Provide proper patterns for and with imm instructions. Tune the tests accordingly.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@75979 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Anton Korobeynikov 2009-07-16 14:06:00 +00:00
parent 25af73303f
commit 8c993e1632
9 changed files with 302 additions and 255 deletions

View File

@ -61,224 +61,8 @@ def SystemZbrcond : SDNode<"SystemZISD::BRCOND", SDT_BrCond,
def SystemZselect : SDNode<"SystemZISD::SELECT", SDT_SelectCC, [SDNPInFlag]>;
def SystemZpcrelwrapper : SDNode<"SystemZISD::PCRelativeWrapper", SDT_Address, []>;
//===----------------------------------------------------------------------===//
// Instruction Pattern Stuff.
//===----------------------------------------------------------------------===//
// SystemZ specific condition code. These correspond to CondCode in
// SystemZ.h. They must be kept in synch.
def SYSTEMZ_COND_E : PatLeaf<(i8 0)>;
def SYSTEMZ_COND_NE : PatLeaf<(i8 1)>;
def SYSTEMZ_COND_H : PatLeaf<(i8 2)>;
def SYSTEMZ_COND_L : PatLeaf<(i8 3)>;
def SYSTEMZ_COND_HE : PatLeaf<(i8 4)>;
def SYSTEMZ_COND_LE : PatLeaf<(i8 5)>;
def LL16 : SDNodeXForm<imm, [{
// Transformation function: return low 16 bits.
return getI16Imm(N->getZExtValue() & 0x000000000000FFFFULL);
}]>;
def LH16 : SDNodeXForm<imm, [{
// Transformation function: return bits 16-31.
return getI16Imm((N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16);
}]>;
def HL16 : SDNodeXForm<imm, [{
// Transformation function: return bits 32-47.
return getI16Imm((N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32);
}]>;
def HH16 : SDNodeXForm<imm, [{
// Transformation function: return bits 48-63.
return getI16Imm((N->getZExtValue() & 0xFFFF000000000000ULL) >> 48);
}]>;
def LO32 : SDNodeXForm<imm, [{
// Transformation function: return low 32 bits.
return getI32Imm(N->getZExtValue() & 0x00000000FFFFFFFFULL);
}]>;
def HI32 : SDNodeXForm<imm, [{
// Transformation function: return bits 32-63.
return getI32Imm(N->getZExtValue() >> 32);
}]>;
def i32ll16 : PatLeaf<(i32 imm), [{
// i32ll16 predicate - true if the 32-bit immediate has only rightmost 16
// bits set.
return ((N->getZExtValue() & 0x000000000000FFFFULL) == N->getZExtValue());
}], LL16>;
def i32lh16 : PatLeaf<(i32 imm), [{
// i32lh16 predicate - true if the 32-bit immediate has only bits 16-31 set.
return ((N->getZExtValue() & 0x00000000FFFF0000ULL) == N->getZExtValue());
}], LH16>;
def i64ll16 : PatLeaf<(imm), [{
// i64ll16 predicate - true if the 64-bit immediate has only rightmost 16
// bits set.
return ((N->getZExtValue() & 0x000000000000FFFFULL) == N->getZExtValue());
}], LL16>;
def i64lh16 : PatLeaf<(imm), [{
// i64lh16 predicate - true if the 64-bit immediate has only bits 16-31 set.
return ((N->getZExtValue() & 0x00000000FFFF0000ULL) == N->getZExtValue());
}], LH16>;
def i64hl16 : PatLeaf<(i64 imm), [{
// i64hl16 predicate - true if the 64-bit immediate has only bits 32-47 set.
return ((N->getZExtValue() & 0x0000FFFF00000000ULL) == N->getZExtValue());
}], HL16>;
def i64hh16 : PatLeaf<(i64 imm), [{
// i64hh16 predicate - true if the 64-bit immediate has only bits 48-63 set.
return ((N->getZExtValue() & 0xFFFF000000000000ULL) == N->getZExtValue());
}], HH16>;
def immSExt16 : PatLeaf<(imm), [{
// immSExt16 predicate - true if the immediate fits in a 16-bit sign extended
// field.
if (N->getValueType(0) == MVT::i64) {
uint64_t val = N->getZExtValue();
return ((int64_t)val == (int16_t)val);
} else if (N->getValueType(0) == MVT::i32) {
uint32_t val = N->getZExtValue();
return ((int32_t)val == (int16_t)val);
}
return false;
}]>;
def immSExt32 : PatLeaf<(i64 imm), [{
// immSExt32 predicate - true if the immediate fits in a 32-bit sign extended
// field.
uint64_t val = N->getZExtValue();
return ((int64_t)val == (int32_t)val);
}]>;
def i64lo32 : PatLeaf<(i64 imm), [{
// i64lo32 predicate - true if the 64-bit immediate has only rightmost 32
// bits set.
