Add support for sub-byte aligned writes to lib/Support/Endian.h

Summary:
As per Duncan's review for D12536, I extracted the sub-byte bit aligned
reading and writing code into lib/Support, and generalized it. Added calls from
BackpatchWord. Also added unittests.

Reviewers: dexonsmith

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D13189

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@248897 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Teresa Johnson 2015-09-30 13:20:37 +00:00
parent ae7fa1c52b
commit 9260ee0d88
3 changed files with 129 additions and 11 deletions

View File

@ -102,18 +102,13 @@ public:
/// Backpatch a 32-bit word in the output at the given bit offset /// Backpatch a 32-bit word in the output at the given bit offset
/// with the specified value. /// with the specified value.
void BackpatchWord(uint64_t BitNo, unsigned NewWord) { void BackpatchWord(uint64_t BitNo, unsigned NewWord) {
using namespace llvm::support;
unsigned ByteNo = BitNo / 8; unsigned ByteNo = BitNo / 8;
if ((BitNo & 7) == 0) { assert((!endian::readAtBitAlignment<uint32_t, little, unaligned>(
// Already 8-bit aligned &Out[ByteNo], BitNo & 7)) &&
support::endian::write32le(&Out[ByteNo], NewWord); "Expected to be patching over 0-value placeholders");
} else { endian::writeAtBitAlignment<uint32_t, little, unaligned>(
uint64_t CurDWord = support::endian::read64le(&Out[ByteNo]); &Out[ByteNo], NewWord, BitNo & 7);
unsigned StartBit = BitNo & 7;
// Currently expect to backpatch 0-value placeholders.
assert(((CurDWord >> StartBit) & 0xffffffff) == 0);
CurDWord |= NewWord << StartBit;
support::endian::write64le(&Out[ByteNo], CurDWord);
}
} }
void Emit(uint32_t Val, unsigned NumBits) { void Emit(uint32_t Val, unsigned NumBits) {

View File

@ -77,6 +77,81 @@ inline void write(void *memory, value_type value) {
&value, &value,
sizeof(value_type)); sizeof(value_type));
} }
/// Read a value of a particular endianness from memory, for a location
/// that starts at the given bit offset within the first byte.
template <typename value_type, endianness endian, std::size_t alignment>
inline value_type readAtBitAlignment(const void *memory, uint64_t startBit) {
assert(startBit < 8);
if (startBit == 0)
return read<value_type, endian, alignment>(memory);
else {
// Read two values and compose the result from them.
value_type val[2];
memcpy(&val[0],
LLVM_ASSUME_ALIGNED(
memory, (detail::PickAlignment<value_type, alignment>::value)),
sizeof(value_type) * 2);
val[0] = byte_swap<value_type, endian>(val[0]);
val[1] = byte_swap<value_type, endian>(val[1]);
// Shift bits from the lower value into place.
unsigned lowerVal = val[0] >> startBit;
// Mask off upper bits after right shift in case of signed type.
unsigned numBitsFirstVal = (sizeof(value_type) * 8) - startBit;
lowerVal &= (1 << numBitsFirstVal) - 1;
// Get the bits from the upper value.
unsigned upperVal = val[1] & ((1 << startBit) - 1);
// Shift them in to place.
upperVal <<= numBitsFirstVal;
return lowerVal | upperVal;
}
}
/// Write a value to memory with a particular endianness, for a location
/// that starts at the given bit offset within the first byte.
template <typename value_type, endianness endian, std::size_t alignment>
inline void writeAtBitAlignment(void *memory, value_type value,
uint64_t startBit) {
assert(startBit < 8);
if (startBit == 0)
write<value_type, endian, alignment>(memory, value);
else {
// Read two values and shift the result into them.
value_type val[2];
memcpy(&val[0],
LLVM_ASSUME_ALIGNED(
memory, (detail::PickAlignment<value_type, alignment>::value)),
sizeof(value_type) * 2);
val[0] = byte_swap<value_type, endian>(val[0]);
val[1] = byte_swap<value_type, endian>(val[1]);
// Mask off any existing bits in the upper part of the lower value that
// we want to replace.
val[0] &= (1 << startBit) - 1;
// Now shift in the new bits
val[0] |= value << startBit;
// Mask off any existing bits in the lower part of the upper value that
// we want to replace.
val[1] &= ~((1 << startBit) - 1);
// Next shift the bits that go into the upper value into position.
unsigned numBitsFirstVal = (sizeof(value_type) * 8) - startBit;
unsigned upperVal = value >> numBitsFirstVal;
// Mask off upper bits after right shift in case of signed type.
upperVal &= (1 << startBit) - 1;
val[1] |= upperVal;
// Finally, rewrite values.
val[0] = byte_swap<value_type, endian>(val[0]);
val[1] = byte_swap<value_type, endian>(val[1]);
memcpy(LLVM_ASSUME_ALIGNED(
memory, (detail::PickAlignment<value_type, alignment>::value)),
&val[0], sizeof(value_type) * 2);
}
}
} // end namespace endian } // end namespace endian
namespace detail { namespace detail {

View File

@ -32,6 +32,54 @@ TEST(Endian, Read) {
(endian::read<int32_t, little, unaligned>(littleval + 1))); (endian::read<int32_t, little, unaligned>(littleval + 1)));
} }
TEST(Endian, ReadBitAligned) {
// Simple test to make sure we properly pull out the 0x0 word.
unsigned char littleval[] = {0x3f, 0x00, 0x00, 0x00, 0xc0, 0xff, 0xff, 0xff};
unsigned char bigval[] = {0x00, 0x00, 0x00, 0x3f, 0xff, 0xff, 0xff, 0xc0};
EXPECT_EQ(
(endian::readAtBitAlignment<int, little, unaligned>(&littleval[0], 6)),
0x0);
EXPECT_EQ((endian::readAtBitAlignment<int, big, unaligned>(&bigval[0], 6)),
0x0);
// Test to make sure that signed right shift of 0xf0000000 is masked
// properly.
unsigned char littleval2[] = {0x00, 0x00, 0x00, 0xf0, 0x00, 0x00, 0x00, 0x00};
unsigned char bigval2[] = {0xf0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
EXPECT_EQ(
(endian::readAtBitAlignment<int, little, unaligned>(&littleval2[0], 4)),
0x0f000000);
EXPECT_EQ((endian::readAtBitAlignment<int, big, unaligned>(&bigval2[0], 4)),
0x0f000000);
}
TEST(Endian, WriteBitAligned) {
// This test ensures that signed right shift of 0xffffaa is masked
// properly.
unsigned char bigval[8] = {0x00};
endian::writeAtBitAlignment<int32_t, big, unaligned>(bigval, (int)0xffffaaaa,
4);
EXPECT_EQ(bigval[0], 0xff);
EXPECT_EQ(bigval[1], 0xfa);
EXPECT_EQ(bigval[2], 0xaa);
EXPECT_EQ(bigval[3], 0xa0);
EXPECT_EQ(bigval[4], 0x00);
EXPECT_EQ(bigval[5], 0x00);
EXPECT_EQ(bigval[6], 0x00);
EXPECT_EQ(bigval[7], 0x0f);
unsigned char littleval[8] = {0x00};
endian::writeAtBitAlignment<int32_t, little, unaligned>(littleval,
(int)0xffffaaaa, 4);
EXPECT_EQ(littleval[0], 0xa0);
EXPECT_EQ(littleval[1], 0xaa);
EXPECT_EQ(littleval[2], 0xfa);
EXPECT_EQ(littleval[3], 0xff);
EXPECT_EQ(littleval[4], 0x0f);
EXPECT_EQ(littleval[5], 0x00);
EXPECT_EQ(littleval[6], 0x00);
EXPECT_EQ(littleval[7], 0x00);
}
TEST(Endian, Write) { TEST(Endian, Write) {
unsigned char data[5]; unsigned char data[5];
endian::write<int32_t, big, unaligned>(data, -1362446643); endian::write<int32_t, big, unaligned>(data, -1362446643);