Fix a README item by having InstructionSimplify do a mild form of value

numbering, in which it considers (for example) "%a = add i32 %x, %y" and
"%b = add i32 %x, %y" to be equal because the operands are equal and the
result of the instructions only depends on the values of the operands.
This has almost no effect (it removes 4 instructions from gcc-as-one-file),
and perhaps slows down compilation: I measured a 0.4% slowdown on the large
gcc-as-one-file testcase, but it wasn't statistically significant.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122654 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Duncan Sands 2011-01-01 16:12:09 +00:00
parent c88e91b875
commit 7cf85e74e3
3 changed files with 133 additions and 63 deletions

View File

@ -28,7 +28,7 @@
using namespace llvm;
using namespace llvm::PatternMatch;
#define RecursionLimit 3
#define RecursionLimit 4
STATISTIC(NumExpand, "Number of expansions");
STATISTIC(NumFactor , "Number of factorizations");
@ -45,6 +45,53 @@ static Value *SimplifyOrInst(Value *, Value *, const TargetData *,
static Value *SimplifyXorInst(Value *, Value *, const TargetData *,
const DominatorTree *, unsigned);
/// equal - Return true if the given values are known to be equal, false if they
/// are not equal or it is not clear whether they are equal or not.
static bool equal(Value *A, Value *B, unsigned MaxRecurse) {
// If the pointers are equal then the values are!
if (A == B)
return true;
// From this point on either recursion is used or the result is false, so bail
// out at once if we already hit the recursion limit.
if (!MaxRecurse--)
return false;
// If these are instructions, see if they compute the same value.
Instruction *AI = dyn_cast<Instruction>(A), *BI = dyn_cast<Instruction>(B);
if (!AI || !BI)
return false;
// If one of the instructions has extra flags attached then be conservative
// and say that the instructions differ.
if (!AI->hasSameSubclassOptionalData(BI))
return false;
// For some reason alloca's are not considered to read or write memory, yet
// each one nonetheless manages to return a different value...
if (isa<AllocaInst>(AI))
return false;
// Do not consider instructions to be equal if they may access memory.
if (AI->mayReadFromMemory() || AI->mayWriteToMemory())
return false;
// If the instructions do not perform the same computation then bail out.
if (!BI->isSameOperationAs(AI))
return false;
// Check whether all operands are equal. If they are then the instructions
// have the same value.
bool AllOperandsEqual = true;
for (unsigned i = 0, e = AI->getNumOperands(); i != e; ++i)
if (!equal(AI->getOperand(i), BI->getOperand(i), MaxRecurse)) {
AllOperandsEqual = false;
break;
}
if (AllOperandsEqual)
return true;
// If the instructions are commutative and their operands are equal when
// swapped then the instructions have the same value.
return AI->isCommutative() &&
equal(AI->getOperand(0), BI->getOperand(1), MaxRecurse) &&
equal(AI->getOperand(1), BI->getOperand(0), MaxRecurse);
}
/// ValueDominatesPHI - Does the given value dominate the specified phi node?
static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
Instruction *I = dyn_cast<Instruction>(V);
@ -88,8 +135,9 @@ static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
if (Value *R = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) {
// They do! Return "L op' R" if it simplifies or is already available.
// If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
&& L == B && R == A)) {
if ((equal(L, A, MaxRecurse) && equal(R, B, MaxRecurse)) ||
(Instruction::isCommutative(OpcodeToExpand) &&
equal(L, B, MaxRecurse) && equal(R, A, MaxRecurse))) {
++NumExpand;
return LHS;
}
@ -112,8 +160,9 @@ static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
if (Value *R = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse)) {
// They do! Return "L op' R" if it simplifies or is already available.
// If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
&& L == C && R == B)) {
if ((equal(L, B, MaxRecurse) && equal(R, C, MaxRecurse)) ||
(Instruction::isCommutative(OpcodeToExpand) &&
equal(L, C, MaxRecurse) && equal(R, B, MaxRecurse))) {
++NumExpand;
return RHS;
}
@ -155,17 +204,23 @@ static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS,
// Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)".
// Does the instruction have the form "(A op' B) op (A op' D)" or, in the
// commutative case, "(A op' B) op (C op' A)"?
if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) {
Value *DD = A == C ? D : C;
bool AEqualsC = equal(A, C, MaxRecurse);
if (AEqualsC || (Instruction::isCommutative(OpcodeToExtract) &&
equal(A, D, MaxRecurse))) {
Value *DD = AEqualsC ? D : C;
// Form "A op' (B op DD)" if it simplifies completely.
// Does "B op DD" simplify?
if (Value *V = SimplifyBinOp(Opcode, B, DD, TD, DT, MaxRecurse)) {
// It does! Return "A op' V" if it simplifies or is already available.
// If V equals B then "A op' V" is just the LHS. If V equals DD then
// "A op' V" is just the RHS.
if (V == B || V == DD) {
if (equal(V, B, MaxRecurse)) {
++NumFactor;
return V == B ? LHS : RHS;
return LHS;
}
if (equal(V, DD, MaxRecurse)) {
++NumFactor;
return RHS;
}
// Otherwise return "A op' V" if it simplifies.
if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, TD, DT, MaxRecurse)) {
@ -178,17 +233,23 @@ static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS,
// Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)".
// Does the instruction have the form "(A op' B) op (C op' B)" or, in the
// commutative case, "(A op' B) op (B op' D)"?
if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) {
Value *CC = B == D ? C : D;
bool BEqualsD = equal(B, D, MaxRecurse);
if (BEqualsD || (Instruction::isCommutative(OpcodeToExtract) &&
equal(B, C, MaxRecurse))) {
Value *CC = BEqualsD ? C : D;
// Form "(A op CC) op' B" if it simplifies completely..
// Does "A op CC" simplify?
if (Value *V = SimplifyBinOp(Opcode, A, CC, TD, DT, MaxRecurse)) {
// It does! Return "V op' B" if it simplifies or is already available.
// If V equals A then "V op' B" is just the LHS. If V equals CC then
// "V op' B" is just the RHS.
if (V == A || V == CC) {
if (equal(V, A, MaxRecurse)) {
++NumFactor;
return V == A ? LHS : RHS;
return LHS;
}
if (equal(V, CC, MaxRecurse)) {
++NumFactor;
return RHS;
}
// Otherwise return "V op' B" if it simplifies.
if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, TD, DT, MaxRecurse)) {
@ -227,7 +288,7 @@ static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
if (Value *V = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) {
// It does! Return "A op V" if it simplifies or is already available.
// If V equals B then "A op V" is just the LHS.
if (V == B) return LHS;
if (equal(V, B, MaxRecurse)) return LHS;
// Otherwise return "A op V" if it simplifies.
if (Value *W = SimplifyBinOp(Opcode, A, V, TD, DT, MaxRecurse)) {
++NumReassoc;
@ -246,7 +307,7 @@ static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
if (Value *V = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse)) {
// It does! Return "V op C" if it simplifies or is already available.
// If V equals B then "V op C" is just the RHS.
if (V == B) return RHS;
if (equal(V, B, MaxRecurse)) return RHS;
// Otherwise return "V op C" if it simplifies.
if (Value *W = SimplifyBinOp(Opcode, V, C, TD, DT, MaxRecurse)) {
++NumReassoc;
@ -269,7 +330,7 @@ static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) {
// It does! Return "V op B" if it simplifies or is already available.
// If V equals A then "V op B" is just the LHS.
if (V == A) return LHS;
if (equal(V, A, MaxRecurse)) return LHS;
// Otherwise return "V op B" if it simplifies.
if (Value *W = SimplifyBinOp(Opcode, V, B, TD, DT, MaxRecurse)) {
++NumReassoc;
@ -288,7 +349,7 @@ static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) {
// It does! Return "B op V" if it simplifies or is already available.
// If V equals C then "B op V" is just the RHS.
if (V == C) return RHS;
if (equal(V, C, MaxRecurse)) return RHS;
// Otherwise return "B op V" if it simplifies.
if (Value *W = SimplifyBinOp(Opcode, B, V, TD, DT, MaxRecurse)) {
++NumReassoc;
@ -331,9 +392,12 @@ static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), TD, DT, MaxRecurse);
}
// If they simplified to the same value, then return the common value.
// If they both failed to simplify then return null.
if (TV == FV)
if (!TV && !FV)
return 0;
// If they simplified to the same value, then return the common value.
if (TV && FV && equal(TV, FV, MaxRecurse))
return TV;
// If one branch simplified to undef, return the other one.
@ -344,7 +408,8 @@ static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
// If applying the operation did not change the true and false select values,
// then the result of the binop is the select itself.
if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
if (TV && equal(TV, SI->getTrueValue(), MaxRecurse) &&
FV && equal(FV, SI->getFalseValue(), MaxRecurse))
return SI;
// If one branch simplified and the other did not, and the simplified
@ -361,12 +426,12 @@ static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
if (Simplified->getOperand(0) == UnsimplifiedLHS &&
Simplified->getOperand(1) == UnsimplifiedRHS)
if (equal(Simplified->getOperand(0), UnsimplifiedLHS, MaxRecurse) &&
equal(Simplified->getOperand(1), UnsimplifiedRHS, MaxRecurse))
return Simplified;
if (Simplified->isCommutative() &&
Simplified->getOperand(1) == UnsimplifiedLHS &&
Simplified->getOperand(0) == UnsimplifiedRHS)
equal(Simplified->getOperand(1), UnsimplifiedLHS, MaxRecurse) &&
equal(Simplified->getOperand(0), UnsimplifiedRHS, MaxRecurse))
return Simplified;
}
}
@ -403,7 +468,7 @@ static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
MaxRecurse))
// It does! If they simplified to the same value, then use it as the
// result of the original comparison.
if (TCmp == FCmp)
if (equal(TCmp, FCmp, MaxRecurse))
return TCmp;
return 0;
}
@ -519,14 +584,14 @@ static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
// X + (Y - X) -> Y
// (Y - X) + X -> Y
// Eg: X + -X -> 0
Value *Y = 0;
if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
Value *X = 0, *Y = 0;
if ((match(Op1, m_Sub(m_Value(Y), m_Value(X))) && equal(X, Op0, MaxRecurse))||
(match(Op0, m_Sub(m_Value(Y), m_Value(X))) && equal(X, Op1, MaxRecurse)))
return Y;
// X + ~X -> -1 since ~X = -X-1
if (match(Op0, m_Not(m_Specific(Op1))) ||
match(Op1, m_Not(m_Specific(Op0))))
if ((match(Op0, m_Not(m_Value(X))) && equal(X, Op1, MaxRecurse)) ||
(match(Op1, m_Not(m_Value(X))) && equal(X, Op0, MaxRecurse)))
return Constant::getAllOnesValue(Op0->getType());
/// i1 add -> xor.
@ -583,14 +648,14 @@ static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
return Op0;
// X - X -> 0
if (Op0 == Op1)
if (equal(Op0, Op1, MaxRecurse))
return Constant::getNullValue(Op0->getType());
// (X + Y) - Y -> X
// (Y + X) - Y -> X
Value *X = 0;
if (match(Op0, m_Add(m_Value(X), m_Specific(Op1))) ||
match(Op0, m_Add(m_Specific(Op1), m_Value(X))))
Value *X = 0, *Y = 0;
if ((match(Op0, m_Add(m_Value(X), m_Value(Y))) && equal(Y, Op1, MaxRecurse))||
(match(Op0, m_Add(m_Value(Y), m_Value(X))) && equal(Y, Op1, MaxRecurse)))
return X;
/// i1 sub -> xor.
@ -704,7 +769,7 @@ static Value *SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
return Constant::getNullValue(Op0->getType());
// X & X = X
if (Op0 == Op1)
if (equal(Op0, Op1, MaxRecurse))
return Op0;
// X & 0 = 0
@ -717,18 +782,18 @@ static Value *SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
// A & ~A = ~A & A = 0
Value *A = 0, *B = 0;
if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
(match(Op1, m_Not(m_Value(A))) && A == Op0))
if ((match(Op0, m_Not(m_Value(A))) && equal(A, Op1, MaxRecurse)) ||
(match(Op1, m_Not(m_Value(A))) && equal(A, Op0, MaxRecurse)))
return Constant::getNullValue(Op0->getType());
// (A | ?) & A = A
if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
(A == Op1 || B == Op1))
(equal(A, Op1, MaxRecurse) || equal(B, Op1, MaxRecurse)))
return Op1;
// A & (A | ?) = A
if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
(A == Op0 || B == Op0))
(equal(A, Op0, MaxRecurse) || equal(B, Op0, MaxRecurse)))
return Op0;
// Try some generic simplifications for associative operations.
@ -793,7 +858,7 @@ static Value *SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
return Constant::getAllOnesValue(Op0->getType());
// X | X = X
if (Op0 == Op1)
if (equal(Op0, Op1, MaxRecurse))
return Op0;
// X | 0 = X
@ -806,18 +871,18 @@ static Value *SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
// A | ~A = ~A | A = -1
Value *A = 0, *B = 0;
if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
(match(Op1, m_Not(m_Value(A))) && A == Op0))
if ((match(Op0, m_Not(m_Value(A))) && equal(A, Op1, MaxRecurse)) ||
(match(Op1, m_Not(m_Value(A))) && equal(A, Op0, MaxRecurse)))
return Constant::getAllOnesValue(Op0->getType());
// (A & ?) | A = A
if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
(A == Op1 || B == Op1))
(equal(A, Op1, MaxRecurse) || equal(B, Op1, MaxRecurse)))
return Op1;
// A | (A & ?) = A
if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
(A == Op0 || B == Op0))
(equal(A, Op0, MaxRecurse) || equal(B, Op0, MaxRecurse)))
return Op0;
// Try some generic simplifications for associative operations.
@ -881,13 +946,13 @@ static Value *SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
return Op0;
// A ^ A = 0
if (Op0 == Op1)
if (equal(Op0, Op1, MaxRecurse))
return Constant::getNullValue(Op0->getType());
// A ^ ~A = ~A ^ A = -1
Value *A = 0;
if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
(match(Op1, m_Not(m_Value(A))) && A == Op0))
if ((match(Op0, m_Not(m_Value(A))) && equal(A, Op1, MaxRecurse)) ||
(match(Op1, m_Not(m_Value(A))) && equal(A, Op0, MaxRecurse)))
return Constant::getAllOnesValue(Op0->getType());
// Try some generic simplifications for associative operations.
@ -944,7 +1009,7 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
// icmp X, X -> true/false
// X icmp undef -> true/false. For example, icmp ugt %X, undef -> false
// because X could be 0.
if (LHS == RHS || isa<UndefValue>(RHS))
if (isa<UndefValue>(RHS) || equal(LHS, RHS, MaxRecurse))
return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
// icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
@ -1028,7 +1093,7 @@ static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
return UndefValue::get(GetCompareTy(LHS));
// fcmp x,x -> true/false. Not all compares are foldable.
if (LHS == RHS) {
if (equal(LHS, RHS, MaxRecurse)) {
if (CmpInst::isTrueWhenEqual(Pred))
return ConstantInt::get(GetCompareTy(LHS), 1);
if (CmpInst::isFalseWhenEqual(Pred))
@ -1098,15 +1163,16 @@ Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
/// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
/// the result. If not, this returns null.
Value *llvm::SimplifySelectInst(Value *CondVal, Value *TrueVal, Value *FalseVal,
const TargetData *TD, const DominatorTree *) {
static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal, Value *FalseVal,
const TargetData *TD, const DominatorTree *,
unsigned MaxRecurse) {
// select true, X, Y -> X
// select false, X, Y -> Y
if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
return CB->getZExtValue() ? TrueVal : FalseVal;
// select C, X, X -> X
if (TrueVal == FalseVal)
if (equal(TrueVal, FalseVal, MaxRecurse))
return TrueVal;
if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
@ -1122,6 +1188,12 @@ Value *llvm::SimplifySelectInst(Value *CondVal, Value *TrueVal, Value *FalseVal,
return 0;
}
Value *llvm::SimplifySelectInst(Value *CondVal, Value *TrueVal, Value *FalseVal,
const TargetData *TD, const DominatorTree *DT) {
return ::SimplifySelectInst(CondVal, TrueVal, FalseVal, TD, DT,
RecursionLimit);
}
/// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
/// fold the result. If not, this returns null.
Value *llvm::SimplifyGEPInst(Value *const *Ops, unsigned NumOps,

View File

@ -2065,14 +2065,3 @@ entry:
}
//===---------------------------------------------------------------------===//
This compare could fold to false:
define i1 @g(i32 a) nounwind readnone {
%add = shl i32 %a, 1
%mul = shl i32 %a, 1
%cmp = icmp ugt i32 %add, %mul
ret i1 %cmp
}
//===---------------------------------------------------------------------===//

View File

@ -0,0 +1,9 @@
; RUN: opt < %s -instsimplify -S | FileCheck %s
define i1 @g(i32 %a) nounwind readnone {
; CHECK: @g
%add = shl i32 %a, 1
%mul = shl i32 %a, 1
%cmp = icmp ugt i32 %add, %mul
ret i1 %cmp
; CHECK: ret i1 false
}