return ((N->getZExtValue() & 0x00000000FFFFFFFFULL) == N->getZExtValue());
}], LO32>;
def i64hi32 : PatLeaf<(i64 imm), [{
// i64hi32 predicate - true if the 64-bit immediate has only bits 32-63 set.
return ((N->getZExtValue() & 0xFFFFFFFF00000000ULL) == N->getZExtValue());
}], HI32>;
def i32immSExt8 : PatLeaf<(i32 imm), [{
// i32immSExt8 predicate - True if the 32-bit immediate fits in a 8-bit
// sign extended field.
return (int32_t)N->getZExtValue() == (int8_t)N->getZExtValue();
}]>;
def i32immSExt16 : PatLeaf<(i32 imm), [{
// i32immSExt16 predicate - True if the 32-bit immediate fits in a 16-bit
// sign extended field.
return (int32_t)N->getZExtValue() == (int16_t)N->getZExtValue();
}]>;
def i64immSExt32 : PatLeaf<(i64 imm), [{
// i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
// sign extended field.
return (int64_t)N->getZExtValue() == (int32_t)N->getZExtValue();
}]>;
def i64immZExt32 : PatLeaf<(i64 imm), [{
// i64immZExt32 predicate - True if the 64-bit immediate fits in a 32-bit
// zero extended field.
return (uint64_t)N->getZExtValue() == (uint32_t)N->getZExtValue();
}]>;
// extloads
def extloadi32i8 : PatFrag<(ops node:$ptr), (i32 (extloadi8 node:$ptr))>;
def extloadi32i16 : PatFrag<(ops node:$ptr), (i32 (extloadi16 node:$ptr))>;
def extloadi64i8 : PatFrag<(ops node:$ptr), (i64 (extloadi8 node:$ptr))>;
def extloadi64i16 : PatFrag<(ops node:$ptr), (i64 (extloadi16 node:$ptr))>;
def extloadi64i32 : PatFrag<(ops node:$ptr), (i64 (extloadi32 node:$ptr))>;
def sextloadi32i8 : PatFrag<(ops node:$ptr), (i32 (sextloadi8 node:$ptr))>;
def sextloadi32i16 : PatFrag<(ops node:$ptr), (i32 (sextloadi16 node:$ptr))>;
def sextloadi64i8 : PatFrag<(ops node:$ptr), (i64 (sextloadi8 node:$ptr))>;
def sextloadi64i16 : PatFrag<(ops node:$ptr), (i64 (sextloadi16 node:$ptr))>;
def sextloadi64i32 : PatFrag<(ops node:$ptr), (i64 (sextloadi32 node:$ptr))>;
def zextloadi32i8 : PatFrag<(ops node:$ptr), (i32 (zextloadi8 node:$ptr))>;
def zextloadi32i16 : PatFrag<(ops node:$ptr), (i32 (zextloadi16 node:$ptr))>;
def zextloadi64i8 : PatFrag<(ops node:$ptr), (i64 (zextloadi8 node:$ptr))>;
def zextloadi64i16 : PatFrag<(ops node:$ptr), (i64 (zextloadi16 node:$ptr))>;
def zextloadi64i32 : PatFrag<(ops node:$ptr), (i64 (zextloadi32 node:$ptr))>;
// A couple of more descriptive operand definitions.
// 32-bits but only 8 bits are significant.
def i32i8imm : Operand<i32>;
// 32-bits but only 16 bits are significant.
def i32i16imm : Operand<i32>;
// 64-bits but only 32 bits are significant.
def i64i32imm : Operand<i64>;
// Branch targets have OtherVT type.
def brtarget : Operand<OtherVT>;
// Unigned i12
def u12imm : Operand<i32> {
let PrintMethod = "printU16ImmOperand";
}
// Signed i16
def s16imm : Operand<i32> {
let PrintMethod = "printS16ImmOperand";
}
def s16imm64 : Operand<i64> {
let PrintMethod = "printS16ImmOperand";
}
// Signed i20
def s20imm : Operand<i32> {
let PrintMethod = "printS20ImmOperand";
}
def s20imm64 : Operand<i64> {
let PrintMethod = "printS20ImmOperand";
}
// Signed i32
def s32imm : Operand<i32> {
let PrintMethod = "printS32ImmOperand";
}
def s32imm64 : Operand<i64> {
let PrintMethod = "printS32ImmOperand";
}
//===----------------------------------------------------------------------===//
// SystemZ Operand Definitions.
//===----------------------------------------------------------------------===//
// Address operands
// riaddr := reg + imm
def riaddr32 : Operand<i32>,
ComplexPattern<i32, 2, "SelectAddrRI32", []> {
let PrintMethod = "printRIAddrOperand";
let MIOperandInfo = (ops ADDR32:$base, u12imm:$disp);
}
def riaddr : Operand<i64>,
ComplexPattern<i64, 2, "SelectAddrRI", []> {
let PrintMethod = "printRIAddrOperand";
let MIOperandInfo = (ops ADDR64:$base, s20imm64:$disp);
}
//===----------------------------------------------------------------------===//
// rriaddr := reg + reg + imm
def rriaddr : Operand<i64>,
ComplexPattern<i64, 3, "SelectAddrRRI", [], []> {
let PrintMethod = "printRRIAddrOperand";
