[LV] Untangle the concepts of uniform and scalar

This patch refactors the logic in collectLoopUniforms and
collectValuesToIgnore, untangling the concepts of "uniform" and "scalar". It
adds isScalarAfterVectorization along side isUniformAfterVectorization to
distinguish the two. Known scalar values include those that are uniform,
getelementptr instructions that won't be vectorized, and induction variables
and induction variable update instructions whose users are all known to be
scalar.

This patch includes the following functional changes:

- In collectLoopUniforms, we mark uniform the pointer operands of interleaved
  accesses. Although non-consecutive, these pointers are treated like
  consecutive pointers during vectorization.

- In collectValuesToIgnore, we insert a value into VecValuesToIgnore if it
  isScalarAfterVectorization rather than isUniformAfterVectorization. This
  differs from the previous functionaly in that we now add getelementptr
  instructions that will not be vectorized into VecValuesToIgnore.

This patch also removes the ValuesNotWidened set used for induction variable
scalarization since, after the above changes, it is now equivalent to
isScalarAfterVectorization.

Differential Revision: https://reviews.llvm.org/D22867

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@277460 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Matthew Simpson 2016-08-02 14:29:41 +00:00
parent 22973d396c
commit 90b7f569d8
2 changed files with 152 additions and 63 deletions

