[ValueTracking, VectorUtils] Refactor getIntrinsicIDForCall

The functionality contained within getIntrinsicIDForCall is two-fold: it
checks if a CallInst's callee is a vectorizable intrinsic.  If it isn't
an intrinsic, it attempts to map the call's target to a suitable
intrinsic.

Move the mapping functionality into getIntrinsicForCallSite and rename
getIntrinsicIDForCall to getVectorIntrinsicIDForCall while
reimplementing it in terms of getIntrinsicForCallSite.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@266801 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
David Majnemer 2016-04-19 19:10:21 +00:00
parent 13e21eb07d
commit 7f0d15f9a5
8 changed files with 185 additions and 179 deletions

View File

@ -15,6 +15,7 @@
#ifndef LLVM_ANALYSIS_VALUETRACKING_H
#define LLVM_ANALYSIS_VALUETRACKING_H
#include "llvm/IR/CallSite.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Instruction.h"
#include "llvm/Support/DataTypes.h"
@ -35,6 +36,10 @@ template <typename T> class ArrayRef;
class TargetLibraryInfo;
class Value;
namespace Intrinsic {
enum ID : unsigned;
}
/// Determine which bits of V are known to be either zero or one and return
/// them in the KnownZero/KnownOne bit sets.
///
@ -143,6 +148,11 @@ template <typename T> class ArrayRef;
bool LookThroughSExt = false,
unsigned Depth = 0);
/// Map a call instruction to an intrinsic ID. Libcalls which have equivalent
/// intrinsics are treated as-if they were intrinsics.
Intrinsic::ID getIntrinsicForCallSite(ImmutableCallSite ICS,
const TargetLibraryInfo *TLI);
/// CannotBeNegativeZero - Return true if we can prove that the specified FP
/// value is never equal to -0.0.
///

View File

@ -16,8 +16,6 @@
#include "llvm/ADT/MapVector.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
namespace llvm {
@ -30,6 +28,10 @@ class TargetTransformInfo;
class Type;
class Value;
namespace Intrinsic {
enum ID : unsigned;
}
/// \brief Identify if the intrinsic is trivially vectorizable.
/// This method returns true if the intrinsic's argument types are all
/// scalars for the scalar form of the intrinsic and all vectors for
@ -40,27 +42,11 @@ bool isTriviallyVectorizable(Intrinsic::ID ID);
/// ctlz,cttz and powi special intrinsics whose argument is scalar.
bool hasVectorInstrinsicScalarOpd(Intrinsic::ID ID, unsigned ScalarOpdIdx);
/// \brief Identify if call has a unary float signature
/// It returns input intrinsic ID if call has a single argument,
/// argument type and call instruction type should be floating
/// point type and call should only reads memory.
/// else return not_intrinsic.
Intrinsic::ID checkUnaryFloatSignature(const CallInst &I,
Intrinsic::ID ValidIntrinsicID);
/// \brief Identify if call has a binary float signature
/// It returns input intrinsic ID if call has two arguments,
/// arguments type and call instruction type should be floating
/// point type and call should only reads memory.
/// else return not_intrinsic.
Intrinsic::ID checkBinaryFloatSignature(const CallInst &I,
Intrinsic::ID ValidIntrinsicID);
/// \brief Returns intrinsic ID for call.
/// For the input call instruction it finds mapping intrinsic and returns
/// its intrinsic ID, in case it does not found it return not_intrinsic.
Intrinsic::ID getIntrinsicIDForCall(const CallInst *CI,
const TargetLibraryInfo *TLI);
Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI,
const TargetLibraryInfo *TLI);
/// \brief Find the operand of the GEP that should be checked for consecutive
/// stores. This ignores trailing indices that have no effect on the final

View File

@ -1505,7 +1505,7 @@ void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) {
// vectorize a loop if it contains known function calls that don't set
// the flag. Therefore, it is safe to ignore this read from memory.
CallInst *Call = dyn_cast<CallInst>(it);
if (Call && getIntrinsicIDForCall(Call, TLI))
if (Call && getVectorIntrinsicIDForCall(Call, TLI))
continue;
// If the function has an explicit vectorized counterpart, we can safely