let MIOperandInfo = (ops ADDR64:$base, s20imm64:$disp, ADDR64:$index);
}
def laaddr : Operand<i64>,
ComplexPattern<i64, 3, "SelectLAAddr", [add, sub, or, frameindex], []> {
let PrintMethod = "printRRIAddrOperand";
let MIOperandInfo = (ops ADDR64:$base, s20imm64:$disp, ADDR64:$index);
}
include "SystemZOperands.td"
//===----------------------------------------------------------------------===//
// Instruction list..
@ -602,38 +386,36 @@ def AND64rr : Pseudo<(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
// FIXME: Provide proper encoding!
// FIXME: Compute masked bits properly!
/*
def AND32rill16 : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
"nill\t{$dst, $src2}",
[(set GR32:$dst, (and GR32:$src1, i32ll16:$src2))]>;
[(set GR32:$dst, (and GR32:$src1, i32ll16c:$src2))]>;
def AND64rill16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
"nill\t{$dst, $src2}",
[(set GR64:$dst, (and GR64:$src1, i64ll16:$src2))]>;
[(set GR64:$dst, (and GR64:$src1, i64ll16c:$src2))]>;
def AND32rilh16 : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
"nilh\t{$dst, $src2}",
[(set GR32:$dst, (and GR32:$src1, i32lh16:$src2))]>;
[(set GR32:$dst, (and GR32:$src1, i32lh16c:$src2))]>;
def AND64rilh16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
"nilh\t{$dst, $src2}",
[(set GR64:$dst, (and GR64:$src1, i64lh16:$src2))]>;
[(set GR64:$dst, (and GR64:$src1, i64lh16c:$src2))]>;
def AND64rihl16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
"nihl\t{$dst, $src2}",
[(set GR64:$dst, (and GR64:$src1, i64hl16:$src2))]>;
[(set GR64:$dst, (and GR64:$src1, i64hl16c:$src2))]>;
def AND64rihh16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
"nihh\t{$dst, $src2}",
[(set GR64:$dst, (and GR64:$src1, i64hh16:$src2))]>;
*/
[(set GR64:$dst, (and GR64:$src1, i64hh16c:$src2))]>;
def AND32ri : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
"nilf\t{$dst, $src2}",
[(set GR32:$dst, (and GR32:$src1, imm:$src2))]>;
/*def AND64rilo32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
def AND64rilo32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
"nilf\t{$dst, $src2}",
[(set GR64:$dst, (and GR64:$src1, i64lo32:$src2))]>;
[(set GR64:$dst, (and GR64:$src1, i64lo32c:$src2))]>;
def AND64rihi32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
"nihf\t{$dst, $src2}",
[(set GR64:$dst, (and GR64:$src1, i64hi32:$src2))]>;
*/
[(set GR64:$dst, (and GR64:$src1, i64hi32c:$src2))]>;
let isCommutable = 1 in { // X = OR Y, Z == X = OR Z, Y
// FIXME: Provide proper encoding!
@ -645,12 +427,12 @@ def OR64rr : Pseudo<(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
[(set GR64:$dst, (or GR64:$src1, GR64:$src2))]>;
}
def OR32ri16 : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i16imm:$src2),
def OR32ri16 : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
"oill\t{$dst, $src2}",
[(set GR32:$dst, (or GR32:$src1, i64ll16:$src2))]>;
def OR32ri16h : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i16imm:$src2),
[(set GR32:$dst, (or GR32:$src1, i32ll16:$src2))]>;
def OR32ri16h : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
"oilh\t{$dst, $src2}",
[(set GR32:$dst, (or GR32:$src1, i64lh16:$src2))]>;
[(set GR32:$dst, (or GR32:$src1, i32lh16:$src2))]>;
def OR32ri : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
"oilf\t{$dst, $src2}",
[(set GR32:$dst, (or GR32:$src1, imm:$src2))]>;
@ -698,14 +480,6 @@ def XOR32ri : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
"xilf\t{$dst, $src2}",
[(set GR32:$dst, (xor GR32:$src1, imm:$src2))]>;
// FIXME: these 2 instructions seem to require extimm facility
def XOR64rilo32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
"xilf\t{$dst, $src2}",
[(set GR64:$dst, (xor GR64:$src1, i64lo32:$src2))]>;
def XOR64rihi32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
"xihf\t{$dst, $src2}",
[(set GR64:$dst, (xor GR64:$src1, i64hi32:$src2))]>;
} // Defs = [PSW]
let isCommutable = 1 in { // X = MUL Y, Z == X = MUL Z, Y