View File

@ -315,10 +315,8 @@ public:
// that the cost model has chosen to ignore because they will not be
// vectorized.
void vectorize(LoopVectorizationLegality *L,
const MapVector<Instruction *, uint64_t> &MinimumBitWidths,
SmallPtrSetImpl<const Value *> &VecValuesToIgnore) {
const MapVector<Instruction *, uint64_t> &MinimumBitWidths) {
MinBWs = &MinimumBitWidths;
ValuesNotWidened = &VecValuesToIgnore;
Legal = L;
// Create a new empty loop. Unlink the old loop and connect the new one.
createEmptyLoop();
@ -613,10 +611,6 @@ protected:
/// to this type.
const MapVector<Instruction *, uint64_t> *MinBWs;
/// A set of values that should not be widened. This is taken from
/// VecValuesToIgnore in the cost model.
SmallPtrSetImpl<const Value *> *ValuesNotWidened;
LoopVectorizationLegality *Legal;
// Record whether runtime checks are added.
@ -1435,9 +1429,12 @@ public:
/// Returns true if the value V is uniform within the loop.
bool isUniform(Value *V);
/// Returns true if this instruction will remain scalar after vectorization.
/// Returns true if \p I is known to be uniform after vectorization.
bool isUniformAfterVectorization(Instruction *I) { return Uniforms.count(I); }
/// Returns true if \p I is known to be scalar after vectorization.
bool isScalarAfterVectorization(Instruction *I) { return Scalars.count(I); }
/// Returns the information that we collected about runtime memory check.
const RuntimePointerChecking *getRuntimePointerChecking() const {
return LAI->getRuntimePointerChecking();
@ -1525,9 +1522,24 @@ private:
/// transformation.
bool canVectorizeWithIfConvert();
/// Collect the variables that need to stay uniform after vectorization.
/// Collect the instructions that are uniform after vectorization. An
/// instruction is uniform if we represent it with a single scalar value in
/// the vectorized loop corresponding to each vector iteration. Examples of
/// uniform instructions include pointer operands of consecutive or
/// interleaved memory accesses. Note that although uniformity implies an
/// instruction will be scalar, the reverse is not true. In general, a
/// scalarized instruction will be represented by VF scalar values in the
/// vectorized loop, each corresponding to an iteration of the original
/// scalar loop.
void collectLoopUniforms();
/// Collect the instructions that are scalar after vectorization. An
/// instruction is scalar if it is known to be uniform or will be scalarized
/// during vectorization. Non-uniform scalarized instructions will be
/// represented by VF values in the vectorized loop, each corresponding to an
/// iteration of the original scalar loop.
void collectLoopScalars();
/// Return true if all of the instructions in the block can be speculatively
/// executed. \p SafePtrs is a list of addresses that are known to be legal
/// and we know that we can read from them without segfault.
@ -1604,10 +1616,13 @@ private:
/// Allowed outside users. This holds the induction and reduction
/// vars which can be accessed from outside the loop.
SmallPtrSet<Value *, 4> AllowedExit;
/// This set holds the variables which are known to be uniform after
/// vectorization.
/// Holds the instructions known to be uniform after vectorization.
SmallPtrSet<Instruction *, 4> Uniforms;
/// Holds the instructions known to be scalar after vectorization.
SmallPtrSet<Instruction *, 4> Scalars;
/// Can we assume the absence of NaNs.
bool HasFunNoNaNAttr;
@ -1979,7 +1994,7 @@ void InnerLoopVectorizer::widenIntInduction(PHINode *IV, VectorParts &Entry,
// create the phi node, we will splat the scalar induction variable in each
// loop iteration.
if (VF > 1 && IV->getType() == Induction->getType() && Step &&
!ValuesNotWidened->count(IV))
!Legal->isScalarAfterVectorization(IV))
return createVectorIntInductionPHI(ID, Entry, TruncType);
// The scalar value to broadcast. This will be derived from the canonical
@ -2020,7 +2035,7 @@ void InnerLoopVectorizer::widenIntInduction(PHINode *IV, VectorParts &Entry,
// addition of the scalar steps will not increase the number of instructions
// in the loop in the common case prior to InstCombine. We will be trading
// one vector extract for each scalar step.
if (VF > 1 && ValuesNotWidened->count(IV)) {
if (VF > 1 && Legal->isScalarAfterVectorization(IV)) {
auto *EntryVal = Trunc ? cast<Value>(Trunc) : IV;
buildScalarSteps(ScalarIV, Step, EntryVal);
}
@ -4557,9 +4572,6 @@ bool LoopVectorizationLegality::canVectorize() {
return false;
}
// Collect all of the variables that remain uniform after vectorization.
collectLoopUniforms();
DEBUG(dbgs() << "LV: We can vectorize this loop"
<< (LAI->getRuntimePointerChecking()->Need
? " (with a runtime bound check)"
@ -4576,6 +4588,12 @@ bool LoopVectorizationLegality::canVectorize() {
if (UseInterleaved)
InterleaveInfo.analyzeInterleaving(*getSymbolicStrides());
// Collect all instructions that are known to be uniform after vectorization.
collectLoopUniforms();
// Collect all instructions that are known to be scalar after vectorization.
collectLoopScalars();
unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
@ -4841,6 +4859,59 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
return true;
}
void LoopVectorizationLegality::collectLoopScalars() {
// If an instruction is uniform after vectorization, it will remain scalar.
