mirror of
https://github.com/RPCSX/llvm.git
synced 2024-11-25 12:50:00 +00:00
Reimplement isPotentiallyReachable to make nocapture deduction much stronger.
Adds unit tests for it too. Split BasicBlockUtils into an analysis-half and a transforms-half, and put the analysis bits into a new Analysis/CFG.{h,cpp}. Promote isPotentiallyReachable into llvm::isPotentiallyReachable and move it into Analysis/CFG. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187283 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
332af10901
commit
81e480463d
69
include/llvm/Analysis/CFG.h
Normal file
69
include/llvm/Analysis/CFG.h
Normal file
@ -0,0 +1,69 @@
|
||||
//===-- Analysis/CFG.h - BasicBlock Analyses --------------------*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This family of functions performs analyses on basic blocks, and instructions
|
||||
// contained within basic blocks.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_ANALYSIS_CFG_H
|
||||
#define LLVM_ANALYSIS_CFG_H
|
||||
|
||||
#include "llvm/IR/BasicBlock.h"
|
||||
#include "llvm/Support/CFG.h"
|
||||
|
||||
namespace llvm {
|
||||
|
||||
class BasicBlock;
|
||||
class DominatorTree;
|
||||
class Function;
|
||||
class Instruction;
|
||||
class LoopInfo;
|
||||
class TerminatorInst;
|
||||
|
||||
/// Analyze the specified function to find all of the loop backedges in the
|
||||
/// function and return them. This is a relatively cheap (compared to
|
||||
/// computing dominators and loop info) analysis.
|
||||
///
|
||||
/// The output is added to Result, as pairs of <from,to> edge info.
|
||||
void FindFunctionBackedges(
|
||||
const Function &F,
|
||||
SmallVectorImpl<std::pair<const BasicBlock *, const BasicBlock *> > &
|
||||
Result);
|
||||
|
||||
/// Search for the specified successor of basic block BB and return its position
|
||||
/// in the terminator instruction's list of successors. It is an error to call
|
||||
/// this with a block that is not a successor.
|
||||
unsigned GetSuccessorNumber(BasicBlock *BB, BasicBlock *Succ);
|
||||
|
||||
/// Return true if the specified edge is a critical edge. Critical edges are
|
||||
/// edges from a block with multiple successors to a block with multiple
|
||||
/// predecessors.
|
||||
///
|
||||
bool isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum,
|
||||
bool AllowIdenticalEdges = false);
|
||||
|
||||
/// Determine whether there is a path from From to To within a single function.
|
||||
/// Returns false only if we can prove that once 'From' has been executed then
|
||||
/// 'To' can not be executed. Conservatively returns true.
|
||||
///
|
||||
/// This function is linear with respect to the number of blocks in the CFG,
|
||||
/// walking down successors from From to reach To, with a fixed threshold.
|
||||
/// Using DT or LI allows us to answer more quickly. LI reduces the cost of
|
||||
/// an entire loop of any number of blocsk to be the same as the cost of a
|
||||
/// single block. DT reduces the cost by allowing the search to terminate when
|
||||
/// we find a block that dominates the block containing 'To'. DT is most useful
|
||||
/// on branchy code but not loops, and LI is most useful on code with loops but
|
||||
/// does not help on branchy code outside loops.
|
||||
bool isPotentiallyReachable(const Instruction *From, const Instruction *To,
|
||||
DominatorTree *DT = 0, LoopInfo *LI = 0);
|
||||
|
||||
} // End llvm namespace
|
||||
|
||||
#endif
|
@ -70,28 +70,6 @@ void ReplaceInstWithInst(BasicBlock::InstListType &BIL,
|
||||
//
|
||||
void ReplaceInstWithInst(Instruction *From, Instruction *To);
|
||||
|
||||
/// FindFunctionBackedges - Analyze the specified function to find all of the
|
||||
/// loop backedges in the function and return them. This is a relatively cheap
|
||||
/// (compared to computing dominators and loop info) analysis.
|
||||
///
|
||||
/// The output is added to Result, as pairs of <from,to> edge info.
|
||||
void FindFunctionBackedges(const Function &F,
|
||||
SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result);
|
||||
|
||||
|
||||
/// GetSuccessorNumber - Search for the specified successor of basic block BB
|
||||
/// and return its position in the terminator instruction's list of
|
||||
/// successors. It is an error to call this with a block that is not a
|
||||
/// successor.
|
||||
unsigned GetSuccessorNumber(BasicBlock *BB, BasicBlock *Succ);
|
||||
|
||||
/// isCriticalEdge - Return true if the specified edge is a critical edge.
|
||||
/// Critical edges are edges from a block with multiple successors to a block
|
||||
/// with multiple predecessors.
|
||||
///
|
||||
bool isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum,
|
||||
bool AllowIdenticalEdges = false);
|
||||
|
||||
/// SplitCriticalEdge - If this edge is a critical edge, insert a new node to
|
||||
/// split the critical edge. This will update DominatorTree and
|
||||
/// DominatorFrontier information if it is available, thus calling this pass
|
||||
|
@ -26,6 +26,7 @@
|
||||
|
||||
#include "llvm/Analysis/AliasAnalysis.h"
|
||||
#include "llvm/Analysis/CaptureTracking.h"
|
||||
#include "llvm/Analysis/CFG.h"
|
||||
#include "llvm/Analysis/Dominators.h"
|
||||
#include "llvm/Analysis/ValueTracking.h"
|
||||
#include "llvm/IR/BasicBlock.h"
|
||||
@ -361,26 +362,6 @@ AliasAnalysis::getModRefInfo(const AtomicRMWInst *RMW, const Location &Loc) {
|
||||
}
|
||||
|
||||
namespace {
|
||||
/// Determine whether there is a path from From to To within a single
|
||||
/// function. Returns false only if we can prove that once 'From' has been
|
||||
/// executed then 'To' can not be executed. Conservatively returns true.
|
||||
static bool isPotentiallyReachable(const BasicBlock *From,
|
||||
const BasicBlock *To) {
|
||||
const unsigned MaxCheck = 5;
|
||||
const BasicBlock *Current = From;
|
||||
for (unsigned I = 0; I < MaxCheck; I++) {
|
||||
unsigned NumSuccs = Current->getTerminator()->getNumSuccessors();
|
||||
if (NumSuccs > 1)
|
||||
return true;
|
||||
if (NumSuccs == 0)
|
||||
return false;
|
||||
Current = Current->getTerminator()->getSuccessor(0);
|
||||
if (Current == To)
|
||||
return true;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/// Only find pointer captures which happen before the given instruction. Uses
|
||||
/// the dominator tree to determine whether one instruction is before another.
|
||||
/// Only support the case where the Value is defined in the same basic block
|
||||
@ -402,7 +383,7 @@ namespace {
|
||||
// there is no need to explore the use if BeforeHere dominates use.
|
||||
// Check whether there is a path from I to BeforeHere.
|
||||
if (BeforeHere != I && DT->dominates(BeforeHere, I) &&
|
||||
!isPotentiallyReachable(BB, BeforeHere->getParent()))
|
||||
!isPotentiallyReachable(I, BeforeHere, DT))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
@ -414,7 +395,7 @@ namespace {
|
||||
if (BeforeHere != I && !DT->isReachableFromEntry(BB))
|
||||
return false;
|
||||
if (BeforeHere != I && DT->dominates(BeforeHere, I) &&
|
||||
!isPotentiallyReachable(BB, BeforeHere->getParent()))
|
||||
!isPotentiallyReachable(I, BeforeHere, DT))
|
||||
return false;
|
||||
Captured = true;
|
||||
return true;
|
||||
|
227
lib/Analysis/CFG.cpp
Normal file
227
lib/Analysis/CFG.cpp
Normal file
@ -0,0 +1,227 @@
|
||||
//===-- CFG.cpp - BasicBlock analysis --------------------------------------==//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This family of functions performs analyses on basic blocks, and instructions
|
||||
// contained within basic blocks.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Analysis/CFG.h"
|
||||
|
||||
#include "llvm/ADT/SmallSet.h"
|
||||
#include "llvm/Analysis/Dominators.h"
|
||||
#include "llvm/Analysis/LoopInfo.h"
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
/// FindFunctionBackedges - Analyze the specified function to find all of the
|
||||
/// loop backedges in the function and return them. This is a relatively cheap
|
||||
/// (compared to computing dominators and loop info) analysis.
|
||||
///
|
||||
/// The output is added to Result, as pairs of <from,to> edge info.
|
||||
void llvm::FindFunctionBackedges(const Function &F,
|
||||
SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
|
||||
const BasicBlock *BB = &F.getEntryBlock();
|
||||
if (succ_begin(BB) == succ_end(BB))
|
||||
return;
|
||||
|
||||
SmallPtrSet<const BasicBlock*, 8> Visited;
|
||||
SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack;
|
||||
SmallPtrSet<const BasicBlock*, 8> InStack;
|
||||
|
||||
Visited.insert(BB);
|
||||
VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
|
||||
InStack.insert(BB);
|
||||
do {
|
||||
std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back();
|
||||
const BasicBlock *ParentBB = Top.first;
|
||||
succ_const_iterator &I = Top.second;
|
||||
|
||||
bool FoundNew = false;
|
||||
while (I != succ_end(ParentBB)) {
|
||||
BB = *I++;
|
||||
if (Visited.insert(BB)) {
|
||||
FoundNew = true;
|
||||
break;
|
||||
}
|
||||
// Successor is in VisitStack, it's a back edge.
|
||||
if (InStack.count(BB))
|
||||
Result.push_back(std::make_pair(ParentBB, BB));
|
||||
}
|
||||
|
||||
if (FoundNew) {
|
||||
// Go down one level if there is a unvisited successor.
|
||||
InStack.insert(BB);
|
||||
VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
|
||||
} else {
|
||||
// Go up one level.
|
||||
InStack.erase(VisitStack.pop_back_val().first);
|
||||
}
|
||||
} while (!VisitStack.empty());
|
||||
}
|
||||
|
||||
/// GetSuccessorNumber - Search for the specified successor of basic block BB
|
||||
/// and return its position in the terminator instruction's list of
|
||||
/// successors. It is an error to call this with a block that is not a
|
||||
/// successor.
|
||||
unsigned llvm::GetSuccessorNumber(BasicBlock *BB, BasicBlock *Succ) {
|
||||
TerminatorInst *Term = BB->getTerminator();
|
||||
#ifndef NDEBUG
|
||||
unsigned e = Term->getNumSuccessors();
|
||||
#endif
|
||||
for (unsigned i = 0; ; ++i) {
|
||||
assert(i != e && "Didn't find edge?");
|
||||
if (Term->getSuccessor(i) == Succ)
|
||||
return i;
|
||||
}
|
||||
}
|
||||
|
||||
/// isCriticalEdge - Return true if the specified edge is a critical edge.
|
||||
/// Critical edges are edges from a block with multiple successors to a block
|
||||
/// with multiple predecessors.
|
||||
bool llvm::isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum,
|
||||
bool AllowIdenticalEdges) {
|
||||
assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
|
||||
if (TI->getNumSuccessors() == 1) return false;
|
||||
|
||||
const BasicBlock *Dest = TI->getSuccessor(SuccNum);
|
||||
const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest);
|
||||
|
||||
// If there is more than one predecessor, this is a critical edge...
|
||||
assert(I != E && "No preds, but we have an edge to the block?");
|
||||
const BasicBlock *FirstPred = *I;
|
||||
++I; // Skip one edge due to the incoming arc from TI.
|
||||
if (!AllowIdenticalEdges)
|
||||
return I != E;
|
||||
|
||||
// If AllowIdenticalEdges is true, then we allow this edge to be considered
|
||||
// non-critical iff all preds come from TI's block.
|
||||
while (I != E) {
|
||||
const BasicBlock *P = *I;
|
||||
if (P != FirstPred)
|
||||
return true;
|
||||
// Note: leave this as is until no one ever compiles with either gcc 4.0.1
|
||||
// or Xcode 2. This seems to work around the pred_iterator assert in PR 2207
|
||||
E = pred_end(P);
|
||||
++I;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// LoopInfo contains a mapping from basic block to the innermost loop. Find
|
||||
// the outermost loop in the loop nest that contains BB.
|
||||
static const Loop *getOutermostLoop(LoopInfo *LI, const BasicBlock *BB) {
|
||||
const Loop *L = LI->getLoopFor(BB);
|
||||
if (L) {
|
||||
while (const Loop *Parent = L->getParentLoop())
|
||||
L = Parent;
|
||||
}
|
||||
return L;
|
||||
}
|
||||
|
||||
// True if there is a loop which contains both BB1 and BB2.
|
||||
static bool loopContainsBoth(LoopInfo *LI,
|
||||
const BasicBlock *BB1, const BasicBlock *BB2) {
|
||||
const Loop *L1 = getOutermostLoop(LI, BB1);
|
||||
const Loop *L2 = getOutermostLoop(LI, BB2);
|
||||
return L1 != NULL && L1 == L2;
|
||||
}
|
||||
|
||||
static bool isPotentiallyReachableSameBlock(const Instruction *A,
|
||||
const Instruction *B,
|
||||
LoopInfo *LI) {
|
||||
// The same block case is special because it's the only time we're looking
|
||||
// within a single block to see which comes first. Once we start looking at
|
||||
// multiple blocks, the first instruction of the block is reachable, so we
|
||||
// only need to determine reachability between whole blocks.
|
||||
|
||||
const BasicBlock *BB = A->getParent();
|
||||
// If the block is in a loop then we can reach any instruction in the block
|
||||
// from any other instruction in the block by going around the backedge.
|
||||
// Check whether we're in a loop (or aren't sure).
|
||||
|
||||
// Can't be in a loop if it's the entry block -- the entry block may not
|
||||
// have predecessors.
|
||||
bool HasLoop = BB != &BB->getParent()->getEntryBlock();
|
||||
|
||||
// Can't be in a loop if LoopInfo doesn't know about it.
|
||||
if (LI && HasLoop) {
|
||||
HasLoop = LI->getLoopFor(BB) != 0;
|
||||
}
|
||||
if (HasLoop)
|
||||
return true;
|
||||
|
||||
// Linear scan, start at 'A', see whether we hit 'B' or the end first.
|
||||
for (BasicBlock::const_iterator I = A, E = BB->end(); I != E; ++I) {
|
||||
if (&*I == B)
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool llvm::isPotentiallyReachable(const Instruction *A, const Instruction *B,
|
||||
DominatorTree *DT, LoopInfo *LI) {
|
||||
assert(A->getParent()->getParent() == B->getParent()->getParent() &&
|
||||
"This analysis is function-local!");
|
||||
|
||||
const BasicBlock *StopBB = B->getParent();
|
||||
|
||||
if (A->getParent() == B->getParent())
|
||||
return isPotentiallyReachableSameBlock(A, B, LI);
|
||||
|
||||
if (A->getParent() == &A->getParent()->getParent()->getEntryBlock())
|
||||
return true;
|
||||
if (B->getParent() == &A->getParent()->getParent()->getEntryBlock())
|
||||
return false;
|
||||
|
||||
// When the stop block is unreachable, it's dominated from everywhere,
|
||||
// regardless of whether there's a path between the two blocks.
|
||||
if (DT && !DT->isReachableFromEntry(StopBB))
|
||||
DT = 0;
|
||||
|
||||
// Limit the number of blocks we visit. The goal is to avoid run-away compile
|
||||
// times on large CFGs without hampering sensible code. Arbitrarily chosen.
|
||||
unsigned Limit = 32;
|
||||
|
||||
SmallSet<const BasicBlock*, 64> Visited;
|
||||
SmallVector<BasicBlock*, 32> Worklist;
|
||||
Worklist.push_back(const_cast<BasicBlock*>(A->getParent()));
|
||||
|
||||
do {
|
||||
BasicBlock *BB = Worklist.pop_back_val();
|
||||
if (!Visited.insert(BB))
|
||||
continue;
|
||||
if (BB == StopBB)
|
||||
return true;
|
||||
if (DT && DT->dominates(BB, StopBB))
|
||||
return true;
|
||||
if (LI && loopContainsBoth(LI, BB, StopBB))
|
||||
return true;
|
||||
|
||||
if (!--Limit) {
|
||||
// We haven't been able to prove it one way or the other. Conservatively
|
||||
// answer true -- that there is potentially a path.
|
||||
return true;
|
||||
}
|
||||
|
||||
if (const Loop *Outer = LI ? getOutermostLoop(LI, BB) : 0) {
|
||||
// All blocks in a single loop are reachable from all other blocks. From
|
||||
// any of these blocks, we can skip directly to the exits of the loop,
|
||||
// ignoring any other blocks inside the loop body.
|
||||
Outer->getExitBlocks(Worklist);
|
||||
} else {
|
||||
for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
|
||||
Worklist.push_back(*I);
|
||||
}
|
||||
} while (!Worklist.empty());
|
||||
|
||||
// We have exhaustived all possible paths and are certain that 'To' can not
|
||||
// be reached from 'From'.
|
||||
return false;
|
||||
}
|
@ -19,6 +19,7 @@
|
||||
#include "llvm/ADT/Statistic.h"
|
||||
#include "llvm/Analysis/AliasAnalysis.h"
|
||||
#include "llvm/Analysis/BranchProbabilityInfo.h"
|
||||
#include "llvm/Analysis/CFG.h"
|
||||
#include "llvm/Analysis/TargetTransformInfo.h"
|
||||
#include "llvm/CodeGen/FastISel.h"
|
||||
#include "llvm/CodeGen/FunctionLoweringInfo.h"
|
||||
|
@ -23,6 +23,7 @@
|
||||
#include "llvm/ADT/SmallPtrSet.h"
|
||||
#include "llvm/ADT/Statistic.h"
|
||||
#include "llvm/Analysis/AliasAnalysis.h"
|
||||
#include "llvm/Analysis/CFG.h"
|
||||
#include "llvm/Analysis/ConstantFolding.h"
|
||||
#include "llvm/Analysis/Dominators.h"
|
||||
#include "llvm/Analysis/InstructionSimplify.h"
|
||||
|
@ -19,6 +19,7 @@
|
||||
#include "llvm/ADT/SmallPtrSet.h"
|
||||
#include "llvm/ADT/SmallSet.h"
|
||||
#include "llvm/ADT/Statistic.h"
|
||||
#include "llvm/Analysis/CFG.h"
|
||||
#include "llvm/Analysis/ConstantFolding.h"
|
||||
#include "llvm/Analysis/InstructionSimplify.h"
|
||||
#include "llvm/Analysis/LazyValueInfo.h"
|
||||
@ -1614,5 +1615,3 @@ bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
|
||||
++NumDupes;
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
|
@ -14,6 +14,7 @@
|
||||
|
||||
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
||||
#include "llvm/Analysis/AliasAnalysis.h"
|
||||
#include "llvm/Analysis/CFG.h"
|
||||
#include "llvm/Analysis/Dominators.h"
|
||||
#include "llvm/Analysis/LoopInfo.h"
|
||||
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
|
||||
@ -235,22 +236,6 @@ void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
|
||||
ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
|
||||
}
|
||||
|
||||
/// GetSuccessorNumber - Search for the specified successor of basic block BB
|
||||
/// and return its position in the terminator instruction's list of
|
||||
/// successors. It is an error to call this with a block that is not a
|
||||
/// successor.
|
||||
unsigned llvm::GetSuccessorNumber(BasicBlock *BB, BasicBlock *Succ) {
|
||||
TerminatorInst *Term = BB->getTerminator();
|
||||
#ifndef NDEBUG
|
||||
unsigned e = Term->getNumSuccessors();
|
||||
#endif
|
||||
for (unsigned i = 0; ; ++i) {
|
||||
assert(i != e && "Didn't find edge?");
|
||||
if (Term->getSuccessor(i) == Succ)
|
||||
return i;
|
||||
}
|
||||
}
|
||||
|
||||
/// SplitEdge - Split the edge connecting specified block. Pass P must
|
||||
/// not be NULL.
|
||||
BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) {
|
||||
@ -598,52 +583,6 @@ void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
|
||||
}
|
||||
}
|
||||
|
||||
/// FindFunctionBackedges - Analyze the specified function to find all of the
|
||||
/// loop backedges in the function and return them. This is a relatively cheap
|
||||
/// (compared to computing dominators and loop info) analysis.
|
||||
///
|
||||
/// The output is added to Result, as pairs of <from,to> edge info.
|
||||
void llvm::FindFunctionBackedges(const Function &F,
|
||||
SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
|
||||
const BasicBlock *BB = &F.getEntryBlock();
|
||||
if (succ_begin(BB) == succ_end(BB))
|
||||
return;
|
||||
|
||||
SmallPtrSet<const BasicBlock*, 8> Visited;
|
||||
SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack;
|
||||
SmallPtrSet<const BasicBlock*, 8> InStack;
|
||||
|
||||
Visited.insert(BB);
|
||||
VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
|
||||
InStack.insert(BB);
|
||||
do {
|
||||
std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back();
|
||||
const BasicBlock *ParentBB = Top.first;
|
||||
succ_const_iterator &I = Top.second;
|
||||
|
||||
bool FoundNew = false;
|
||||
while (I != succ_end(ParentBB)) {
|
||||
BB = *I++;
|
||||
if (Visited.insert(BB)) {
|
||||
FoundNew = true;
|
||||
break;
|
||||
}
|
||||
// Successor is in VisitStack, it's a back edge.
|
||||
if (InStack.count(BB))
|
||||
Result.push_back(std::make_pair(ParentBB, BB));
|
||||
}
|
||||
|
||||
if (FoundNew) {
|
||||
// Go down one level if there is a unvisited successor.
|
||||
InStack.insert(BB);
|
||||
VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
|
||||
} else {
|
||||
// Go up one level.
|
||||
InStack.erase(VisitStack.pop_back_val().first);
|
||||
}
|
||||
} while (!VisitStack.empty());
|
||||
}
|
||||
|
||||
/// FoldReturnIntoUncondBranch - This method duplicates the specified return
|
||||
/// instruction into a predecessor which ends in an unconditional branch. If
|
||||
/// the return instruction returns a value defined by a PHI, propagate the
|
||||
|
@ -19,6 +19,7 @@
|
||||
#include "llvm/Transforms/Scalar.h"
|
||||
#include "llvm/ADT/SmallVector.h"
|
||||
#include "llvm/ADT/Statistic.h"
|
||||
#include "llvm/Analysis/CFG.h"
|
||||
#include "llvm/Analysis/Dominators.h"
|
||||
#include "llvm/Analysis/LoopInfo.h"
|
||||
#include "llvm/Analysis/ProfileInfo.h"
|
||||
@ -84,39 +85,6 @@ bool BreakCriticalEdges::runOnFunction(Function &F) {
|
||||
// Implementation of the external critical edge manipulation functions
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// isCriticalEdge - Return true if the specified edge is a critical edge.
|
||||
// Critical edges are edges from a block with multiple successors to a block
|
||||
// with multiple predecessors.
|
||||
//
|
||||
bool llvm::isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum,
|
||||
bool AllowIdenticalEdges) {
|
||||
assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
|
||||
if (TI->getNumSuccessors() == 1) return false;
|
||||
|
||||
const BasicBlock *Dest = TI->getSuccessor(SuccNum);
|
||||
const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest);
|
||||
|
||||
// If there is more than one predecessor, this is a critical edge...
|
||||
assert(I != E && "No preds, but we have an edge to the block?");
|
||||
const BasicBlock *FirstPred = *I;
|
||||
++I; // Skip one edge due to the incoming arc from TI.
|
||||
if (!AllowIdenticalEdges)
|
||||
return I != E;
|
||||
|
||||
// If AllowIdenticalEdges is true, then we allow this edge to be considered
|
||||
// non-critical iff all preds come from TI's block.
|
||||
while (I != E) {
|
||||
const BasicBlock *P = *I;
|
||||
if (P != FirstPred)
|
||||
return true;
|
||||
// Note: leave this as is until no one ever compiles with either gcc 4.0.1
|
||||
// or Xcode 2. This seems to work around the pred_iterator assert in PR 2207
|
||||
E = pred_end(P);
|
||||
++I;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/// createPHIsForSplitLoopExit - When a loop exit edge is split, LCSSA form
|
||||
/// may require new PHIs in the new exit block. This function inserts the
|
||||
/// new PHIs, as needed. Preds is a list of preds inside the loop, SplitBB
|
||||
|
@ -10,6 +10,7 @@
|
||||
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
||||
#include "llvm/Transforms/Utils/Local.h"
|
||||
#include "llvm/ADT/DenseMap.h"
|
||||
#include "llvm/Analysis/CFG.h"
|
||||
#include "llvm/IR/Function.h"
|
||||
#include "llvm/IR/Instructions.h"
|
||||
#include "llvm/IR/Type.h"
|
||||
|
359
unittests/Analysis/CFGTest.cpp
Normal file
359
unittests/Analysis/CFGTest.cpp
Normal file
@ -0,0 +1,359 @@
|
||||
//===- CFGTest.cpp - CFG tests --------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Analysis/CFG.h"
|
||||
#include "llvm/ADT/OwningPtr.h"
|
||||
#include "llvm/Analysis/Dominators.h"
|
||||
#include "llvm/Analysis/LoopInfo.h"
|
||||
#include "llvm/Assembly/Parser.h"
|
||||
#include "llvm/IR/LLVMContext.h"
|
||||
#include "llvm/IR/Function.h"
|
||||
#include "llvm/IR/Module.h"
|
||||
#include "llvm/Support/ErrorHandling.h"
|
||||
#include "llvm/Support/InstIterator.h"
|
||||
#include "llvm/Support/SourceMgr.h"
|
||||
#include "llvm/Pass.h"
|
||||
#include "llvm/PassManager.h"
|
||||
#include "gtest/gtest.h"
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
namespace {
|
||||
|
||||
// This fixture assists in running the isPotentiallyReachable utility four ways
|
||||
// and ensuring it produces the correct answer each time.
|
||||
class IsPotentiallyReachableTest : public testing::Test {
|
||||
protected:
|
||||
void ParseAssembly(const char *Assembly) {
|
||||
M.reset(new Module("Module", getGlobalContext()));
|
||||
|
||||
SMDiagnostic Error;
|
||||
bool Parsed = ParseAssemblyString(Assembly, M.get(),
|
||||
Error, M->getContext()) == M.get();
|
||||
|
||||
std::string errMsg;
|
||||
raw_string_ostream os(errMsg);
|
||||
Error.print("", os);
|
||||
|
||||
if (!Parsed) {
|
||||
// A failure here means that the test itself is buggy.
|
||||
report_fatal_error(os.str().c_str());
|
||||
}
|
||||
|
||||
Function *F = M->getFunction("test");
|
||||
if (F == NULL)
|
||||
report_fatal_error("Test must have a function named @test");
|
||||
|
||||
A = B = NULL;
|
||||
for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) {
|
||||
if (I->hasName()) {
|
||||
if (I->getName() == "A")
|
||||
A = &*I;
|
||||
else if (I->getName() == "B")
|
||||
B = &*I;
|
||||
}
|
||||
}
|
||||
if (A == NULL)
|
||||
report_fatal_error("@test must have an instruction %A");
|
||||
if (B == NULL)
|
||||
report_fatal_error("@test must have an instruction %B");
|
||||
}
|
||||
|
||||
void ExpectPath(bool ExpectedResult) {
|
||||
static char ID;
|
||||
class IsPotentiallyReachableTestPass : public FunctionPass {
|
||||
public:
|
||||
IsPotentiallyReachableTestPass(bool ExpectedResult,
|
||||
Instruction *A, Instruction *B)
|
||||
: FunctionPass(ID), ExpectedResult(ExpectedResult), A(A), B(B) {}
|
||||
|
||||
static int initialize() {
|
||||
PassInfo *PI = new PassInfo("isPotentiallyReachable testing pass",
|
||||
"", &ID, 0, true, true);
|
||||
PassRegistry::getPassRegistry()->registerPass(*PI, false);
|
||||
initializeLoopInfoPass(*PassRegistry::getPassRegistry());
|
||||
initializeDominatorTreePass(*PassRegistry::getPassRegistry());
|
||||
return 0;
|
||||
}
|
||||
|
||||
void getAnalysisUsage(AnalysisUsage &AU) const {
|
||||
AU.setPreservesAll();
|
||||
AU.addRequired<LoopInfo>();
|
||||
AU.addRequired<DominatorTree>();
|
||||
}
|
||||
|
||||
bool runOnFunction(Function &F) {
|
||||
if (!F.hasName() || F.getName() != "test")
|
||||
return false;
|
||||
|
||||
LoopInfo *LI = &getAnalysis<LoopInfo>();
|
||||
DominatorTree *DT = &getAnalysis<DominatorTree>();
|
||||
EXPECT_EQ(isPotentiallyReachable(A, B, 0, 0), ExpectedResult);
|
||||
EXPECT_EQ(isPotentiallyReachable(A, B, DT, 0), ExpectedResult);
|
||||
EXPECT_EQ(isPotentiallyReachable(A, B, 0, LI), ExpectedResult);
|
||||
EXPECT_EQ(isPotentiallyReachable(A, B, DT, LI), ExpectedResult);
|
||||
return false;
|
||||
}
|
||||
bool ExpectedResult;
|
||||
Instruction *A, *B;
|
||||
};
|
||||
|
||||
static int initialize = IsPotentiallyReachableTestPass::initialize();
|
||||
(void)initialize;
|
||||
|
||||
IsPotentiallyReachableTestPass *P =
|
||||
new IsPotentiallyReachableTestPass(ExpectedResult, A, B);
|
||||
PassManager PM;
|
||||
PM.add(P);
|
||||
PM.run(*M);
|
||||
}
|
||||
private:
|
||||
OwningPtr<Module> M;
|
||||
Instruction *A, *B;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
TEST_F(IsPotentiallyReachableTest, SameBlockNoPath) {
|
||||
ParseAssembly(
|
||||
"define void @test() {\n"
|
||||
"entry:\n"
|
||||
" bitcast i8 undef to i8\n"
|
||||
" %B = bitcast i8 undef to i8\n"
|
||||
" bitcast i8 undef to i8\n"
|
||||
" bitcast i8 undef to i8\n"
|
||||
" %A = bitcast i8 undef to i8\n"
|
||||
" ret void\n"
|
||||
"}\n");
|
||||
ExpectPath(false);
|
||||
}
|
||||
|
||||
TEST_F(IsPotentiallyReachableTest, SameBlockPath) {
|
||||
ParseAssembly(
|
||||
"define void @test() {\n"
|
||||
"entry:\n"
|
||||
" %A = bitcast i8 undef to i8\n"
|
||||
" bitcast i8 undef to i8\n"
|
||||
" bitcast i8 undef to i8\n"
|
||||
" %B = bitcast i8 undef to i8\n"
|
||||
" ret void\n"
|
||||
"}\n");
|
||||
ExpectPath(true);
|
||||
}
|
||||
|
||||
TEST_F(IsPotentiallyReachableTest, StraightNoPath) {
|
||||
ParseAssembly(
|
||||
"define void @test() {\n"
|
||||
"entry:\n"
|
||||
" %B = bitcast i8 undef to i8\n"
|
||||
" br label %exit\n"
|
||||
"exit:\n"
|
||||
" %A = bitcast i8 undef to i8\n"
|
||||
" ret void\n"
|
||||
"}");
|
||||
ExpectPath(false);
|
||||
}
|
||||
|
||||
TEST_F(IsPotentiallyReachableTest, StraightPath) {
|
||||
ParseAssembly(
|
||||
"define void @test() {\n"
|
||||
"entry:\n"
|
||||
" %A = bitcast i8 undef to i8\n"
|
||||
" br label %exit\n"
|
||||
"exit:\n"
|
||||
" %B = bitcast i8 undef to i8\n"
|
||||
" ret void\n"
|
||||
"}");
|
||||
ExpectPath(true);
|
||||
}
|
||||
|
||||
TEST_F(IsPotentiallyReachableTest, DestUnreachable) {
|
||||
ParseAssembly(
|
||||
"define void @test() {\n"
|
||||
"entry:\n"
|
||||
" br label %midblock\n"
|
||||
"midblock:\n"
|
||||
" %A = bitcast i8 undef to i8\n"
|
||||
" ret void\n"
|
||||
"unreachable:\n"
|
||||
" %B = bitcast i8 undef to i8\n"
|
||||
" br label %midblock\n"
|
||||
"}");
|
||||
ExpectPath(false);
|
||||
}
|
||||
|
||||
TEST_F(IsPotentiallyReachableTest, BranchToReturn) {
|
||||
ParseAssembly(
|
||||
"define void @test(i1 %x) {\n"
|
||||
"entry:\n"
|
||||
" %A = bitcast i8 undef to i8\n"
|
||||
" br i1 %x, label %block1, label %block2\n"
|
||||
"block1:\n"
|
||||
" ret void\n"
|
||||
"block2:\n"
|
||||
" %B = bitcast i8 undef to i8\n"
|
||||
" ret void\n"
|
||||
"}");
|
||||
ExpectPath(true);
|
||||
}
|
||||
|
||||
TEST_F(IsPotentiallyReachableTest, SimpleLoop1) {
|
||||
ParseAssembly(
|
||||
"declare i1 @switch()\n"
|
||||
"\n"
|
||||
"define void @test() {\n"
|
||||
"entry:\n"
|
||||
" br label %loop\n"
|
||||
"loop:\n"
|
||||
" %B = bitcast i8 undef to i8\n"
|
||||
" %A = bitcast i8 undef to i8\n"
|
||||
" %x = call i1 @switch()\n"
|
||||
" br i1 %x, label %loop, label %exit\n"
|
||||
"exit:\n"
|
||||
" ret void\n"
|
||||
"}");
|
||||
ExpectPath(true);
|
||||
}
|
||||
|
||||
TEST_F(IsPotentiallyReachableTest, SimpleLoop2) {
|
||||
ParseAssembly(
|
||||
"declare i1 @switch()\n"
|
||||
"\n"
|
||||
"define void @test() {\n"
|
||||
"entry:\n"
|
||||
" %B = bitcast i8 undef to i8\n"
|
||||
" br label %loop\n"
|
||||
"loop:\n"
|
||||
" %A = bitcast i8 undef to i8\n"
|
||||
" %x = call i1 @switch()\n"
|
||||
" br i1 %x, label %loop, label %exit\n"
|
||||
"exit:\n"
|
||||
" ret void\n"
|
||||
"}");
|
||||
ExpectPath(false);
|
||||
}
|
||||
|
||||
TEST_F(IsPotentiallyReachableTest, SimpleLoop3) {
|
||||
ParseAssembly(
|
||||
"declare i1 @switch()\n"
|
||||
"\n"
|
||||
"define void @test() {\n"
|
||||
"entry:\n"
|
||||
" br label %loop\n"
|
||||
"loop:\n"
|
||||
" %B = bitcast i8 undef to i8\n"
|
||||
" %x = call i1 @switch()\n"
|
||||
" br i1 %x, label %loop, label %exit\n"
|
||||
"exit:\n"
|
||||
" %A = bitcast i8 undef to i8\n"
|
||||
" ret void\n"
|
||||
"}");
|
||||
ExpectPath(false);
|
||||
}
|
||||
|
||||
|
||||
TEST_F(IsPotentiallyReachableTest, OneLoopAfterTheOther1) {
|
||||
ParseAssembly(
|
||||
"declare i1 @switch()\n"
|
||||
"\n"
|
||||
"define void @test() {\n"
|
||||
"entry:\n"
|
||||
" br label %loop1\n"
|
||||
"loop1:\n"
|
||||
" %A = bitcast i8 undef to i8\n"
|
||||
" %x = call i1 @switch()\n"
|
||||
" br i1 %x, label %loop1, label %loop1exit\n"
|
||||
"loop1exit:\n"
|
||||
" br label %loop2\n"
|
||||
"loop2:\n"
|
||||
" %B = bitcast i8 undef to i8\n"
|
||||
" %y = call i1 @switch()\n"
|
||||
" br i1 %x, label %loop2, label %loop2exit\n"
|
||||
"loop2exit:"
|
||||
" ret void\n"
|
||||
"}");
|
||||
ExpectPath(true);
|
||||
}
|
||||
|
||||
TEST_F(IsPotentiallyReachableTest, OneLoopAfterTheOther2) {
|
||||
ParseAssembly(
|
||||
"declare i1 @switch()\n"
|
||||
"\n"
|
||||
"define void @test() {\n"
|
||||
"entry:\n"
|
||||
" br label %loop1\n"
|
||||
"loop1:\n"
|
||||
" %B = bitcast i8 undef to i8\n"
|
||||
" %x = call i1 @switch()\n"
|
||||
" br i1 %x, label %loop1, label %loop1exit\n"
|
||||
"loop1exit:\n"
|
||||
" br label %loop2\n"
|
||||
"loop2:\n"
|
||||
" %A = bitcast i8 undef to i8\n"
|
||||
" %y = call i1 @switch()\n"
|
||||
" br i1 %x, label %loop2, label %loop2exit\n"
|
||||
"loop2exit:"
|
||||
" ret void\n"
|
||||
"}");
|
||||
ExpectPath(false);
|
||||
}
|
||||
|
||||
TEST_F(IsPotentiallyReachableTest, OneLoopAfterTheOtherInsideAThirdLoop) {
|
||||
ParseAssembly(
|
||||
"declare i1 @switch()\n"
|
||||
"\n"
|
||||
"define void @test() {\n"
|
||||
"entry:\n"
|
||||
" br label %outerloop3\n"
|
||||
"outerloop3:\n"
|
||||
" br label %innerloop1\n"
|
||||
"innerloop1:\n"
|
||||
" %B = bitcast i8 undef to i8\n"
|
||||
" %x = call i1 @switch()\n"
|
||||
" br i1 %x, label %innerloop1, label %innerloop1exit\n"
|
||||
"innerloop1exit:\n"
|
||||
" br label %innerloop2\n"
|
||||
"innerloop2:\n"
|
||||
" %A = bitcast i8 undef to i8\n"
|
||||
" %y = call i1 @switch()\n"
|
||||
" br i1 %x, label %innerloop2, label %innerloop2exit\n"
|
||||
"innerloop2exit:"
|
||||
" ;; In outer loop3 now.\n"
|
||||
" %z = call i1 @switch()\n"
|
||||
" br i1 %z, label %outerloop3, label %exit\n"
|
||||
"exit:\n"
|
||||
" ret void\n"
|
||||
"}");
|
||||
ExpectPath(true);
|
||||
}
|
||||
|
||||
TEST_F(IsPotentiallyReachableTest, BranchInsideLoop) {
|
||||
ParseAssembly(
|
||||
"declare i1 @switch()\n"
|
||||
"\n"
|
||||
"define void @test() {\n"
|
||||
"entry:\n"
|
||||
" br label %loop\n"
|
||||
"loop:\n"
|
||||
" %x = call i1 @switch()\n"
|
||||
" br i1 %x, label %nextloopblock, label %exit\n"
|
||||
"nextloopblock:\n"
|
||||
" %y = call i1 @switch()\n"
|
||||
" br i1 %y, label %left, label %right\n"
|
||||
"left:\n"
|
||||
" %A = bitcast i8 undef to i8\n"
|
||||
" br label %loop\n"
|
||||
"right:\n"
|
||||
" %B = bitcast i8 undef to i8\n"
|
||||
" br label %loop\n"
|
||||
"exit:\n"
|
||||
" ret void\n"
|
||||
"}");
|
||||
ExpectPath(true);
|
||||
}
|
@ -1,5 +1,6 @@
|
||||
set(LLVM_LINK_COMPONENTS
|
||||
Analysis
|
||||
AsmParser
|
||||
)
|
||||
|
||||
add_llvm_unittest(AnalysisTests
|
||||
|
@ -9,7 +9,7 @@
|
||||
|
||||
LEVEL = ../..
|
||||
TESTNAME = Analysis
|
||||
LINK_COMPONENTS := analysis
|
||||
LINK_COMPONENTS := analysis asmparser
|
||||
|
||||
include $(LEVEL)/Makefile.config
|
||||
include $(LLVM_SRC_ROOT)/unittests/Makefile.unittest
|
||||
|
Loading…
Reference in New Issue
Block a user