View File

@ -0,0 +1,274 @@
//=====- SystemZOperands.td - SystemZ Operands defs ---------*- tblgen-*-=====//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the various SystemZ instruction operands.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Instruction Pattern Stuff.
//===----------------------------------------------------------------------===//
// SystemZ specific condition code. These correspond to CondCode in
// SystemZ.h. They must be kept in synch.
def SYSTEMZ_COND_E : PatLeaf<(i8 0)>;
def SYSTEMZ_COND_NE : PatLeaf<(i8 1)>;
def SYSTEMZ_COND_H : PatLeaf<(i8 2)>;
def SYSTEMZ_COND_L : PatLeaf<(i8 3)>;
def SYSTEMZ_COND_HE : PatLeaf<(i8 4)>;
def SYSTEMZ_COND_LE : PatLeaf<(i8 5)>;
def LL16 : SDNodeXForm<imm, [{
// Transformation function: return low 16 bits.
return getI16Imm(N->getZExtValue() & 0x000000000000FFFFULL);
}]>;
def LH16 : SDNodeXForm<imm, [{
// Transformation function: return bits 16-31.
return getI16Imm((N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16);
}]>;
def HL16 : SDNodeXForm<imm, [{
// Transformation function: return bits 32-47.
return getI16Imm((N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32);
}]>;
def HH16 : SDNodeXForm<imm, [{
// Transformation function: return bits 48-63.
return getI16Imm((N->getZExtValue() & 0xFFFF000000000000ULL) >> 48);
}]>;
def LO32 : SDNodeXForm<imm, [{
// Transformation function: return low 32 bits.
return getI32Imm(N->getZExtValue() & 0x00000000FFFFFFFFULL);
}]>;
def HI32 : SDNodeXForm<imm, [{
// Transformation function: return bits 32-63.
return getI32Imm(N->getZExtValue() >> 32);
}]>;
def i32ll16 : PatLeaf<(i32 imm), [{
// i32ll16 predicate - true if the 32-bit immediate has only rightmost 16
// bits set.
return ((N->getZExtValue() & 0x000000000000FFFFULL) == N->getZExtValue());
}], LL16>;
def i32lh16 : PatLeaf<(i32 imm), [{
// i32lh16 predicate - true if the 32-bit immediate has only bits 16-31 set.
return ((N->getZExtValue() & 0x00000000FFFF0000ULL) == N->getZExtValue());
}], LH16>;
def i32ll16c : PatLeaf<(i32 imm), [{
// i32ll16c predicate - true if the 32-bit immediate has all bits 16-31 set.
return ((N->getZExtValue() | 0x00000000FFFF0000ULL) == N->getZExtValue());
}], LL16>;
def i32lh16c : PatLeaf<(i32 imm), [{
// i32lh16c predicate - true if the 32-bit immediate has all rightmost 16
// bits set.
return ((N->getZExtValue() | 0x000000000000FFFFULL) == N->getZExtValue());
}], LH16>;
def i64ll16 : PatLeaf<(i64 imm), [{
// i64ll16 predicate - true if the 64-bit immediate has only rightmost 16
// bits set.
return ((N->getZExtValue() & 0x000000000000FFFFULL) == N->getZExtValue());
}], LL16>;
def i64lh16 : PatLeaf<(i64 imm), [{
// i64lh16 predicate - true if the 64-bit immediate has only bits 16-31 set.
return ((N->getZExtValue() & 0x00000000FFFF0000ULL) == N->getZExtValue());
}], LH16>;
def i64hl16 : PatLeaf<(i64 imm), [{
// i64hl16 predicate - true if the 64-bit immediate has only bits 32-47 set.
return ((N->getZExtValue() & 0x0000FFFF00000000ULL) == N->getZExtValue());
}], HL16>;
def i64hh16 : PatLeaf<(i64 imm), [{
// i64hh16 predicate - true if the 64-bit immediate has only bits 48-63 set.