Scalars.insert(Uniforms.begin(), Uniforms.end());
// Collect the getelementptr instructions that will not be vectorized. A
// getelementptr instruction is only vectorized if it is used for a legal
// gather or scatter operation.
for (auto *BB : TheLoop->blocks())
for (auto &I : *BB) {
if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
Scalars.insert(GEP);
continue;
}
auto *Ptr = getPointerOperand(&I);
if (!Ptr)
continue;
auto *GEP = getGEPInstruction(Ptr);
if (GEP && isLegalGatherOrScatter(&I))
Scalars.erase(GEP);
}
// An induction variable will remain scalar if all users of the induction
// variable and induction variable update remain scalar.
auto *Latch = TheLoop->getLoopLatch();
for (auto &Induction : *getInductionVars()) {
auto *Ind = Induction.first;
auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
// Determine if all users of the induction variable are scalar after
// vectorization.
auto ScalarInd = all_of(Ind->users(), [&](User *U) -> bool {
auto *I = cast<Instruction>(U);
return I == IndUpdate || !TheLoop->contains(I) || Scalars.count(I);
});
if (!ScalarInd)
continue;
// Determine if all users of the induction variable update instruction are
// scalar after vectorization.
auto ScalarIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool {
auto *I = cast<Instruction>(U);
return I == Ind || !TheLoop->contains(I) || Scalars.count(I);
});
if (!ScalarIndUpdate)
continue;
// The induction variable and its update instruction will remain scalar.
Scalars.insert(Ind);
Scalars.insert(IndUpdate);
}
}
void LoopVectorizationLegality::collectLoopUniforms() {
// We now know that the loop is vectorizable!
// Collect variables that will remain uniform after vectorization.
@ -4861,16 +4932,22 @@ void LoopVectorizationLegality::collectLoopUniforms() {
DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n");
}
// Also add all consecutive pointer values; these values will be uniform
// after vectorization (and subsequent cleanup).
for (auto *BB : TheLoop->blocks()) {
// Add all consecutive pointer values; these values will be uniform after
// vectorization (and subsequent cleanup). Although non-consecutive, we also
// add the pointer operands of interleaved accesses since they are treated
// like consecutive pointers during vectorization.
for (auto *BB : TheLoop->blocks())
for (auto &I : *BB) {
if (I.getType()->isPointerTy() && isConsecutivePtr(&I)) {
Worklist.insert(&I);
DEBUG(dbgs() << "LV: Found uniform instruction: " << I << "\n");
}
Instruction *Ptr = nullptr;
if (I.getType()->isPointerTy() && isConsecutivePtr(&I))
Ptr = &I;
else if (isAccessInterleaved(&I))
Ptr = cast<Instruction>(getPointerOperand(&I));
else
continue;
Worklist.insert(Ptr);
DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ptr << "\n");
}
}
// Expand Worklist in topological order: whenever a new instruction
// is added , its users should be either already inside Worklist, or
@ -6258,44 +6335,11 @@ void LoopVectorizationCostModel::collectValuesToIgnore() {
VecValuesToIgnore.insert(Casts.begin(), Casts.end());
}
// Insert uniform instruction into VecValuesToIgnore.
// Collect non-gather/scatter and non-consecutive ptr in NonConsecutivePtr.
SmallPtrSet<Instruction *, 8> NonConsecutivePtr;
for (auto *BB : TheLoop->getBlocks()) {
for (auto &I : *BB) {
if (Legal->isUniformAfterVectorization(&I))
// Insert values known to be scalar into VecValuesToIgnore.
for (auto *BB : TheLoop->getBlocks())
for (auto &I : *BB)
if (Legal->isScalarAfterVectorization(&I))
VecValuesToIgnore.insert(&I);
Instruction *PI = dyn_cast_or_null<Instruction>(getPointerOperand(&I));
if (PI && !Legal->isConsecutivePtr(PI) &&
!Legal->isLegalGatherOrScatter(&I))
NonConsecutivePtr.insert(PI);
}
}
// Ignore induction phis that are either used in uniform instructions or
// NonConsecutivePtr.
for (auto &Induction : *Legal->getInductionVars()) {
auto *PN = Induction.first;
auto *UpdateV = PN->getIncomingValueForBlock(TheLoop->getLoopLatch());
if (std::all_of(PN->user_begin(), PN->user_end(),
[&](User *U) -> bool {
Instruction *UI = dyn_cast<Instruction>(U);
return U == UpdateV || !TheLoop->contains(UI) ||
Legal->isUniformAfterVectorization(UI) ||
NonConsecutivePtr.count(UI);
}) &&
std::all_of(UpdateV->user_begin(), UpdateV->user_end(),
[&](User *U) -> bool {
Instruction *UI = dyn_cast<Instruction>(U);
return U == PN || !TheLoop->contains(UI) ||
Legal->isUniformAfterVectorization(UI) ||
NonConsecutivePtr.count(UI);
})) {
VecValuesToIgnore.insert(PN);
VecValuesToIgnore.insert(UpdateV);
}
}
}
void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr,
@ -6645,7 +6689,7 @@ bool LoopVectorizePass::processLoop(Loop *L) {
// If we decided that it is not legal to vectorize the loop, then
// interleave it.
InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC);
Unroller.vectorize(&LVL, CM.MinBWs, CM.VecValuesToIgnore);
Unroller.vectorize(&LVL, CM.MinBWs);
ORE->emitOptimizationRemark(LV_NAME, L,
Twine("interleaved loop (interleaved count: ") +
@ -6653,7 +6697,7 @@ bool LoopVectorizePass::processLoop(Loop *L) {
} else {
// If we decided that it is *legal* to vectorize the loop, then do it.
InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC);
LB.vectorize(&LVL, CM.MinBWs, CM.VecValuesToIgnore);
LB.vectorize(&LVL, CM.MinBWs);
++LoopsVectorized;
// Add metadata to disable runtime unrolling a scalar loop when there are

