VT = N->getValueType(0);
EVT OrigVT = N->getValueType(0);
SDValue Arg = isFNEG(N);
assert(Arg.getNode() && "N is expected to be an FNEG node");
EVT VT = Arg.getValueType();
EVT SVT = VT.getScalarType();
SDValue Arg = N->getOperand(0);
SDLoc DL(N);
// Let legalize expand this if it isn't a legal type yet.
@ -30381,40 +30415,30 @@ static SDValue combineFneg(SDNode *N, SelectionDAG &DAG,
if (Arg.getOpcode() == ISD::FMUL && (SVT == MVT::f32 || SVT == MVT::f64) &&
Arg->getFlags()->hasNoSignedZeros() && Subtarget.hasAnyFMA()) {
SDValue Zero = DAG.getConstantFP(0.0, DL, VT);
return DAG.getNode(X86ISD::FNMSUB, DL, VT, Arg.getOperand(0),
SDValue NewNode = DAG.getNode(X86ISD::FNMSUB, DL, VT, Arg.getOperand(0),
Arg.getOperand(1), Zero);
return DAG.getBitcast(OrigVT, NewNode);
}
// If we're negating a FMA node, then we can adjust the
// instruction to include the extra negation.
unsigned NewOpcode = 0;
if (Arg.hasOneUse()) {
switch (Arg.getOpcode()) {
case X86ISD::FMADD:
return DAG.getNode(X86ISD::FNMSUB, DL, VT, Arg.getOperand(0),
Arg.getOperand(1), Arg.getOperand(2));
case X86ISD::FMSUB:
return DAG.getNode(X86ISD::FNMADD, DL, VT, Arg.getOperand(0),
Arg.getOperand(1), Arg.getOperand(2));
case X86ISD::FNMADD:
return DAG.getNode(X86ISD::FMSUB, DL, VT, Arg.getOperand(0),
Arg.getOperand(1), Arg.getOperand(2));
case X86ISD::FNMSUB:
return DAG.getNode(X86ISD::FMADD, DL, VT, Arg.getOperand(0),
Arg.getOperand(1), Arg.getOperand(2));
case X86ISD::FMADD_RND:
return DAG.getNode(X86ISD::FNMSUB_RND, DL, VT, Arg.getOperand(0),
Arg.getOperand(1), Arg.getOperand(2), Arg.getOperand(3));
case X86ISD::FMSUB_RND:
return DAG.getNode(X86ISD::FNMADD_RND, DL, VT, Arg.getOperand(0),
Arg.getOperand(1), Arg.getOperand(2), Arg.getOperand(3));
case X86ISD::FNMADD_RND:
return DAG.getNode(X86ISD::FMSUB_RND, DL, VT, Arg.getOperand(0),
Arg.getOperand(1), Arg.getOperand(2), Arg.getOperand(3));
case X86ISD::FNMSUB_RND:
return DAG.getNode(X86ISD::FMADD_RND, DL, VT, Arg.getOperand(0),
Arg.getOperand(1), Arg.getOperand(2), Arg.getOperand(3));
case X86ISD::FMADD: NewOpcode = X86ISD::FNMSUB; break;
case X86ISD::FMSUB: NewOpcode = X86ISD::FNMADD; break;
case X86ISD::FNMADD: NewOpcode = X86ISD::FMSUB; break;
case X86ISD::FNMSUB: NewOpcode = X86ISD::FMADD; break;
case X86ISD::FMADD_RND: NewOpcode = X86ISD::FNMSUB_RND; break;
case X86ISD::FMSUB_RND: NewOpcode = X86ISD::FNMADD_RND; break;
case X86ISD::FNMADD_RND: NewOpcode = X86ISD::FMSUB_RND; break;
case X86ISD::FNMSUB_RND: NewOpcode = X86ISD::FMADD_RND; break;
}
}
if (NewOpcode)
return DAG.getBitcast(OrigVT, DAG.getNode(NewOpcode, DL, VT,
Arg.getNode()->ops()));
return SDValue();
}
@ -30442,42 +30466,28 @@ static SDValue lowerX86FPLogicOp(SDNode *N, SelectionDAG &DAG,
return SDValue();
}
/// Returns true if the node \p N is FNEG(x) or FXOR (x, 0x80000000).
bool isFNEG(const SDNode *N) {
if (N->getOpcode() == ISD::FNEG)
return true;
static SDValue combineXor(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
if (SDValue Cmp = foldVectorXorShiftIntoCmp(N, DAG, Subtarget))
return Cmp;
if (N->getOpcode() == X86ISD::FXOR) {
unsigned EltBits = N->getSimpleValueType(0).getScalarSizeInBits();
SDValue Op1 = N->getOperand(1);
if (DCI.isBeforeLegalizeOps())
return SDValue();
auto isSignBitValue = [&](const ConstantFP *C) {
return C->getValueAPF().bitcastToAPInt() == APInt::getSignBit(EltBits);
};
if (SDValue RV = foldXorTruncShiftIntoCmp(N, DAG))
return RV;
// There is more than one way to represent the same constant on
// the different X86 targets. The type of the node may also depend on size.
// - load scalar value and broadcast
// - BUILD_VECTOR node
// - load from a constant pool.