View File

@ -2262,6 +2262,153 @@ bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
return false;
}
/// \brief Check call has a unary float signature
/// It checks following:
/// a) call should have a single argument
/// b) argument type should be floating point type
/// c) call instruction type and argument type should be same
/// d) call should only reads memory.
/// If all these condition is met then return ValidIntrinsicID
/// else return not_intrinsic.
static Intrinsic::ID checkUnaryFloatSignature(ImmutableCallSite ICS,
Intrinsic::ID ValidIntrinsicID) {
if (ICS.getNumArgOperands() != 1 ||
!ICS.getArgOperand(0)->getType()->isFloatingPointTy() ||
ICS.getType() != ICS.getArgOperand(0)->getType() ||
!ICS.onlyReadsMemory())
return Intrinsic::not_intrinsic;
return ValidIntrinsicID;
}
/// \brief Check call has a binary float signature
/// It checks following:
/// a) call should have 2 arguments.
/// b) arguments type should be floating point type
/// c) call instruction type and arguments type should be same
/// d) call should only reads memory.
/// If all these condition is met then return ValidIntrinsicID
/// else return not_intrinsic.
static Intrinsic::ID checkBinaryFloatSignature(ImmutableCallSite ICS,
Intrinsic::ID ValidIntrinsicID) {
if (ICS.getNumArgOperands() != 2 ||
!ICS.getArgOperand(0)->getType()->isFloatingPointTy() ||
!ICS.getArgOperand(1)->getType()->isFloatingPointTy() ||
ICS.getType() != ICS.getArgOperand(0)->getType() ||
ICS.getType() != ICS.getArgOperand(1)->getType() ||
!ICS.onlyReadsMemory())
return Intrinsic::not_intrinsic;
return ValidIntrinsicID;
}
Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
const TargetLibraryInfo *TLI) {
const Function *F = ICS.getCalledFunction();
if (!F)
return Intrinsic::not_intrinsic;
if (F->isIntrinsic())
return F->getIntrinsicID();
if (!TLI)
return Intrinsic::not_intrinsic;
LibFunc::Func Func;
// We're going to make assumptions on the semantics of the functions, check
// that the target knows that it's available in this environment and it does
// not have local linkage.
if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(F->getName(), Func))
return Intrinsic::not_intrinsic;
// Otherwise check if we have a call to a function that can be turned into a
// vector intrinsic.
switch (Func) {
default:
break;
case LibFunc::sin:
case LibFunc::sinf:
case LibFunc::sinl:
return checkUnaryFloatSignature(ICS, Intrinsic::sin);
case LibFunc::cos:
case LibFunc::cosf:
case LibFunc::cosl:
return checkUnaryFloatSignature(ICS, Intrinsic::cos);
case LibFunc::exp:
case LibFunc::expf:
case LibFunc::expl:
return checkUnaryFloatSignature(ICS, Intrinsic::exp);
case LibFunc::exp2:
case LibFunc::exp2f:
case LibFunc::exp2l:
return checkUnaryFloatSignature(ICS, Intrinsic::exp2);
case LibFunc::log:
case LibFunc::logf:
case LibFunc::logl:
return checkUnaryFloatSignature(ICS, Intrinsic::log);
case LibFunc::log10:
case LibFunc::log10f:
case LibFunc::log10l:
return checkUnaryFloatSignature(ICS, Intrinsic::log10);
case LibFunc::log2:
case LibFunc::log2f:
case LibFunc::log2l:
return checkUnaryFloatSignature(ICS, Intrinsic::log2);
case LibFunc::fabs:
case LibFunc::fabsf:
case LibFunc::fabsl:
return checkUnaryFloatSignature(ICS, Intrinsic::fabs);
case LibFunc::fmin:
case LibFunc::fminf:
case LibFunc::fminl:
return checkBinaryFloatSignature(ICS, Intrinsic::minnum);
case LibFunc::fmax:
case LibFunc::fmaxf:
case LibFunc::fmaxl:
return checkBinaryFloatSignature(ICS, Intrinsic::maxnum);
case LibFunc::copysign:
case LibFunc::copysignf:
case LibFunc::copysignl:
return checkBinaryFloatSignature(ICS, Intrinsic::copysign);
case LibFunc::floor:
case LibFunc::floorf:
case LibFunc::floorl:
return checkUnaryFloatSignature(ICS, Intrinsic::floor);
case LibFunc::ceil:
case LibFunc::ceilf:
case LibFunc::ceill:
return checkUnaryFloatSignature(ICS, Intrinsic::ceil);
case LibFunc::trunc:
case LibFunc::truncf:
case LibFunc::truncl:
return checkUnaryFloatSignature(ICS, Intrinsic::trunc);
case LibFunc::rint:
case LibFunc::rintf:
case LibFunc::rintl:
return checkUnaryFloatSignature(ICS, Intrinsic::rint);
case LibFunc::nearbyint:
case LibFunc::nearbyintf:
case LibFunc::nearbyintl:
return checkUnaryFloatSignature(ICS, Intrinsic::nearbyint);
case LibFunc::round:
case LibFunc::roundf:
case LibFunc::roundl:
return checkUnaryFloatSignature(ICS, Intrinsic::round);
case LibFunc::pow:
case LibFunc::powf:
case LibFunc::powl:
return checkBinaryFloatSignature(ICS, Intrinsic::pow);
case LibFunc::sqrt:
case LibFunc::sqrtf:
case LibFunc::sqrtl:
if (ICS->hasNoNaNs())
return checkUnaryFloatSignature(ICS, Intrinsic::sqrt);
return Intrinsic::not_intrinsic;
}
return Intrinsic::not_intrinsic;
}
/// Return true if we can prove that the specified FP value is never equal to
/// -0.0.
///
@ -2298,7 +2445,7 @@ bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
return true;
if (const CallInst *CI = dyn_cast<CallInst>(I)) {
Intrinsic::ID IID = getIntrinsicIDForCall(CI, TLI);
Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
switch (IID) {
default:
break;
@ -2352,7 +2499,7 @@ bool llvm::CannotBeOrderedLessThanZero(const Value *V,
// Widening/narrowing never change sign.
return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
case Instruction::Call:
Intrinsic::ID IID = getIntrinsicIDForCall(cast<CallInst>(I), TLI);
Intrinsic::ID IID = getIntrinsicForCallSite(cast<CallInst>(I), TLI);
switch (IID) {
default:
break;

View File

@ -17,6 +17,7 @@
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/PatternMatch.h"
@ -78,156 +79,18 @@ bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
}
}
/// \brief Check call has a unary float signature
/// It checks following:
/// a) call should have a single argument
/// b) argument type should be floating point type
/// c) call instruction type and argument type should be same
/// d) call should only reads memory.
/// If all these condition is met then return ValidIntrinsicID
/// else return not_intrinsic.
Intrinsic::ID
llvm::checkUnaryFloatSignature(const CallInst &I,
Intrinsic::ID ValidIntrinsicID) {
if (I.getNumArgOperands() != 1 ||
!I.getArgOperand(0)->getType()->isFloatingPointTy() ||
I.getType() != I.getArgOperand(0)->getType() || !I.onlyReadsMemory())
return Intrinsic::not_intrinsic;
return ValidIntrinsicID;
}
/// \brief Check call has a binary float signature
/// It checks following:
/// a) call should have 2 arguments.
/// b) arguments type should be floating point type
/// c) call instruction type and arguments type should be same
/// d) call should only reads memory.
/// If all these condition is met then return ValidIntrinsicID
/// else return not_intrinsic.
Intrinsic::ID
llvm::checkBinaryFloatSignature(const CallInst &I,
Intrinsic::ID ValidIntrinsicID) {
if (I.getNumArgOperands() != 2 ||
!I.getArgOperand(0)->getType()->isFloatingPointTy() ||
!I.getArgOperand(1)->getType()->isFloatingPointTy() ||
I.getType() != I.getArgOperand(0)->getType() ||
I.getType() != I.getArgOperand(1)->getType() || !I.onlyReadsMemory())
return Intrinsic::not_intrinsic;
return ValidIntrinsicID;
}
/// \brief Returns intrinsic ID for call.
/// For the input call instruction it finds mapping intrinsic and returns
/// its ID, in case it does not found it return not_intrinsic.
Intrinsic::ID llvm::getIntrinsicIDForCall(const CallInst *CI,
const TargetLibraryInfo *TLI) {
// If we have an intrinsic call, check if it is trivially vectorizable.
if (const auto *II = dyn_cast<IntrinsicInst>(CI)) {
Intrinsic::ID ID = II->getIntrinsicID();
if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
ID == Intrinsic::lifetime_end || ID == Intrinsic::assume)
return ID;
return Intrinsic::not_intrinsic;
}
if (!TLI)
Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
const TargetLibraryInfo *TLI) {
Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI);
if (ID == Intrinsic::not_intrinsic)
return Intrinsic::not_intrinsic;
LibFunc::Func Func;
Function *F = CI->getCalledFunction();
// We're going to make assumptions on the semantics of the functions, check
// that the target knows that it's available in this environment and it does
// not have local linkage.
if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(F->getName(), Func))
return Intrinsic::not_intrinsic;
// Otherwise check if we have a call to a function that can be turned into a
// vector intrinsic.
switch (Func) {
default:
break;
case LibFunc::sin:
case LibFunc::sinf:
case LibFunc::sinl:
return checkUnaryFloatSignature(*CI, Intrinsic::sin);
case LibFunc::cos:
case LibFunc::cosf:
case LibFunc::cosl:
return checkUnaryFloatSignature(*CI, Intrinsic::cos);
case LibFunc::exp:
case LibFunc::expf:
case LibFunc::expl:
return checkUnaryFloatSignature(*CI, Intrinsic::exp);
case LibFunc::exp2:
case LibFunc::exp2f:
case LibFunc::exp2l:
return checkUnaryFloatSignature(*CI, Intrinsic::exp2);
case LibFunc::log:
case LibFunc::logf:
case LibFunc::logl:
return checkUnaryFloatSignature(*CI, Intrinsic::log);
case LibFunc::log10:
case LibFunc::log10f:
case LibFunc::log10l:
return checkUnaryFloatSignature(*CI, Intrinsic::log10);
case LibFunc::log2:
case LibFunc::log2f:
case LibFunc::log2l:
return checkUnaryFloatSignature(*CI, Intrinsic::log2);
case LibFunc::fabs:
case LibFunc::fabsf:
case LibFunc::fabsl:
return checkUnaryFloatSignature(*CI, Intrinsic::fabs);
case LibFunc::fmin:
case LibFunc::fminf:
case LibFunc::fminl:
return checkBinaryFloatSignature(*CI, Intrinsic::minnum);
case LibFunc::fmax:
case LibFunc::fmaxf:
case LibFunc::fmaxl:
return checkBinaryFloatSignature(*CI, Intrinsic::maxnum);
case LibFunc::copysign:
case LibFunc::copysignf:
case LibFunc::copysignl:
return checkBinaryFloatSignature(*CI, Intrinsic::copysign);
case LibFunc::floor:
case LibFunc::floorf:
case LibFunc::floorl:
return checkUnaryFloatSignature(*CI, Intrinsic::floor);
case LibFunc::ceil:
case LibFunc::ceilf:
case LibFunc::ceill:
return checkUnaryFloatSignature(*CI, Intrinsic::ceil);
case LibFunc::trunc:
case LibFunc::truncf:
case LibFunc::truncl:
return checkUnaryFloatSignature(*CI, Intrinsic::trunc);
case LibFunc::rint:
case LibFunc::rintf:
case LibFunc::rintl:
return checkUnaryFloatSignature(*CI, Intrinsic::rint);
case LibFunc::nearbyint:
case LibFunc::nearbyintf:
case LibFunc::nearbyintl:
return checkUnaryFloatSignature(*CI, Intrinsic::nearbyint);
case LibFunc::round:
case LibFunc::roundf:
case LibFunc::roundl:
return checkUnaryFloatSignature(*CI, Intrinsic::round);
case LibFunc::pow:
case LibFunc::powf:
case LibFunc::powl:
return checkBinaryFloatSignature(*CI, Intrinsic::pow);
case LibFunc::sqrt:
case LibFunc::sqrtf:
case LibFunc::sqrtl:
if (CI->hasNoNaNs())
return checkUnaryFloatSignature(*CI, Intrinsic::sqrt);
return Intrinsic::not_intrinsic;
}
if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
ID == Intrinsic::lifetime_end || ID == Intrinsic::assume)
return ID;
return Intrinsic::not_intrinsic;
}

View File

@ -4564,7 +4564,7 @@ Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
break;
CallInst *CI = cast<CallInst>(LHSI);
Intrinsic::ID IID = getIntrinsicIDForCall(CI, TLI);
Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
if (IID != Intrinsic::fabs)
break;

View File

@ -3325,7 +3325,7 @@ static unsigned getVectorCallCost(CallInst *CI, unsigned VF,
static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF,
const TargetTransformInfo &TTI,
const TargetLibraryInfo *TLI) {
Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
assert(ID && "Expected intrinsic call!");
Type *RetTy = ToVectorTy(CI->getType(), VF);
@ -4251,7 +4251,7 @@ void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) {
for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF));
Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
if (ID &&
(ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
ID == Intrinsic::lifetime_start)) {
@ -4684,7 +4684,7 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
// * Have a mapping to an IR intrinsic.
// * Have a vector version available.
CallInst *CI = dyn_cast<CallInst>(it);
if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI) &&
if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI) &&
!(CI->getCalledFunction() && TLI &&
TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) {
emitAnalysis(VectorizationReport(&*it)
@ -4696,7 +4696,7 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
// Intrinsics such as powi,cttz and ctlz are legal to vectorize if the
// second argument is the same (i.e. loop invariant)
if (CI &&
hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) {
hasVectorInstrinsicScalarOpd(getVectorIntrinsicIDForCall(CI, TLI), 1)) {
auto *SE = PSE.getSE();
if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) {
emitAnalysis(VectorizationReport(&*it)
@ -6020,7 +6020,7 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF,
bool NeedToScalarize;
CallInst *CI = cast<CallInst>(I);
unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize);
if (getIntrinsicIDForCall(CI, TLI))
if (getVectorIntrinsicIDForCall(CI, TLI))
return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI));
return CallCost;
}

View File

@ -327,7 +327,7 @@ static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
}
case Instruction::Call: {
CallInst *CI = cast<CallInst>(UserInst);
Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
if (hasVectorInstrinsicScalarOpd(ID, 1)) {
return (CI->getArgOperand(1) == Scalar);
}
@ -1390,7 +1390,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
CallInst *CI = cast<CallInst>(VL[0]);
// Check if this is an Intrinsic call or something that can be
// represented by an intrinsic call
Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
if (!isTriviallyVectorizable(ID)) {
BS.cancelScheduling(VL);
newTreeEntry(VL, false);
@ -1404,7 +1404,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
for (unsigned i = 1, e = VL.size(); i != e; ++i) {
CallInst *CI2 = dyn_cast<CallInst>(VL[i]);
if (!CI2 || CI2->getCalledFunction() != Int ||
getIntrinsicIDForCall(CI2, TLI) != ID) {
getVectorIntrinsicIDForCall(CI2, TLI) != ID) {
BS.cancelScheduling(VL);
newTreeEntry(VL, false);
DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i]
@ -1648,7 +1648,7 @@ int BoUpSLP::getEntryCost(TreeEntry *E) {
}
case Instruction::Call: {
CallInst *CI = cast<CallInst>(VL0);
Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
// Calculate the cost of the scalar and vector calls.
SmallVector<Type*, 4> ScalarTys, VecTys;
@ -2454,7 +2454,7 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
}
Module *M = F->getParent();
Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
Value *V = Builder.CreateCall(CF, OpVecs);