View File

@ -248,6 +248,51 @@ for.end:
ret void
}
; Make sure we scalarize the step vectors used for the pointer arithmetic. We
; can't easily simplify vectorized step vectors. (Interleaved accesses.)
;
; for (int i = 0; i < n; ++i)
; p[i].f = a[i * 4]
;
; INTERLEAVE-LABEL: @scalarize_induction_variable_04(
; INTERLEAVE: vector.body:
; INTERLEAVE: %[[i0:.+]] = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
; INTERLEAVE: %[[i1:.+]] = or i64 %[[i0]], 1
; INTERLEAVE: %[[i2:.+]] = or i64 %[[i0]], 2
; INTERLEAVE: %[[i3:.+]] = or i64 %[[i0]], 3
; INTERLEAVE: %[[i4:.+]] = or i64 %[[i0]], 4
; INTERLEAVE: %[[i5:.+]] = or i64 %[[i0]], 5
; INTERLEAVE: %[[i6:.+]] = or i64 %[[i0]], 6
; INTERLEAVE: %[[i7:.+]] = or i64 %[[i0]], 7
; INTERLEAVE: getelementptr inbounds %pair, %pair* %p, i64 %[[i0]], i32 1
; INTERLEAVE: getelementptr inbounds %pair, %pair* %p, i64 %[[i1]], i32 1
; INTERLEAVE: getelementptr inbounds %pair, %pair* %p, i64 %[[i2]], i32 1
; INTERLEAVE: getelementptr inbounds %pair, %pair* %p, i64 %[[i3]], i32 1
; INTERLEAVE: getelementptr inbounds %pair, %pair* %p, i64 %[[i4]], i32 1
; INTERLEAVE: getelementptr inbounds %pair, %pair* %p, i64 %[[i5]], i32 1
; INTERLEAVE: getelementptr inbounds %pair, %pair* %p, i64 %[[i6]], i32 1
; INTERLEAVE: getelementptr inbounds %pair, %pair* %p, i64 %[[i7]], i32 1
define void @scalarize_induction_variable_04(i32* %a, %pair* %p, i32 %n) {
entry:
br label %for.body
for.body:
%i = phi i64 [ %i.next, %for.body ], [ 0, %entry]
%0 = shl nsw i64 %i, 2
%1 = getelementptr inbounds i32, i32* %a, i64 %0
%2 = load i32, i32* %1, align 1
%3 = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 1
store i32 %2, i32* %3, align 1
%i.next = add nuw nsw i64 %i, 1
%4 = trunc i64 %i.next to i32
%cond = icmp eq i32 %4, %n
br i1 %cond, label %for.end, label %for.body
for.end:
ret void
}
; Make sure that the loop exit count computation does not overflow for i8 and
; i16. The exit count of these loops is i8/i16 max + 1. If we don't cast the
; induction variable to a bigger type the exit count computation will overflow