mirror of
https://github.com/RPCSX/llvm.git
synced 2024-11-25 12:50:00 +00:00
Rename UnknownValue to CouldNotCompute, since it holds an instance of
SCEVCouldNotCompute, and not SCEVUnknown. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72999 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
5257106c4d
commit
86fbf2fe4c
@ -227,9 +227,9 @@ namespace llvm {
|
||||
///
|
||||
TargetData *TD;
|
||||
|
||||
/// UnknownValue - This SCEV is used to represent unknown trip counts and
|
||||
/// things.
|
||||
SCEVHandle UnknownValue;
|
||||
/// CouldNotCompute - This SCEV is used to represent unknown trip
|
||||
/// counts and things.
|
||||
SCEVHandle CouldNotCompute;
|
||||
|
||||
/// Scalars - This is a cache of the scalars we have analyzed so far.
|
||||
///
|
||||
@ -322,23 +322,23 @@ namespace llvm {
|
||||
/// a constant number of times (the condition evolves only from constants),
|
||||
/// try to evaluate a few iterations of the loop until we get the exit
|
||||
/// condition gets a value of ExitWhen (true or false). If we cannot
|
||||
/// evaluate the trip count of the loop, return UnknownValue.
|
||||
/// evaluate the trip count of the loop, return CouldNotCompute.
|
||||
SCEVHandle ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond,
|
||||
bool ExitWhen);
|
||||
|
||||
/// HowFarToZero - Return the number of times a backedge comparing the
|
||||
/// specified value to zero will execute. If not computable, return
|
||||
/// UnknownValue.
|
||||
/// CouldNotCompute.
|
||||
SCEVHandle HowFarToZero(const SCEV *V, const Loop *L);
|
||||
|
||||
/// HowFarToNonZero - Return the number of times a backedge checking the
|
||||
/// specified value for nonzero will execute. If not computable, return
|
||||
/// UnknownValue.
|
||||
/// CouldNotCompute.
|
||||
SCEVHandle HowFarToNonZero(const SCEV *V, const Loop *L);
|
||||
|
||||
/// HowManyLessThans - Return the number of times a backedge containing the
|
||||
/// specified less-than comparison will execute. If not computable, return
|
||||
/// UnknownValue. isSigned specifies whether the less-than is signed.
|
||||
/// CouldNotCompute. isSigned specifies whether the less-than is signed.
|
||||
BackedgeTakenInfo HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
|
||||
const Loop *L, bool isSigned);
|
||||
|
||||
|
@ -1771,7 +1771,7 @@ const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
|
||||
}
|
||||
|
||||
SCEVHandle ScalarEvolution::getCouldNotCompute() {
|
||||
return UnknownValue;
|
||||
return CouldNotCompute;
|
||||
}
|
||||
|
||||
/// hasSCEV - Return true if the SCEV for this value has already been
|
||||
@ -2395,7 +2395,7 @@ ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
|
||||
BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
|
||||
if (Pair.second) {
|
||||
BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
|
||||
if (ItCount.Exact != UnknownValue) {
|
||||
if (ItCount.Exact != CouldNotCompute) {
|
||||
assert(ItCount.Exact->isLoopInvariant(L) &&
|
||||
ItCount.Max->isLoopInvariant(L) &&
|
||||
"Computed trip count isn't loop invariant for loop!");
|
||||
@ -2464,20 +2464,20 @@ ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
|
||||
// If the loop has a non-one exit block count, we can't analyze it.
|
||||
BasicBlock *ExitBlock = L->getExitBlock();
|
||||
if (!ExitBlock)
|
||||
return UnknownValue;
|
||||
return CouldNotCompute;
|
||||
|
||||
// Okay, there is one exit block. Try to find the condition that causes the
|
||||
// loop to be exited.
|
||||
BasicBlock *ExitingBlock = L->getExitingBlock();
|
||||
if (!ExitingBlock)
|
||||
return UnknownValue; // More than one block exiting!
|
||||
return CouldNotCompute; // More than one block exiting!
|
||||
|
||||
// Okay, we've computed the exiting block. See what condition causes us to
|
||||
// exit.
|
||||
//
|
||||
// FIXME: we should be able to handle switch instructions (with a single exit)
|
||||
BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
|
||||
if (ExitBr == 0) return UnknownValue;
|
||||
if (ExitBr == 0) return CouldNotCompute;
|
||||
assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
|
||||
|
||||
// At this point, we know we have a conditional branch that determines whether
|
||||
@ -2493,7 +2493,7 @@ ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
|
||||
if (ExitBr->getSuccessor(0) != L->getHeader() &&
|
||||
ExitBr->getSuccessor(1) != L->getHeader() &&
|
||||
ExitBr->getParent() != L->getHeader())
|
||||
return UnknownValue;
|
||||
return CouldNotCompute;
|
||||
|
||||
ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
|
||||
|
||||
@ -2647,11 +2647,11 @@ SCEVHandle ScalarEvolution::
|
||||
ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS,
|
||||
const Loop *L,
|
||||
ICmpInst::Predicate predicate) {
|
||||
if (LI->isVolatile()) return UnknownValue;
|
||||
if (LI->isVolatile()) return CouldNotCompute;
|
||||
|
||||
// Check to see if the loaded pointer is a getelementptr of a global.
|
||||
GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
|
||||
if (!GEP) return UnknownValue;
|
||||
if (!GEP) return CouldNotCompute;
|
||||
|
||||
// Make sure that it is really a constant global we are gepping, with an
|
||||
// initializer, and make sure the first IDX is really 0.
|
||||
@ -2659,7 +2659,7 @@ ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS,
|
||||
if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
|
||||
GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
|
||||
!cast<Constant>(GEP->getOperand(1))->isNullValue())
|
||||
return UnknownValue;
|
||||
return CouldNotCompute;
|
||||
|
||||
// Okay, we allow one non-constant index into the GEP instruction.
|
||||
Value *VarIdx = 0;
|
||||
@ -2669,7 +2669,7 @@ ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS,
|
||||
if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
|
||||
Indexes.push_back(CI);
|
||||
} else if (!isa<ConstantInt>(GEP->getOperand(i))) {
|
||||
if (VarIdx) return UnknownValue; // Multiple non-constant idx's.
|
||||
if (VarIdx) return CouldNotCompute; // Multiple non-constant idx's.
|
||||
VarIdx = GEP->getOperand(i);
|
||||
VarIdxNum = i-2;
|
||||
Indexes.push_back(0);
|
||||
@ -2686,7 +2686,7 @@ ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS,
|
||||
if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
|
||||
!isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
|
||||
!isa<SCEVConstant>(IdxExpr->getOperand(1)))
|
||||
return UnknownValue;
|
||||
return CouldNotCompute;
|
||||
|
||||
unsigned MaxSteps = MaxBruteForceIterations;
|
||||
for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
|
||||
@ -2713,7 +2713,7 @@ ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS,
|
||||
return getConstant(ItCst); // Found terminating iteration!
|
||||
}
|
||||
}
|
||||
return UnknownValue;
|
||||
return CouldNotCompute;
|
||||
}
|
||||
|
||||
|
||||
@ -2852,11 +2852,11 @@ getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){
|
||||
/// constant number of times (the condition evolves only from constants),
|
||||
/// try to evaluate a few iterations of the loop until we get the exit
|
||||
/// condition gets a value of ExitWhen (true or false). If we cannot
|
||||
/// evaluate the trip count of the loop, return UnknownValue.
|
||||
/// evaluate the trip count of the loop, return CouldNotCompute.
|
||||
SCEVHandle ScalarEvolution::
|
||||
ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
|
||||
PHINode *PN = getConstantEvolvingPHI(Cond, L);
|
||||
if (PN == 0) return UnknownValue;
|
||||
if (PN == 0) return CouldNotCompute;
|
||||
|
||||
// Since the loop is canonicalized, the PHI node must have two entries. One
|
||||
// entry must be a constant (coming in from outside of the loop), and the
|
||||
@ -2864,11 +2864,11 @@ ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen)
|
||||
bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
|
||||
Constant *StartCST =
|
||||
dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
|
||||
if (StartCST == 0) return UnknownValue; // Must be a constant.