return ((N->getZExtValue() & 0xFFFF000000000000ULL) == N->getZExtValue());
}], HH16>;
def i64ll16c : PatLeaf<(i64 imm), [{
// i64ll16c predicate - true if the 64-bit immediate has only rightmost 16
// bits set.
return ((N->getZExtValue() | 0xFFFFFFFFFFFF0000ULL) == N->getZExtValue());
}], LL16>;
def i64lh16c : PatLeaf<(i64 imm), [{
// i64lh16c predicate - true if the 64-bit immediate has only bits 16-31 set.
return ((N->getZExtValue() | 0xFFFFFFFF0000FFFFULL) == N->getZExtValue());
}], LH16>;
def i64hl16c : PatLeaf<(i64 imm), [{
// i64hl16c predicate - true if the 64-bit immediate has only bits 32-47 set.
return ((N->getZExtValue() | 0xFFFF0000FFFFFFFFULL) == N->getZExtValue());
}], HL16>;
def i64hh16c : PatLeaf<(i64 imm), [{
// i64hh16c predicate - true if the 64-bit immediate has only bits 48-63 set.
return ((N->getZExtValue() | 0x0000FFFFFFFFFFFFULL) == N->getZExtValue());
}], HH16>;
def immSExt16 : PatLeaf<(imm), [{
// immSExt16 predicate - true if the immediate fits in a 16-bit sign extended
// field.
if (N->getValueType(0) == MVT::i64) {
uint64_t val = N->getZExtValue();
return ((int64_t)val == (int16_t)val);
} else if (N->getValueType(0) == MVT::i32) {
uint32_t val = N->getZExtValue();
return ((int32_t)val == (int16_t)val);
}
return false;
}]>;
def immSExt32 : PatLeaf<(i64 imm), [{
// immSExt32 predicate - true if the immediate fits in a 32-bit sign extended
// field.
uint64_t val = N->getZExtValue();
return ((int64_t)val == (int32_t)val);
}]>;
def i64lo32 : PatLeaf<(i64 imm), [{
// i64lo32 predicate - true if the 64-bit immediate has only rightmost 32
// bits set.
return ((N->getZExtValue() & 0x00000000FFFFFFFFULL) == N->getZExtValue());
}], LO32>;
def i64hi32 : PatLeaf<(i64 imm), [{
// i64hi32 predicate - true if the 64-bit immediate has only bits 32-63 set.
return ((N->getZExtValue() & 0xFFFFFFFF00000000ULL) == N->getZExtValue());
}], HI32>;
def i64lo32c : PatLeaf<(i64 imm), [{
// i64lo32 predicate - true if the 64-bit immediate has only rightmost 32
// bits set.
return ((N->getZExtValue() | 0xFFFFFFFF00000000ULL) == N->getZExtValue());
}], LO32>;
def i64hi32c : PatLeaf<(i64 imm), [{
// i64hi32 predicate - true if the 64-bit immediate has only bits 32-63 set.
return ((N->getZExtValue() | 0x00000000FFFFFFFFULL) == N->getZExtValue());
}], HI32>;
def i32immSExt8 : PatLeaf<(i32 imm), [{
// i32immSExt8 predicate - True if the 32-bit immediate fits in a 8-bit
// sign extended field.
return (int32_t)N->getZExtValue() == (int8_t)N->getZExtValue();
}]>;
def i32immSExt16 : PatLeaf<(i32 imm), [{
// i32immSExt16 predicate - True if the 32-bit immediate fits in a 16-bit
// sign extended field.
return (int32_t)N->getZExtValue() == (int16_t)N->getZExtValue();
}]>;
def i64immSExt32 : PatLeaf<(i64 imm), [{
// i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
// sign extended field.
return (int64_t)N->getZExtValue() == (int32_t)N->getZExtValue();
}]>;
def i64immZExt32 : PatLeaf<(i64 imm), [{
// i64immZExt32 predicate - True if the 64-bit immediate fits in a 32-bit
// zero extended field.
return (uint64_t)N->getZExtValue() == (uint32_t)N->getZExtValue();
}]>;
// extloads