// We check all variants here.
if (Op1.getOpcode() == X86ISD::VBROADCAST) {
if (auto *C = getTargetConstantFromNode(Op1.getOperand(0)))
return isSignBitValue(cast<ConstantFP>(C));
if (Subtarget.hasCMov())
if (SDValue RV = combineIntegerAbs(N, DAG))
return RV;
} else if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op1)) {
if (ConstantFPSDNode *CN = BV->getConstantFPSplatNode())
return isSignBitValue(CN->getConstantFPValue());
if (SDValue FPLogic = convertIntLogicToFPLogic(N, DAG, Subtarget))
return FPLogic;
} else if (auto *C = getTargetConstantFromNode(Op1)) {
if (C->getType()->isVectorTy()) {
if (auto *SplatV = C->getSplatValue())
return isSignBitValue(cast<ConstantFP>(SplatV));
} else if (auto *FPConst = dyn_cast<ConstantFP>(C))
return isSignBitValue(FPConst);
}
}
return false;
if (isFNEG(N))
return combineFneg(N, DAG, Subtarget);
return SDValue();
}
/// Do target-specific dag combines on X86ISD::FOR and X86ISD::FXOR nodes.
@ -30907,18 +30917,20 @@ static SDValue combineFMA(SDNode *N, SelectionDAG &DAG,
SDValue B = N->getOperand(1);
SDValue C = N->getOperand(2);
bool NegA = isFNEG(A.getNode());
bool NegB = isFNEG(B.getNode());
bool NegC = isFNEG(C.getNode());
auto invertIfNegative = [](SDValue &V) {
if (SDValue NegVal = isFNEG(V.getNode())) {
V = NegVal;
return true;
}
return false;
};
bool NegA = invertIfNegative(A);
bool NegB = invertIfNegative(B);
bool NegC = invertIfNegative(C);
// Negative multiplication when NegA xor NegB
bool NegMul = (NegA != NegB);
if (NegA)
A = A.getOperand(0);
if (NegB)
B = B.getOperand(0);
if (NegC)
C = C.getOperand(0);
unsigned NewOpcode;
if (!NegMul)

View File

@ -1,5 +1,6 @@
; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc < %s -mtriple=x86_64-unknown-linux-gnu -mattr=+avx512bw -mattr=+avx512vl -mattr=+avx512dq | FileCheck %s
; RUN: llc < %s -mtriple=x86_64-unknown-linux-gnu -mattr=+avx512bw -mattr=+avx512vl -mattr=+avx512dq | FileCheck %s --check-prefix=CHECK --check-prefix=SKX
; RUN: llc < %s -mtriple=x86_64-unknown-linux-gnu -mattr=+avx512f -mattr=+fma | FileCheck %s --check-prefix=CHECK --check-prefix=KNL
; This test checks combinations of FNEG and FMA intrinsics on AVX-512 target
; PR28892
@ -88,11 +89,18 @@ entry:
}
define <8 x float> @test8(<8 x float> %a, <8 x float> %b, <8 x float> %c) {
; CHECK-LABEL: test8:
; CHECK: # BB#0: # %entry
; CHECK-NEXT: vxorps {{.*}}(%rip){1to8}, %ymm2, %ymm2
; CHECK-NEXT: vfmsub213ps %ymm2, %ymm1, %ymm0
; CHECK-NEXT: retq
; SKX-LABEL: test8:
; SKX: # BB#0: # %entry
; SKX-NEXT: vxorps {{.*}}(%rip){1to8}, %ymm2, %ymm2
; SKX-NEXT: vfmsub213ps %ymm2, %ymm1, %ymm0
; SKX-NEXT: retq
;
; KNL-LABEL: test8:
; KNL: # BB#0: # %entry
; KNL-NEXT: vbroadcastss {{.*}}(%rip), %ymm3
; KNL-NEXT: vxorps %ymm3, %ymm2, %ymm2
; KNL-NEXT: vfmsub213ps %ymm2, %ymm1, %ymm0
; KNL-NEXT: retq
entry:
%sub.c = fsub <8 x float> <float -0.000000e+00, float -0.000000e+00, float -0.000000e+00, float -0.000000e+00, float -0.000000e+00, float -0.000000e+00, float -0.000000e+00, float -0.000000e+00>, %c
%0 = tail call <8 x float> @llvm.x86.fma.vfmsub.ps.256(<8 x float> %a, <8 x float> %b, <8 x float> %sub.c) #2
@ -115,22 +123,9 @@ entry:
declare <8 x double> @llvm.x86.avx512.mask.vfmadd.pd.512(<8 x double> %a, <8 x double> %b, <8 x double> %c, i8, i32)
define <4 x double> @test10(<4 x double> %a, <4 x double> %b, <4 x double> %c) {
define <2 x double> @test10(<2 x double> %a, <2 x double> %b, <2 x double> %c) {
; CHECK-LABEL: test10:
; CHECK: # BB#0: # %entry
; CHECK-NEXT: vfnmsub213pd %ymm2, %ymm1, %ymm0
; CHECK-NEXT: retq
entry:
%0 = tail call <4 x double> @llvm.x86.avx512.mask.vfmadd.pd.256(<4 x double> %a, <4 x double> %b, <4 x double> %c, i8 -1) #2
%sub.i = fsub <4 x double> <double -0.000000e+00, double -0.000000e+00, double -0.000000e+00, double -0.000000e+00>, %0
ret <4 x double> %sub.i
}
declare <4 x double> @llvm.x86.avx512.mask.vfmadd.pd.256(<4 x double> %a, <4 x double> %b, <4 x double> %c, i8)
define <2 x double> @test11(<2 x double> %a, <2 x double> %b, <2 x double> %c) {
; CHECK-LABEL: test11:
; CHECK: # BB#0: # %entry
; CHECK-NEXT: vfnmsub213sd %xmm2, %xmm0, %xmm1
; CHECK-NEXT: vmovaps %xmm1, %xmm0
; CHECK-NEXT: retq