|
||||
if (StartCST == 0) return CouldNotCompute; // Must be a constant.
|
||||
|
||||
Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
|
||||
PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
|
||||
if (PN2 != PN) return UnknownValue; // Not derived from same PHI.
|
||||
if (PN2 != PN) return CouldNotCompute; // Not derived from same PHI.
|
||||
|
||||
// Okay, we find a PHI node that defines the trip count of this loop. Execute
|
||||
// the loop symbolically to determine when the condition gets a value of
|
||||
@ -2881,7 +2881,7 @@ ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen)
|
||||
dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
|
||||
|
||||
// Couldn't symbolically evaluate.
|
||||
if (!CondVal) return UnknownValue;
|
||||
if (!CondVal) return CouldNotCompute;
|
||||
|
||||
if (CondVal->getValue() == uint64_t(ExitWhen)) {
|
||||
ConstantEvolutionLoopExitValue[PN] = PHIVal;
|
||||
@ -2892,12 +2892,12 @@ ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen)
|
||||
// Compute the value of the PHI node for the next iteration.
|
||||
Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
|
||||
if (NextPHI == 0 || NextPHI == PHIVal)
|
||||
return UnknownValue; // Couldn't evaluate or not making progress...
|
||||
return CouldNotCompute; // Couldn't evaluate or not making progress...
|
||||
PHIVal = NextPHI;
|
||||
}
|
||||
|
||||
// Too many iterations were needed to evaluate.
|
||||
return UnknownValue;
|
||||
return CouldNotCompute;
|
||||
}
|
||||
|
||||
/// getSCEVAtScope - Return a SCEV expression handle for the specified value
|
||||
@ -3052,7 +3052,7 @@ SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
|
||||
// To evaluate this recurrence, we need to know how many times the AddRec
|
||||
// loop iterates. Compute this now.
|
||||
SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
|
||||
if (BackedgeTakenCount == UnknownValue) return AddRec;
|
||||
if (BackedgeTakenCount == CouldNotCompute) return AddRec;
|
||||
|
||||
// Then, evaluate the AddRec.
|
||||
return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
|
||||
@ -3201,18 +3201,18 @@ SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
|
||||
}
|
||||
|
||||
/// HowFarToZero - Return the number of times a backedge comparing the specified
|
||||
/// value to zero will execute. If not computable, return UnknownValue.
|
||||
/// value to zero will execute. If not computable, return CouldNotCompute.
|
||||
SCEVHandle ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
|
||||
// If the value is a constant
|
||||
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
|
||||
// If the value is already zero, the branch will execute zero times.
|
||||
if (C->getValue()->isZero()) return C;
|
||||
return UnknownValue; // Otherwise it will loop infinitely.
|
||||
return CouldNotCompute; // Otherwise it will loop infinitely.
|
||||
}
|
||||
|
||||
const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
|
||||
if (!AddRec || AddRec->getLoop() != L)
|
||||
return UnknownValue;
|
||||
return CouldNotCompute;
|
||||
|
||||
if (AddRec->isAffine()) {
|
||||
// If this is an affine expression, the execution count of this branch is
|
||||
@ -3274,12 +3274,12 @@ SCEVHandle ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
|
||||
}
|
||||
}
|
||||
|
||||
return UnknownValue;
|
||||
return CouldNotCompute;
|
||||
}
|
||||
|
||||
/// HowFarToNonZero - Return the number of times a backedge checking the
|
||||
/// specified value for nonzero will execute. If not computable, return
|
||||
/// UnknownValue
|
||||
/// CouldNotCompute
|
||||
SCEVHandle ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
|
||||
// Loops that look like: while (X == 0) are very strange indeed. We don't
|
||||
// handle them yet except for the trivial case. This could be expanded in the
|
||||
@ -3290,12 +3290,12 @@ SCEVHandle ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
|
||||
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
|
||||
if (!C->getValue()->isNullValue())
|
||||
return getIntegerSCEV(0, C->getType());
|
||||
return UnknownValue; // Otherwise it will loop infinitely.
|
||||
return CouldNotCompute; // Otherwise it will loop infinitely.
|
||||
}
|
||||
|
||||
// We could implement others, but I really doubt anyone writes loops like
|
||||
// this, and if they did, they would already be constant folded.
|
||||
return UnknownValue;
|
||||
return CouldNotCompute;
|
||||
}
|
||||
|
||||
/// getLoopPredecessor - If the given loop's header has exactly one unique
|
||||
@ -3446,16 +3446,16 @@ bool ScalarEvolution::isLoopGuardedByCond(const Loop *L,
|
||||
|
||||
/// HowManyLessThans - Return the number of times a backedge containing the
|
||||
/// specified less-than comparison will execute. If not computable, return
|
||||
/// UnknownValue.
|
||||
/// CouldNotCompute.
|
||||
ScalarEvolution::BackedgeTakenInfo ScalarEvolution::
|
||||
HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
|
||||
const Loop *L, bool isSigned) {
|
||||
// Only handle: "ADDREC < LoopInvariant".
|
||||
if (!RHS->isLoopInvariant(L)) return UnknownValue;
|
||||
if (!RHS->isLoopInvariant(L)) return CouldNotCompute;
|
||||
|
||||
const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
|
||||
if (!AddRec || AddRec->getLoop() != L)
|
||||
return UnknownValue;
|
||||
return CouldNotCompute;
|
||||
|
||||
if (AddRec->isAffine()) {
|
||||
// FORNOW: We only support unit strides.
|
||||
@ -3466,7 +3466,7 @@ HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
|
||||
// TODO: handle non-constant strides.
|
||||
const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
|
||||
if (!CStep || CStep->isZero())
|
||||
return UnknownValue;
|
||||
return CouldNotCompute;
|
||||
if (CStep->isOne()) {
|
||||
// With unit stride, the iteration never steps past the limit value.
|
||||
} else if (CStep->getValue()->getValue().isStrictlyPositive()) {
|
||||
@ -3477,19 +3477,19 @@ HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
|
||||
APInt Max = APInt::getSignedMaxValue(BitWidth);
|
||||
if ((Max - CStep->getValue()->getValue())
|
||||
.slt(CLimit->getValue()->getValue()))
|
||||
return UnknownValue;
|
||||
return CouldNotCompute;
|
||||
} else {
|
||||
APInt Max = APInt::getMaxValue(BitWidth);
|
||||
if ((Max - CStep->getValue()->getValue())
|
||||
.ult(CLimit->getValue()->getValue()))
|
||||
return UnknownValue;
|
||||
return CouldNotCompute;
|
||||
}
|
||||
} else
|
||||
// TODO: handle non-constant limit values below.
|
||||
return UnknownValue;
|
||||
return CouldNotCompute;
|
||||
} else
|
||||
// TODO: handle negative strides below.
|
||||
return UnknownValue;
|
||||
return CouldNotCompute;
|
||||
|
||||
// We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
|
||||
// m. So, we count the number of iterations in which {n,+,s} < m is true.
|
||||
@ -3536,7 +3536,7 @@ HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
|
||||
return BackedgeTakenInfo(BECount, MaxBECount);
|
||||
}
|
||||
|
||||
return UnknownValue;
|
||||
return CouldNotCompute;
|
||||
}
|
||||
|
||||
/// getNumIterationsInRange - Return the number of iterations of this loop that
|
||||
@ -3724,7 +3724,7 @@ ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
ScalarEvolution::ScalarEvolution()
|
||||
: FunctionPass(&ID), UnknownValue(new SCEVCouldNotCompute()) {
|
||||
: FunctionPass(&ID), CouldNotCompute(new SCEVCouldNotCompute()) {
|
||||
}
|
||||
|
||||
bool ScalarEvolution::runOnFunction(Function &F) {
|
||||
|
Loading…
Reference in New Issue
Block a user