def extloadi32i8 : PatFrag<(ops node:$ptr), (i32 (extloadi8 node:$ptr))>;
def extloadi32i16 : PatFrag<(ops node:$ptr), (i32 (extloadi16 node:$ptr))>;
def extloadi64i8 : PatFrag<(ops node:$ptr), (i64 (extloadi8 node:$ptr))>;
def extloadi64i16 : PatFrag<(ops node:$ptr), (i64 (extloadi16 node:$ptr))>;
def extloadi64i32 : PatFrag<(ops node:$ptr), (i64 (extloadi32 node:$ptr))>;
def sextloadi32i8 : PatFrag<(ops node:$ptr), (i32 (sextloadi8 node:$ptr))>;
def sextloadi32i16 : PatFrag<(ops node:$ptr), (i32 (sextloadi16 node:$ptr))>;
def sextloadi64i8 : PatFrag<(ops node:$ptr), (i64 (sextloadi8 node:$ptr))>;
def sextloadi64i16 : PatFrag<(ops node:$ptr), (i64 (sextloadi16 node:$ptr))>;
def sextloadi64i32 : PatFrag<(ops node:$ptr), (i64 (sextloadi32 node:$ptr))>;
def zextloadi32i8 : PatFrag<(ops node:$ptr), (i32 (zextloadi8 node:$ptr))>;
def zextloadi32i16 : PatFrag<(ops node:$ptr), (i32 (zextloadi16 node:$ptr))>;
def zextloadi64i8 : PatFrag<(ops node:$ptr), (i64 (zextloadi8 node:$ptr))>;
def zextloadi64i16 : PatFrag<(ops node:$ptr), (i64 (zextloadi16 node:$ptr))>;
def zextloadi64i32 : PatFrag<(ops node:$ptr), (i64 (zextloadi32 node:$ptr))>;
// A couple of more descriptive operand definitions.
// 32-bits but only 8 bits are significant.
def i32i8imm : Operand<i32>;
// 32-bits but only 16 bits are significant.
def i32i16imm : Operand<i32>;
// 64-bits but only 32 bits are significant.
def i64i32imm : Operand<i64>;
// Branch targets have OtherVT type.
def brtarget : Operand<OtherVT>;
// Unigned i12
def u12imm : Operand<i32> {
let PrintMethod = "printU16ImmOperand";
}
// Signed i16
def s16imm : Operand<i32> {
let PrintMethod = "printS16ImmOperand";
}
def s16imm64 : Operand<i64> {
let PrintMethod = "printS16ImmOperand";
}
// Signed i20
def s20imm : Operand<i32> {
let PrintMethod = "printS20ImmOperand";
}
def s20imm64 : Operand<i64> {
let PrintMethod = "printS20ImmOperand";
}
// Signed i32
def s32imm : Operand<i32> {
let PrintMethod = "printS32ImmOperand";
}
def s32imm64 : Operand<i64> {
let PrintMethod = "printS32ImmOperand";
}
//===----------------------------------------------------------------------===//
// SystemZ Operand Definitions.
//===----------------------------------------------------------------------===//
// Address operands
// riaddr := reg + imm
def riaddr32 : Operand<i32>,
ComplexPattern<i32, 2, "SelectAddrRI32", []> {
let PrintMethod = "printRIAddrOperand";
let MIOperandInfo = (ops ADDR32:$base, u12imm:$disp);
}
def riaddr : Operand<i64>,
ComplexPattern<i64, 2, "SelectAddrRI", []> {
let PrintMethod = "printRIAddrOperand";
let MIOperandInfo = (ops ADDR64:$base, s20imm64:$disp);
}
//===----------------------------------------------------------------------===//
// rriaddr := reg + reg + imm
def rriaddr : Operand<i64>,
ComplexPattern<i64, 3, "SelectAddrRRI", [], []> {
let PrintMethod = "printRRIAddrOperand";
let MIOperandInfo = (ops ADDR64:$base, s20imm64:$disp, ADDR64:$index);
}
def laaddr : Operand<i64>,
ComplexPattern<i64, 3, "SelectLAAddr", [add, sub, or, frameindex], []> {
let PrintMethod = "printRRIAddrOperand";
let MIOperandInfo = (ops ADDR64:$base, s20imm64:$disp, ADDR64:$index);
}

