Implement a special algorithm for converting uint_to_fp for i32 values on

X86. This code:

void f() {
  uint32_t x;
  float y = (float)x;
}

used to be:

     movl     %eax, -8(%ebp)
     movl     [2^52 double], -4(%ebp)
     movsd    -8(%ebp), %xmm0
     subsd    [2^52 double], %xmm0
     cvtsd2ss %xmm0, %xmm0

Is now:

   movsd        [2^52 double], %xmm0
   movsd        %xmm0, %xmm1
   movd         %ecx, %xmm2
   orps         %xmm2, %xmm1
   subsd        %xmm0, %xmm1
   cvtsd2ss     %xmm1, %xmm0

This is faster on X86. Note that there's an extra load of %xmm0 into %xmm1. That
will be fixed in a later coalescer fix.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62404 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Bill Wendling 2009-01-17 03:56:04 +00:00
parent 70fd453a02
commit 8b8a636843
2 changed files with 100 additions and 44 deletions

View File

@ -119,8 +119,9 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
if (X86ScalarSSEf64) {
// We have an impenetrably clever algorithm for ui64->double only.
setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom);
// If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Expand);
// We have faster algorithm for ui32->single only.
setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom);
} else
setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
}
@ -4744,51 +4745,44 @@ SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
return Result;
}
SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
MVT SrcVT = Op.getOperand(0).getValueType();
assert(SrcVT.getSimpleVT() == MVT::i64 && "Unknown UINT_TO_FP to lower!");
// We only handle SSE2 f64 target here; caller can handle the rest.
if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
return SDValue();
// This algorithm is not obvious. Here it is in C code, more or less:
/*
double uint64_to_double( uint32_t hi, uint32_t lo )
{
static const __m128i exp = { 0x4330000045300000ULL, 0 };
static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) {
// This algorithm is not obvious. Here it is in C code, more or less:
/*
double uint64_to_double( uint32_t hi, uint32_t lo ) {
static const __m128i exp = { 0x4330000045300000ULL, 0 };
static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
// copy ints to xmm registers
__m128i xh = _mm_cvtsi32_si128( hi );
__m128i xl = _mm_cvtsi32_si128( lo );
// Copy ints to xmm registers.
__m128i xh = _mm_cvtsi32_si128( hi );
__m128i xl = _mm_cvtsi32_si128( lo );
// combine into low half of a single xmm register
__m128i x = _mm_unpacklo_epi32( xh, xl );
__m128d d;
double sd;
// Combine into low half of a single xmm register.
__m128i x = _mm_unpacklo_epi32( xh, xl );
__m128d d;
double sd;
// merge in appropriate exponents to give the integer bits the
// right magnitude
x = _mm_unpacklo_epi32( x, exp );
// Merge in appropriate exponents to give the integer bits the right
// magnitude.
x = _mm_unpacklo_epi32( x, exp );
// subtract away the biases to deal with the IEEE-754 double precision
// implicit 1
d = _mm_sub_pd( (__m128d) x, bias );
// Subtract away the biases to deal with the IEEE-754 double precision
// implicit 1.
d = _mm_sub_pd( (__m128d) x, bias );
// All conversions up to here are exact. The correctly rounded result is
// calculated using the
// current rounding mode using the following horizontal add.
d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
_mm_store_sd( &sd, d ); //since we are returning doubles in XMM, this
// store doesn't really need to be here (except maybe to zero the other
// double)
return sd;
}
*/
// All conversions up to here are exact. The correctly rounded result is
// calculated using the current rounding mode using the following
// horizontal add.
d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
_mm_store_sd( &sd, d ); // Because we are returning doubles in XMM, this
// store doesn't really need to be here (except
// maybe to zero the other double)
return sd;
}
*/
// Build some magic constants.
std::vector<Constant*>CV0;
std::vector<Constant*> CV0;
CV0.push_back(ConstantInt::get(APInt(32, 0x45300000)));
CV0.push_back(ConstantInt::get(APInt(32, 0x43300000)));
CV0.push_back(ConstantInt::get(APInt(32, 0)));
@ -4796,7 +4790,7 @@ SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
Constant *C0 = ConstantVector::get(CV0);
SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 4);
std::vector<Constant*>CV1;
std::vector<Constant*> CV1;
CV1.push_back(ConstantFP::get(APFloat(APInt(64, 0x4530000000000000ULL))));
CV1.push_back(ConstantFP::get(APFloat(APInt(64, 0x4330000000000000ULL))));
Constant *C1 = ConstantVector::get(CV1);
@ -4826,13 +4820,16 @@ SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
SDValue Unpck1 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32,
XR1, XR2, UnpcklMask);
SDValue CLod0 = DAG.getLoad(MVT::v4i32, DAG.getEntryNode(), CPIdx0,
PseudoSourceValue::getConstantPool(), 0, false, 16);
PseudoSourceValue::getConstantPool(), 0,
false, 16);
SDValue Unpck2 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32,
Unpck1, CLod0, UnpcklMask);
Unpck1, CLod0, UnpcklMask);
SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, MVT::v2f64, Unpck2);
SDValue CLod1 = DAG.getLoad(MVT::v2f64, CLod0.getValue(1), CPIdx1,
PseudoSourceValue::getConstantPool(), 0, false, 16);
PseudoSourceValue::getConstantPool(), 0,
false, 16);
SDValue Sub = DAG.getNode(ISD::FSUB, MVT::v2f64, XR2F, CLod1);
// Add the halves; easiest way is to swap them into another reg first.
SDValue Shuf = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2f64,
Sub, Sub, ShufMask);
@ -4841,6 +4838,63 @@ SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
DAG.getIntPtrConstant(0));
}
// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) {
// FP constant to bias correct the final result.
SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
MVT::f64);
// Load the 32-bit value into an XMM register.
SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4i32,
DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
Op.getOperand(0),
DAG.getIntPtrConstant(0)));
Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f64,
DAG.getNode(ISD::BIT_CONVERT, MVT::v2f64, Load),
DAG.getIntPtrConstant(0));
// Or the load with the bias.
SDValue Or = DAG.getNode(ISD::OR, MVT::v2i64,
DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64,
DAG.getNode(ISD::SCALAR_TO_VECTOR,
MVT::v2f64, Bias)),
DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64,
DAG.getNode(ISD::SCALAR_TO_VECTOR,
MVT::v2f64, Load)));
Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f64,
DAG.getNode(ISD::BIT_CONVERT, MVT::v2f64, Or),
DAG.getIntPtrConstant(0));
// Subtract the bias.
SDValue Sub = DAG.getNode(ISD::FSUB, MVT::f64, Or, Bias);
// Handle final rounding.
return DAG.getNode(ISD::FP_ROUND, MVT::f32, Sub,
DAG.getIntPtrConstant(0));
}
SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
MVT SrcVT = Op.getOperand(0).getValueType();
if (SrcVT == MVT::i64) {
// We only handle SSE2 f64 target here; caller can handle the rest.
if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
return SDValue();
return LowerUINT_TO_FP_i64(Op, DAG);
} else if (SrcVT == MVT::i32) {
// We only handle SSE2 f32 target here; caller can handle the rest.
if (Op.getValueType() != MVT::f32 || !X86ScalarSSEf32)
return SDValue();
return LowerUINT_TO_FP_i32(Op, DAG);
}
assert(0 && "Unknown UINT_TO_FP to lower!");
return SDValue();
}
std::pair<SDValue,SDValue> X86TargetLowering::
FP_TO_SINTHelper(SDValue Op, SelectionDAG &DAG) {
assert(Op.getValueType().getSimpleVT() <= MVT::i64 &&

View File

@ -574,6 +574,8 @@ namespace llvm {
SDValue LowerShift(SDValue Op, SelectionDAG &DAG);
SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG);
SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG);
SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG);
SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG);
SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG);
SDValue LowerFABS(SDValue Op, SelectionDAG &DAG);
SDValue LowerFNEG(SDValue Op, SelectionDAG &DAG);