View File

@ -1,8 +1,7 @@
; XFAIL: *
; RUN: llvm-as < %s | llc -march=systemz | grep nill | count 1
; RUN: llvm-as < %s | llc -march=systemz | grep nilh | count 1
; RUN: llvm-as < %s | llc -march=systemz | grep nihl | count 1
; RUN: llvm-as < %s | llc -march=systemz | grep nihh | count 1
; RUN: llvm-as < %s | llc -march=systemz | grep ngr | count 4
; RUN: llvm-as < %s | llc -march=systemz | grep llilh | count 1
; RUN: llvm-as < %s | llc -march=systemz | grep llihl | count 1
; RUN: llvm-as < %s | llc -march=systemz | grep llihh | count 1
define i64 @foo1(i64 %a, i64 %b) {
entry:

View File

@ -1,6 +1,4 @@
; XFAIL: *
; RUN: llvm-as < %s | llc -march=systemz | grep nill | count 3
; RUN: llvm-as < %s | llc -march=systemz | grep nilh | count 3
; RUN: llvm-as < %s | llc -march=systemz | grep ngr | count 6
define i32 @foo1(i32 %a, i32 %b) {
entry:

View File

@ -1,4 +1,5 @@
; RUN: llvm-as < %s | llc -march=systemz | grep ngr | count 4
; RUN: llvm-as < %s | llc -march=systemz | grep ngr | count 3
; RUN: llvm-as < %s | llc -march=systemz | grep nihf | count 1
define i32 @foo(i32 %a, i32 %b) {
entry:

View File

@ -1,5 +1,5 @@
; RUN: llvm-as < %s | llc -march=systemz | grep lgr | count 1
; RUN: llvm-as < %s | llc -march=systemz | grep llilf | count 1
; RUN: llvm-as < %s | llc -march=systemz | grep lgr | count 2
; RUN: llvm-as < %s | llc -march=systemz | grep nihf | count 1
; RUN: llvm-as < %s | llc -march=systemz | grep lgfr | count 1

View File

@ -1,5 +1,5 @@
; RUN: llvm-as < %s | llc -march=systemz | grep ogr | count 3
; RUN: llvm-as < %s | llc -march=systemz | grep llilf | count 1
; RUN: llvm-as < %s | llc -march=systemz | grep nihf | count 1
; RUN: llvm-as < %s | llc -march=systemz | grep lgfr | count 1

View File

@ -1,5 +1,5 @@
; RUN: llvm-as < %s | llc -march=systemz | grep xgr | count 3
; RUN: llvm-as < %s | llc -march=systemz | grep llilf | count 1
; RUN: llvm-as < %s | llc -march=systemz | grep nihf | count 1
; RUN: llvm-as < %s | llc -march=systemz | grep lgfr | count 1

View File

@ -1,4 +1,5 @@
; RUN: llvm-as < %s | llc -march=systemz | grep nilf | count 2
; RUN: llvm-as < %s | llc -march=systemz | grep nilf | count 1
; RUN: llvm-as < %s | llc -march=systemz | grep nill | count 1
define i32 @gnu_dev_major(i64 %__dev) nounwind readnone {
entry: