mirror of
https://github.com/RPCSX/llvm.git
synced 2024-11-25 20:59:51 +00:00
An explicit representation of dependence graphs, and a pass that
computes a dependence graph for data dependences on memory locations using interprocedural Mod/Ref information. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@4957 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
138b0cd7da
commit
96b21c1054
250
include/llvm/Analysis/DependenceGraph.h
Normal file
250
include/llvm/Analysis/DependenceGraph.h
Normal file
@ -0,0 +1,250 @@
|
||||
//===- DependenceGraph.h - Dependence graph for a function ------*- C++ -*-===//
|
||||
//
|
||||
// This file provides an explicit representation for the dependence graph
|
||||
// of a function, with one node per instruction and one edge per dependence.
|
||||
// Dependences include both data and control dependences.
|
||||
//
|
||||
// Each dep. graph node (class DepGraphNode) keeps lists of incoming and
|
||||
// outgoing dependence edges.
|
||||
//
|
||||
// Each dep. graph edge (class Dependence) keeps a pointer to one end-point
|
||||
// of the dependence. This saves space and is important because dep. graphs
|
||||
// can grow quickly. It works just fine because the standard idiom is to
|
||||
// start with a known node and enumerate the dependences to or from that node.
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
|
||||
#ifndef LLVM_ANALYSIS_DEPENDENCEGRAPH_H
|
||||
#define LLVM_ANALYSIS_DEPENDENCEGRAPH_H
|
||||
|
||||
|
||||
#include <Support/NonCopyable.h>
|
||||
#include <Support/hash_map>
|
||||
#include <iosfwd>
|
||||
#include <vector>
|
||||
#include <utility>
|
||||
|
||||
class Instruction;
|
||||
class Function;
|
||||
class Dependence;
|
||||
class DepGraphNode;
|
||||
class DependenceGraph;
|
||||
|
||||
|
||||
//----------------------------------------------------------------------------
|
||||
// enum DependenceType: The standard data dependence types.
|
||||
//----------------------------------------------------------------------------
|
||||
|
||||
enum DependenceType {
|
||||
NoDependence = 0x0,
|
||||
TrueDependence = 0x1,
|
||||
AntiDependence = 0x2,
|
||||
OutputDependence = 0x4,
|
||||
ControlDependence = 0x8, // from a terminator to some other instr.
|
||||
IncomingFlag = 0x10 // is this an incoming or outgoing dep?
|
||||
};
|
||||
|
||||
#undef SUPPORTING_LOOP_DEPENDENCES
|
||||
#ifdef SUPPORTING_LOOP_DEPENDENCES
|
||||
typedef int DependenceDistance; // negative means unknown distance
|
||||
typedef short DependenceLevel; // 0 means global level outside loops
|
||||
#endif
|
||||
|
||||
|
||||
//----------------------------------------------------------------------------
|
||||
// class Dependence:
|
||||
//
|
||||
// A representation of a simple (non-loop-related) dependence.
|
||||
//----------------------------------------------------------------------------
|
||||
|
||||
class Dependence {
|
||||
DepGraphNode* toOrFromNode;
|
||||
DependenceType depType:8;
|
||||
|
||||
public:
|
||||
/*ctor*/ Dependence (DepGraphNode* toOrFromN,
|
||||
DependenceType type,
|
||||
bool isIncoming)
|
||||
: toOrFromNode(toOrFromN),
|
||||
depType(type | (isIncoming? IncomingFlag : 0x0)) { }
|
||||
|
||||
/* copy ctor*/ Dependence (const Dependence& D)
|
||||
: toOrFromNode(D.toOrFromNode),
|
||||
depType(D.depType) { }
|
||||
|
||||
bool operator==(const Dependence& D) {
|
||||
return toOrFromNode == D.toOrFromNode && depType == D.depType;
|
||||
}
|
||||
|
||||
/// Get information about the type of dependence.
|
||||
///
|
||||
DependenceType getDepType() {
|
||||
return depType;
|
||||
}
|
||||
|
||||
/// Get source or sink depending on what type of node this is!
|
||||
///
|
||||
DepGraphNode* getSrc() {
|
||||
assert(depType & IncomingFlag); return toOrFromNode;
|
||||
}
|
||||
const DepGraphNode* getSrc() const {
|
||||
assert(depType & IncomingFlag); return toOrFromNode;
|
||||
}
|
||||
|
||||
DepGraphNode* getSink() {
|
||||
assert(! (depType & IncomingFlag)); return toOrFromNode;
|
||||
}
|
||||
const DepGraphNode* getSink() const {
|
||||
assert(! (depType & IncomingFlag)); return toOrFromNode;
|
||||
}
|
||||
|
||||
/// Debugging support methods
|
||||
///
|
||||
void print(std::ostream &O) const;
|
||||
|
||||
// Default constructor: Do not use directly except for graph builder code
|
||||
//
|
||||
/*ctor*/ Dependence() : toOrFromNode(NULL), depType(NoDependence) { }
|
||||
};
|
||||
|
||||
|
||||
#ifdef SUPPORTING_LOOP_DEPENDENCES
|
||||
struct LoopDependence: public Dependence {
|
||||
DependenceDirection dir;
|
||||
DependenceDistance distance;
|
||||
DependenceLevel level;
|
||||
LoopInfo* enclosingLoop;
|
||||
};
|
||||
#endif
|
||||
|
||||
|
||||
//----------------------------------------------------------------------------
|
||||
// class DepGraphNode:
|
||||
//
|
||||
// A representation of a single node in a dependence graph, corresponding
|
||||
// to a single instruction.
|
||||
//----------------------------------------------------------------------------
|
||||
|
||||
class DepGraphNode {
|
||||
Instruction* instr;
|
||||
std::vector<Dependence> inDeps;
|
||||
std::vector<Dependence> outDeps;
|
||||
friend class DependenceGraph;
|
||||
|
||||
typedef std::vector<Dependence>:: iterator iterator;
|
||||
typedef std::vector<Dependence>::const_iterator const_iterator;
|
||||
|
||||
iterator inDepBegin() { return inDeps.begin(); }
|
||||
const_iterator inDepBegin() const { return inDeps.begin(); }
|
||||
iterator inDepEnd() { return inDeps.end(); }
|
||||
const_iterator inDepEnd() const { return inDeps.end(); }
|
||||
|
||||
iterator outDepBegin() { return outDeps.begin(); }
|
||||
const_iterator outDepBegin() const { return outDeps.begin(); }
|
||||
iterator outDepEnd() { return outDeps.end(); }
|
||||
const_iterator outDepEnd() const { return outDeps.end(); }
|
||||
|
||||
public:
|
||||
|
||||
DepGraphNode(Instruction& I) : instr(&I) { }
|
||||
|
||||
Instruction& getInstr() { return *instr; }
|
||||
const Instruction& getInstr() const { return *instr; }
|
||||
|
||||
/// Debugging support methods
|
||||
///
|
||||
void print(std::ostream &O) const;
|
||||
};
|
||||
|
||||
|
||||
//----------------------------------------------------------------------------
|
||||
// class DependenceGraph:
|
||||
//
|
||||
// A representation of a dependence graph for a procedure.
|
||||
// The primary query operation here is to look up a DepGraphNode for
|
||||
// a particular instruction, and then use the in/out dependence iterators
|
||||
// for the node.
|
||||
//----------------------------------------------------------------------------
|
||||
|
||||
class DependenceGraph: public NonCopyable {
|
||||
typedef hash_map<Instruction*, DepGraphNode*> DepNodeMapType;
|
||||
typedef DepNodeMapType:: iterator map_iterator;
|
||||
typedef DepNodeMapType::const_iterator const_map_iterator;
|
||||
|
||||
DepNodeMapType depNodeMap;
|
||||
|
||||
inline DepGraphNode* getNodeInternal(Instruction& inst,
|
||||
bool createIfMissing = false) {
|
||||
map_iterator I = depNodeMap.find(&inst);
|
||||
if (I == depNodeMap.end())
|
||||
return (!createIfMissing)? NULL :
|
||||
depNodeMap.insert(
|
||||
std::make_pair(&inst, new DepGraphNode(inst))).first->second;
|
||||
else
|
||||
return I->second;
|
||||
}
|
||||
|
||||
public:
|
||||
typedef std::vector<Dependence>:: iterator iterator;
|
||||
typedef std::vector<Dependence>::const_iterator const_iterator;
|
||||
|
||||
public:
|
||||
DependenceGraph() { }
|
||||
~DependenceGraph();
|
||||
|
||||
/// Get the graph node for an instruction. There will be one if and
|
||||
/// only if there are any dependences incident on this instruction.
|
||||
/// If there is none, these methods will return NULL.
|
||||
///
|
||||
DepGraphNode* getNode(Instruction& inst, bool createIfMissing = false) {
|
||||
return getNodeInternal(inst, createIfMissing);
|
||||
}
|
||||
const DepGraphNode* getNode(const Instruction& inst) const {
|
||||
return const_cast<DependenceGraph*>(this)
|
||||
->getNodeInternal(const_cast<Instruction&>(inst));
|
||||
}
|
||||
|
||||
iterator inDepBegin ( DepGraphNode& T) { return T.inDeps.begin(); }
|
||||
const_iterator inDepBegin (const DepGraphNode& T) const { return T.inDeps.begin(); }
|
||||
|
||||
iterator inDepEnd ( DepGraphNode& T) { return T.inDeps.end(); }
|
||||
const_iterator inDepEnd (const DepGraphNode& T) const { return T.inDeps.end(); }
|
||||
|
||||
iterator outDepBegin( DepGraphNode& F) { return F.outDeps.begin();}
|
||||
const_iterator outDepBegin(const DepGraphNode& F) const { return F.outDeps.begin();}
|
||||
|
||||
iterator outDepEnd ( DepGraphNode& F) { return F.outDeps.end(); }
|
||||
const_iterator outDepEnd (const DepGraphNode& F) const { return F.outDeps.end(); }
|
||||
|
||||
/// Debugging support methods
|
||||
///
|
||||
void print(const Function& func, std::ostream &O) const;
|
||||
|
||||
public:
|
||||
/// Functions for adding and modifying the dependence graph.
|
||||
/// These should to be used only by dependence analysis implementations.
|
||||
void AddSimpleDependence(Instruction& fromI,
|
||||
Instruction& toI,
|
||||
DependenceType depType) {
|
||||
DepGraphNode* fromNode = getNodeInternal(fromI, /*create*/ true);
|
||||
DepGraphNode* toNode = getNodeInternal(toI, /*create*/ true);
|
||||
fromNode->outDeps.push_back(Dependence(toNode, depType, false));
|
||||
toNode-> inDeps. push_back(Dependence(fromNode, depType, true));
|
||||
}
|
||||
|
||||
#ifdef SUPPORTING_LOOP_DEPENDENCES
|
||||
/// This interface is a placeholder to show what information is needed.
|
||||
/// It will probably change when it starts being used.
|
||||
void AddLoopDependence(Instruction& fromI,
|
||||
Instruction& toI,
|
||||
DependenceType depType,
|
||||
DependenceDirection dir,
|
||||
DependenceDistance distance,
|
||||
DependenceLevel level,
|
||||
LoopInfo* enclosingLoop);
|
||||
#endif // SUPPORTING_LOOP_DEPENDENCES
|
||||
};
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#endif
|
115
include/llvm/Analysis/MemoryDepAnalysis.h
Normal file
115
include/llvm/Analysis/MemoryDepAnalysis.h
Normal file
@ -0,0 +1,115 @@
|
||||
//===- MemoryDepAnalysis.h - Compute dep graph for memory ops ---*- C++ -*-===//
|
||||
//
|
||||
// This file provides a pass (MemoryDepAnalysis) that computes memory-based
|
||||
// data dependences between instructions for each function in a module.
|
||||
// Memory-based dependences occur due to load and store operations, but
|
||||
// also the side-effects of call instructions.
|
||||
//
|
||||
// The result of this pass is a DependenceGraph for each function
|
||||
// representing the memory-based data dependences between instructions.
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_ANALYSIS_MEMORYDEPANALYSIS_H
|
||||
#define LLVM_ANALYSIS_MEMORYDEPANALYSIS_H
|
||||
|
||||
#include "llvm/Analysis/DependenceGraph.h"
|
||||
#include "llvm/Analysis/IPModRef.h"
|
||||
#include "llvm/Analysis/DataStructure.h"
|
||||
#include "llvm/Pass.h"
|
||||
#include "Support/TarjanSCCIterator.h"
|
||||
#include "Support/NonCopyable.h"
|
||||
#include "Support/hash_map"
|
||||
|
||||
|
||||
class Instruction;
|
||||
class Function;
|
||||
class DSGraph;
|
||||
class ModRefTable;
|
||||
|
||||
|
||||
///---------------------------------------------------------------------------
|
||||
/// class MemoryDepGraph:
|
||||
/// Dependence analysis for load/store/call instructions using IPModRef info
|
||||
/// computed at the granularity of individual DSGraph nodes.
|
||||
///
|
||||
/// This pass computes memory dependences for each function in a module.
|
||||
/// It can be made a FunctionPass once a Pass (such as Parallelize) is
|
||||
/// allowed to use a FunctionPass such as this one.
|
||||
///---------------------------------------------------------------------------
|
||||
|
||||
class MemoryDepAnalysis: /* Use if FunctionPass: public DependenceGraph, */
|
||||
public Pass {
|
||||
/// The following map and depGraph pointer are temporary until this class
|
||||
/// becomes a FunctionPass instead of a module Pass. */
|
||||
hash_map<Function*, DependenceGraph*> funcMap;
|
||||
DependenceGraph* funcDepGraph;
|
||||
|
||||
/// Information about one function being analyzed.
|
||||
const DSGraph* funcGraph;
|
||||
const FunctionModRefInfo* funcModRef;
|
||||
|
||||
/// Internal routine that processes each SCC of the CFG.
|
||||
void MemoryDepAnalysis::ProcessSCC(SCC<Function*>& S,
|
||||
ModRefTable& ModRefAfter);
|
||||
|
||||
friend class PgmDependenceGraph;
|
||||
|
||||
public:
|
||||
MemoryDepAnalysis()
|
||||
: /*DependenceGraph(),*/ funcDepGraph(NULL),
|
||||
funcGraph(NULL), funcModRef(NULL) { }
|
||||
~MemoryDepAnalysis();
|
||||
|
||||
///------------------------------------------------------------------------
|
||||
/// TEMPORARY FUNCTIONS TO MAKE THIS A MODULE PASS ---
|
||||
/// These functions will go away once this class becomes a FunctionPass.
|
||||
|
||||
/// Driver function to compute dependence graphs for every function.
|
||||
bool run(Module& M);
|
||||
|
||||
/// getGraph() -- Retrieve the dependence graph for a function.
|
||||
/// This is temporary and will go away once this is a FunctionPass.
|
||||
/// At that point, this class should directly inherit from DependenceGraph.
|
||||
///
|
||||
DependenceGraph& getGraph(Function& F) {
|
||||
hash_map<Function*, DependenceGraph*>::iterator I = funcMap.find(&F);
|
||||
assert(I != funcMap.end());
|
||||
return *I->second;
|
||||
}
|
||||
const DependenceGraph& getGraph(Function& F) const {
|
||||
hash_map<Function*, DependenceGraph*>::const_iterator
|
||||
I = funcMap.find(&F);
|
||||
assert(I != funcMap.end());
|
||||
return *I->second;
|
||||
}
|
||||
|
||||
/// Release depGraphs held in the Function -> DepGraph map.
|
||||
///
|
||||
virtual void releaseMemory();
|
||||
|
||||
///----END TEMPORARY FUNCTIONS---------------------------------------------
|
||||
|
||||
|
||||
/// Driver functions to compute the Load/Store Dep. Graph per function.
|
||||
///
|
||||
bool runOnFunction(Function& _func);
|
||||
|
||||
/// getAnalysisUsage - This does not modify anything.
|
||||
/// It uses the Top-Down DS Graph and IPModRef.
|
||||
///
|
||||
void getAnalysisUsage(AnalysisUsage &AU) const {
|
||||
AU.setPreservesAll();
|
||||
AU.addRequired<TDDataStructures>();
|
||||
AU.addRequired<IPModRef>();
|
||||
}
|
||||
|
||||
/// Debugging support methods
|
||||
///
|
||||
void print(std::ostream &O) const;
|
||||
void dump() const;
|
||||
};
|
||||
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#endif
|
492
lib/Analysis/DataStructure/MemoryDepAnalysis.cpp
Normal file
492
lib/Analysis/DataStructure/MemoryDepAnalysis.cpp
Normal file
@ -0,0 +1,492 @@
|
||||
//===- MemoryDepAnalysis.cpp - Compute dep graph for memory ops --*-C++-*--===//
|
||||
//
|
||||
// This file implements a pass (MemoryDepAnalysis) that computes memory-based
|
||||
// data dependences between instructions for each function in a module.
|
||||
// Memory-based dependences occur due to load and store operations, but
|
||||
// also the side-effects of call instructions.
|
||||
//
|
||||
// The result of this pass is a DependenceGraph for each function
|
||||
// representing the memory-based data dependences between instructions.
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Analysis/MemoryDepAnalysis.h"
|
||||
#include "llvm/Analysis/IPModRef.h"
|
||||
#include "llvm/Analysis/DataStructure.h"
|
||||
#include "llvm/Analysis/DSGraph.h"
|
||||
#include "llvm/Module.h"
|
||||
#include "llvm/Function.h"
|
||||
#include "llvm/iMemory.h"
|
||||
#include "llvm/iOther.h"
|
||||
#include "llvm/Support/InstVisitor.h"
|
||||
#include "llvm/Support/CFG.h"
|
||||
#include "Support/TarjanSCCIterator.h"
|
||||
#include "Support/Statistic.h"
|
||||
#include "Support/NonCopyable.h"
|
||||
#include "Support/STLExtras.h"
|
||||
#include "Support/hash_map"
|
||||
#include "Support/hash_set"
|
||||
#include <iostream>
|
||||
|
||||
|
||||
///--------------------------------------------------------------------------
|
||||
/// struct ModRefTable:
|
||||
///
|
||||
/// A data structure that tracks ModRefInfo for instructions:
|
||||
/// -- modRefMap is a map of Instruction* -> ModRefInfo for the instr.
|
||||
/// -- definers is a vector of instructions that define any node
|
||||
/// -- users is a vector of instructions that reference any node
|
||||
/// -- numUsersBeforeDef is a vector indicating that the number of users
|
||||
/// seen before definers[i] is numUsersBeforeDef[i].
|
||||
///
|
||||
/// numUsersBeforeDef[] effectively tells us the exact interleaving of
|
||||
/// definers and users within the ModRefTable.
|
||||
/// This is only maintained when constructing the table for one SCC, and
|
||||
/// not copied over from one table to another since it is no longer useful.
|
||||
///--------------------------------------------------------------------------
|
||||
|
||||
struct ModRefTable
|
||||
{
|
||||
typedef hash_map<Instruction*, ModRefInfo> ModRefMap;
|
||||
typedef ModRefMap::const_iterator const_map_iterator;
|
||||
typedef ModRefMap:: iterator map_iterator;
|
||||
typedef std::vector<Instruction*>::const_iterator const_ref_iterator;
|
||||
typedef std::vector<Instruction*>:: iterator ref_iterator;
|
||||
|
||||
ModRefMap modRefMap;
|
||||
std::vector<Instruction*> definers;
|
||||
std::vector<Instruction*> users;
|
||||
std::vector<unsigned> numUsersBeforeDef;
|
||||
|
||||
// Iterators to enumerate all the defining instructions
|
||||
const_ref_iterator defsBegin() const { return definers.begin(); }
|
||||
ref_iterator defsBegin() { return definers.begin(); }
|
||||
const_ref_iterator defsEnd() const { return definers.end(); }
|
||||
ref_iterator defsEnd() { return definers.end(); }
|
||||
|
||||
// Iterators to enumerate all the user instructions
|
||||
const_ref_iterator usersBegin() const { return users.begin(); }
|
||||
ref_iterator usersBegin() { return users.begin(); }
|
||||
const_ref_iterator usersEnd() const { return users.end(); }
|
||||
ref_iterator usersEnd() { return users.end(); }
|
||||
|
||||
// Iterator identifying the last user that was seen *before* a
|
||||
// specified def. In particular, all users in the half-closed range
|
||||
// [ usersBegin(), usersBeforeDef_End(defPtr) )
|
||||
// were seen *before* the specified def. All users in the half-closed range
|
||||
// [ usersBeforeDef_End(defPtr), usersEnd() )
|
||||
// were seen *after* the specified def.
|
||||
//
|
||||
ref_iterator usersBeforeDef_End(const_ref_iterator defPtr) {
|
||||
unsigned defIndex = (unsigned) (defPtr - defsBegin());
|
||||
assert(defIndex < numUsersBeforeDef.size());
|
||||
assert(usersBegin() + numUsersBeforeDef[defIndex] <= usersEnd());
|
||||
return usersBegin() + numUsersBeforeDef[defIndex];
|
||||
}
|
||||
const_ref_iterator usersBeforeDef_End(const_ref_iterator defPtr) const {
|
||||
return const_cast<ModRefTable*>(this)->usersBeforeDef_End(defPtr);
|
||||
}
|
||||
|
||||
//
|
||||
// Modifier methods
|
||||
//
|
||||
void AddDef(Instruction* D) {
|
||||
definers.push_back(D);
|
||||
numUsersBeforeDef.push_back(users.size());
|
||||
}
|
||||
void AddUse(Instruction* U) {
|
||||
users.push_back(U);
|
||||
}
|
||||
void Insert(const ModRefTable& fromTable) {
|
||||
modRefMap.insert(fromTable.modRefMap.begin(), fromTable.modRefMap.end());
|
||||
definers.insert(definers.end(),
|
||||
fromTable.definers.begin(), fromTable.definers.end());
|
||||
users.insert(users.end(),
|
||||
fromTable.users.begin(), fromTable.users.end());
|
||||
numUsersBeforeDef.clear(); /* fromTable.numUsersBeforeDef is ignored */
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
///--------------------------------------------------------------------------
|
||||
/// class ModRefInfoBuilder:
|
||||
///
|
||||
/// A simple InstVisitor<> class that retrieves the Mod/Ref info for
|
||||
/// Load/Store/Call instructions and inserts this information in
|
||||
/// a ModRefTable. It also records all instructions that Mod any node
|
||||
/// and all that use any node.
|
||||
///--------------------------------------------------------------------------
|
||||
|
||||
class ModRefInfoBuilder: public InstVisitor<ModRefInfoBuilder>,
|
||||
public NonCopyable
|
||||
{
|
||||
const DSGraph& funcGraph;
|
||||
const FunctionModRefInfo& funcModRef;
|
||||
ModRefTable& modRefTable;
|
||||
|
||||
ModRefInfoBuilder(); // do not implement
|
||||
|
||||
public:
|
||||
/*ctor*/ ModRefInfoBuilder(const DSGraph& _funcGraph,
|
||||
const FunctionModRefInfo& _funcModRef,
|
||||
ModRefTable& _modRefTable)
|
||||
: funcGraph(_funcGraph), funcModRef(_funcModRef), modRefTable(_modRefTable)
|
||||
{
|
||||
}
|
||||
|
||||
// At a call instruction, retrieve the ModRefInfo using IPModRef results.
|
||||
// Add the call to the defs list if it modifies any nodes and to the uses
|
||||
// list if it refs any nodes.
|
||||
//
|
||||
void visitCallInst (CallInst& callInst) {
|
||||
ModRefInfo safeModRef(funcGraph.getGraphSize());
|
||||
const ModRefInfo* callModRef = funcModRef.getModRefInfo(callInst);
|
||||
if (callModRef == NULL)
|
||||
{ // call to external/unknown function: mark all nodes as Mod and Ref
|
||||
safeModRef.getModSet().set();
|
||||
safeModRef.getRefSet().set();
|
||||
callModRef = &safeModRef;
|
||||
}
|
||||
|
||||
modRefTable.modRefMap.insert(std::make_pair(&callInst,
|
||||
ModRefInfo(*callModRef)));
|
||||
if (callModRef->getModSet().any())
|
||||
modRefTable.AddDef(&callInst);
|
||||
if (callModRef->getRefSet().any())
|
||||
modRefTable.AddUse(&callInst);
|
||||
}
|
||||
|
||||
// At a store instruction, add to the mod set the single node pointed to
|
||||
// by the pointer argument of the store. Interestingly, if there is no
|
||||
// such node, that would be a null pointer reference!
|
||||
void visitStoreInst (StoreInst& storeInst) {
|
||||
const DSNodeHandle& ptrNode =
|
||||
funcGraph.getNodeForValue(storeInst.getPointerOperand());
|
||||
if (const DSNode* target = ptrNode.getNode())
|
||||
{
|
||||
unsigned nodeId = funcModRef.getNodeId(target);
|
||||
ModRefInfo& minfo =
|
||||
modRefTable.modRefMap.insert(
|
||||
std::make_pair(&storeInst,
|
||||
ModRefInfo(funcGraph.getGraphSize()))).first->second;
|
||||
minfo.setNodeIsMod(nodeId);
|
||||
modRefTable.AddDef(&storeInst);
|
||||
}
|
||||
else
|
||||
std::cerr << "Warning: Uninitialized pointer reference!\n";
|
||||
}
|
||||
|
||||
// At a load instruction, add to the ref set the single node pointed to
|
||||
// by the pointer argument of the load. Interestingly, if there is no
|
||||
// such node, that would be a null pointer reference!
|
||||
void visitLoadInst (LoadInst& loadInst) {
|
||||
const DSNodeHandle& ptrNode =
|
||||
funcGraph.getNodeForValue(loadInst.getPointerOperand());
|
||||
if (const DSNode* target = ptrNode.getNode())
|
||||
{
|
||||
unsigned nodeId = funcModRef.getNodeId(target);
|
||||
ModRefInfo& minfo =
|
||||
modRefTable.modRefMap.insert(
|
||||
std::make_pair(&loadInst,
|
||||
ModRefInfo(funcGraph.getGraphSize()))).first->second;
|
||||
minfo.setNodeIsRef(nodeId);
|
||||
modRefTable.AddUse(&loadInst);
|
||||
}
|
||||
else
|
||||
std::cerr << "Warning: Uninitialized pointer reference!\n";
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
//----------------------------------------------------------------------------
|
||||
// class MemoryDepAnalysis: A dep. graph for load/store/call instructions
|
||||
//----------------------------------------------------------------------------
|
||||
|
||||
/// Basic dependence gathering algorithm, using TarjanSCCIterator on CFG:
|
||||
///
|
||||
/// for every SCC S in the CFG in PostOrder on the SCC DAG
|
||||
/// {
|
||||
/// for every basic block BB in S in *postorder*
|
||||
/// for every instruction I in BB in reverse
|
||||
/// Add (I, ModRef[I]) to ModRefCurrent
|
||||
/// if (Mod[I] != NULL)
|
||||
/// Add I to DefSetCurrent: { I \in S : Mod[I] != NULL }
|
||||
/// if (Ref[I] != NULL)
|
||||
/// Add I to UseSetCurrent: { I : Ref[I] != NULL }
|
||||
///
|
||||
/// for every def D in DefSetCurrent
|
||||
///
|
||||
/// // NOTE: D comes after itself iff S contains a loop
|
||||
/// if (HasLoop(S) && D & D)
|
||||
/// Add output-dep: D -> D2
|
||||
///
|
||||
/// for every def D2 *after* D in DefSetCurrent
|
||||
/// // NOTE: D2 comes before D in execution order
|
||||
/// if (D & D2)
|
||||
/// Add output-dep: D2 -> D
|
||||
/// if (HasLoop(S))
|
||||
/// Add output-dep: D -> D2
|
||||
///
|
||||
/// for every use U in UseSetCurrent that was seen *before* D
|
||||
/// // NOTE: U comes after D in execution order
|
||||
/// if (U & D)
|
||||
/// if (U != D || HasLoop(S))
|
||||
/// Add true-dep: D -> U
|
||||
/// if (HasLoop(S))
|
||||
/// Add anti-dep: U -> D
|
||||
///
|
||||
/// for every use U in UseSetCurrent that was seen *after* D
|
||||
/// // NOTE: U comes before D in execution order
|
||||
/// if (U & D)
|
||||
/// if (U != D || HasLoop(S))
|
||||
/// Add anti-dep: U -> D
|
||||
/// if (HasLoop(S))
|
||||
/// Add true-dep: D -> U
|
||||
///
|
||||
/// for every def Dnext in DefSetAfter
|
||||
/// // NOTE: Dnext comes after D in execution order
|
||||
/// if (Dnext & D)
|
||||
/// Add output-dep: D -> Dnext
|
||||
///
|
||||
/// for every use Unext in UseSetAfter
|
||||
/// // NOTE: Unext comes after D in execution order
|
||||
/// if (Unext & D)
|
||||
/// Add true-dep: D -> Unext
|
||||
///
|
||||
/// for every use U in UseSetCurrent
|
||||
/// for every def Dnext in DefSetAfter
|
||||
/// // NOTE: Dnext comes after U in execution order
|
||||
/// if (Dnext & D)
|
||||
/// Add anti-dep: U -> Dnext
|
||||
///
|
||||
/// Add ModRefCurrent to ModRefAfter: { (I, ModRef[I] ) }
|
||||
/// Add DefSetCurrent to DefSetAfter: { I : Mod[I] != NULL }
|
||||
/// Add UseSetCurrent to UseSetAfter: { I : Ref[I] != NULL }
|
||||
/// }
|
||||
///
|
||||
///
|
||||
|
||||
void MemoryDepAnalysis::ProcessSCC(SCC<Function*>& S,
|
||||
ModRefTable& ModRefAfter)
|
||||
{
|
||||
ModRefTable ModRefCurrent;
|
||||
ModRefTable::ModRefMap& mapCurrent = ModRefCurrent.modRefMap;
|
||||
ModRefTable::ModRefMap& mapAfter = ModRefAfter.modRefMap;
|
||||
|
||||
bool hasLoop = S.HasLoop();
|
||||
|
||||
// Builder class fills out a ModRefTable one instruction at a time.
|
||||
// To use it, we just invoke it's visit function for each basic block:
|
||||
//
|
||||
// for each basic block BB in the SCC in *postorder*
|
||||
// for each instruction I in BB in *reverse*
|
||||
// ModRefInfoBuilder::visit(I)
|
||||
// : Add (I, ModRef[I]) to ModRefCurrent.modRefMap
|
||||
// : Add I to ModRefCurrent.definers if it defines any node
|
||||
// : Add I to ModRefCurrent.users if it uses any node
|
||||
//
|
||||
ModRefInfoBuilder builder(*funcGraph, *funcModRef, ModRefCurrent);
|
||||
for (SCC<Function*>::iterator BI=S.begin(), BE=S.end(); BI != BE; ++BI)
|
||||
// Note: BBs in the SCC<> created by TarjanSCCIterator are in postorder.
|
||||
for (BasicBlock::reverse_iterator II=(*BI)->rbegin(), IE=(*BI)->rend();
|
||||
II != IE; ++II)
|
||||
builder.visit(*II);
|
||||
|
||||
/// for every def D in DefSetCurrent
|
||||
///
|
||||
for (ModRefTable::ref_iterator II=ModRefCurrent.defsBegin(),
|
||||
IE=ModRefCurrent.defsEnd(); II != IE; ++II)
|
||||
{
|
||||
/// // NOTE: D comes after itself iff S contains a loop
|
||||
/// if (HasLoop(S))
|
||||
/// Add output-dep: D -> D2
|
||||
if (hasLoop)
|
||||
funcDepGraph->AddSimpleDependence(**II, **II, OutputDependence);
|
||||
|
||||
/// for every def D2 *after* D in DefSetCurrent
|
||||
/// // NOTE: D2 comes before D in execution order
|
||||
/// if (D2 & D)
|
||||
/// Add output-dep: D2 -> D
|
||||
/// if (HasLoop(S))
|
||||
/// Add output-dep: D -> D2
|
||||
for (ModRefTable::ref_iterator JI=II+1; JI != IE; ++JI)
|
||||
if (!Disjoint(mapCurrent.find(*II)->second.getModSet(),
|
||||
mapCurrent.find(*JI)->second.getModSet()))
|
||||
{
|
||||
funcDepGraph->AddSimpleDependence(**JI, **II, OutputDependence);
|
||||
if (hasLoop)
|
||||
funcDepGraph->AddSimpleDependence(**II, **JI, OutputDependence);
|
||||
}
|
||||
|
||||
/// for every use U in UseSetCurrent that was seen *before* D
|
||||
/// // NOTE: U comes after D in execution order
|
||||
/// if (U & D)
|
||||
/// if (U != D || HasLoop(S))
|
||||
/// Add true-dep: U -> D
|
||||
/// if (HasLoop(S))
|
||||
/// Add anti-dep: D -> U
|
||||
ModRefTable::ref_iterator JI=ModRefCurrent.usersBegin();
|
||||
ModRefTable::ref_iterator JE = ModRefCurrent.usersBeforeDef_End(II);
|
||||
for ( ; JI != JE; ++JI)
|
||||
if (!Disjoint(mapCurrent.find(*II)->second.getModSet(),
|
||||
mapCurrent.find(*JI)->second.getRefSet()))
|
||||
{
|
||||
if (*II != *JI || hasLoop)
|
||||
funcDepGraph->AddSimpleDependence(**II, **JI, TrueDependence);
|
||||
if (hasLoop)
|
||||
funcDepGraph->AddSimpleDependence(**JI, **II, AntiDependence);
|
||||
}
|
||||
|
||||
/// for every use U in UseSetCurrent that was seen *after* D
|
||||
/// // NOTE: U comes before D in execution order
|
||||
/// if (U & D)
|
||||
/// if (U != D || HasLoop(S))
|
||||
/// Add anti-dep: U -> D
|
||||
/// if (HasLoop(S))
|
||||
/// Add true-dep: D -> U
|
||||
for (/*continue JI*/ JE = ModRefCurrent.usersEnd(); JI != JE; ++JI)
|
||||
if (!Disjoint(mapCurrent.find(*II)->second.getModSet(),
|
||||
mapCurrent.find(*JI)->second.getRefSet()))
|
||||
{
|
||||
if (*II != *JI || hasLoop)
|
||||
funcDepGraph->AddSimpleDependence(**JI, **II, AntiDependence);
|
||||
if (hasLoop)
|
||||
funcDepGraph->AddSimpleDependence(**II, **JI, TrueDependence);
|
||||
}
|
||||
|
||||
/// for every def Dnext in DefSetPrev
|
||||
/// // NOTE: Dnext comes after D in execution order
|
||||
/// if (Dnext & D)
|
||||
/// Add output-dep: D -> Dnext
|
||||
for (ModRefTable::ref_iterator JI=ModRefAfter.defsBegin(),
|
||||
JE=ModRefAfter.defsEnd(); JI != JE; ++JI)
|
||||
if (!Disjoint(mapCurrent.find(*II)->second.getModSet(),
|
||||
mapAfter.find(*JI)->second.getModSet()))
|
||||
funcDepGraph->AddSimpleDependence(**II, **JI, OutputDependence);
|
||||
|
||||
/// for every use Unext in UseSetAfter
|
||||
/// // NOTE: Unext comes after D in execution order
|
||||
/// if (Unext & D)
|
||||
/// Add true-dep: D -> Unext
|
||||
for (ModRefTable::ref_iterator JI=ModRefAfter.usersBegin(),
|
||||
JE=ModRefAfter.usersEnd(); JI != JE; ++JI)
|
||||
if (!Disjoint(mapCurrent.find(*II)->second.getModSet(),
|
||||
mapAfter.find(*JI)->second.getRefSet()))
|
||||
funcDepGraph->AddSimpleDependence(**II, **JI, TrueDependence);
|
||||
}
|
||||
|
||||
///
|
||||
/// for every use U in UseSetCurrent
|
||||
/// for every def Dnext in DefSetAfter
|
||||
/// // NOTE: Dnext comes after U in execution order
|
||||
/// if (Dnext & D)
|
||||
/// Add anti-dep: U -> Dnext
|
||||
for (ModRefTable::ref_iterator II=ModRefCurrent.usersBegin(),
|
||||
IE=ModRefCurrent.usersEnd(); II != IE; ++II)
|
||||
for (ModRefTable::ref_iterator JI=ModRefAfter.defsBegin(),
|
||||
JE=ModRefAfter.defsEnd(); JI != JE; ++JI)
|
||||
if (!Disjoint(mapCurrent.find(*II)->second.getRefSet(),
|
||||
mapAfter.find(*JI)->second.getModSet()))
|
||||
funcDepGraph->AddSimpleDependence(**II, **JI, AntiDependence);
|
||||
|
||||
/// Add ModRefCurrent to ModRefAfter: { (I, ModRef[I] ) }
|
||||
/// Add DefSetCurrent to DefSetAfter: { I : Mod[I] != NULL }
|
||||
/// Add UseSetCurrent to UseSetAfter: { I : Ref[I] != NULL }
|
||||
ModRefAfter.Insert(ModRefCurrent);
|
||||
}
|
||||
|
||||
|
||||
/// Debugging support methods
|
||||
///
|
||||
void MemoryDepAnalysis::print(std::ostream &O) const
|
||||
{
|
||||
// TEMPORARY LOOP
|
||||
for (hash_map<Function*, DependenceGraph*>::const_iterator
|
||||
I = funcMap.begin(), E = funcMap.end(); I != E; ++I)
|
||||
{
|
||||
Function* func = I->first;
|
||||
DependenceGraph* depGraph = I->second;
|
||||
|
||||
O << "\n================================================================\n";
|
||||
O << "DEPENDENCE GRAPH FOR MEMORY OPERATIONS IN FUNCTION " << func->getName();
|
||||
O << "\n================================================================\n\n";
|
||||
depGraph->print(*func, O);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
///
|
||||
/// Run the pass on a function
|
||||
///
|
||||
bool MemoryDepAnalysis::runOnFunction(Function& func)
|
||||
{
|
||||
assert(! func.isExternal());
|
||||
|
||||
// Get the FunctionModRefInfo holding IPModRef results for this function.
|
||||
// Use the TD graph recorded within the FunctionModRefInfo object, which
|
||||
// may not be the same as the original TD graph computed by DS analysis.
|
||||
//
|
||||
funcModRef = &getAnalysis<IPModRef>().getFunctionModRefInfo(func);
|
||||
funcGraph = &funcModRef->getFuncGraph();
|
||||
|
||||
// TEMPORARY: ptr to depGraph (later just becomes "this").
|
||||
assert(funcMap.find(&func) == funcMap.end() && "Analyzing function twice?");
|
||||
funcDepGraph = funcMap[&func] = new DependenceGraph();
|
||||
|
||||
ModRefTable ModRefAfter;
|
||||
|
||||
SCC<Function*>* nextSCC;
|
||||
for (TarjanSCC_iterator<Function*> tarjSCCiter = tarj_begin(&func);
|
||||
(nextSCC = *tarjSCCiter) != NULL; ++tarjSCCiter)
|
||||
ProcessSCC(*nextSCC, ModRefAfter);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
//-------------------------------------------------------------------------
|
||||
// TEMPORARY FUNCTIONS TO MAKE THIS A MODULE PASS ---
|
||||
// These functions will go away once this class becomes a FunctionPass.
|
||||
//
|
||||
|
||||
// Driver function to compute dependence graphs for every function.
|
||||
// This is temporary and will go away once this is a FunctionPass.
|
||||
//
|
||||
bool MemoryDepAnalysis::run(Module& M)
|
||||
{
|
||||
for (Module::iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI)
|
||||
if (! FI->isExternal())
|
||||
runOnFunction(*FI); // automatically inserts each depGraph into funcMap
|
||||
return true;
|
||||
}
|
||||
|
||||
// Release all the dependence graphs in the map.
|
||||
void MemoryDepAnalysis::releaseMemory()
|
||||
{
|
||||
for (hash_map<Function*, DependenceGraph*>::const_iterator
|
||||
I = funcMap.begin(), E = funcMap.end(); I != E; ++I)
|
||||
delete I->second;
|
||||
funcMap.clear();
|
||||
|
||||
// Clear pointers because the pass constructor will not be invoked again.
|
||||
funcDepGraph = NULL;
|
||||
funcGraph = NULL;
|
||||
funcModRef = NULL;
|
||||
}
|
||||
|
||||
MemoryDepAnalysis::~MemoryDepAnalysis()
|
||||
{
|
||||
releaseMemory();
|
||||
}
|
||||
|
||||
//----END TEMPORARY FUNCTIONS----------------------------------------------
|
||||
|
||||
|
||||
void MemoryDepAnalysis::dump() const
|
||||
{
|
||||
this->print(std::cerr);
|
||||
}
|
||||
|
||||
static RegisterAnalysis<MemoryDepAnalysis>
|
||||
Z("memdep", "Memory Dependence Analysis");
|
||||
|
79
lib/Analysis/IPA/DependenceGraph.cpp
Normal file
79
lib/Analysis/IPA/DependenceGraph.cpp
Normal file
@ -0,0 +1,79 @@
|
||||
//===- DependenceGraph.cpp - Dependence graph for a function ----*- C++ -*-===//
|
||||
//
|
||||
// This file implments an explicit representation for the dependence graph
|
||||
// of a function, with one node per instruction and one edge per dependence.
|
||||
// Dependences include both data and control dependences.
|
||||
//
|
||||
// Each dep. graph node (class DepGraphNode) keeps lists of incoming and
|
||||
// outgoing dependence edges.
|
||||
//
|
||||
// Each dep. graph edge (class Dependence) keeps a pointer to one end-point
|
||||
// of the dependence. This saves space and is important because dep. graphs
|
||||
// can grow quickly. It works just fine because the standard idiom is to
|
||||
// start with a known node and enumerate the dependences to or from that node.
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
|
||||
#include "llvm/Analysis/DependenceGraph.h"
|
||||
#include "llvm/Function.h"
|
||||
#include "llvm/BasicBlock.h"
|
||||
#include "llvm/Instruction.h"
|
||||
|
||||
|
||||
//----------------------------------------------------------------------------
|
||||
// class Dependence:
|
||||
//
|
||||
// A representation of a simple (non-loop-related) dependence
|
||||
//----------------------------------------------------------------------------
|
||||
|
||||
void Dependence::print(std::ostream &O) const
|
||||
{
|
||||
assert(depType != NoDependence && "This dependence should never be created!");
|
||||
switch (depType) {
|
||||
case TrueDependence: O << "TRUE dependence"; break;
|
||||
case AntiDependence: O << "ANTI dependence"; break;
|
||||
case OutputDependence: O << "OUTPUT dependence"; break;
|
||||
case ControlDependence: O << "CONTROL dependence"; break;
|
||||
default: assert(0 && "Invalid dependence type"); break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//----------------------------------------------------------------------------
|
||||
// class DepGraphNode
|
||||
//----------------------------------------------------------------------------
|
||||
|
||||
void DepGraphNode::print(std::ostream &O) const
|
||||
{
|
||||
const_iterator DI = outDepBegin(), DE = outDepEnd();
|
||||
|
||||
O << "\nDeps. from instr:" << getInstr();
|
||||
|
||||
for ( ; DI != DE; ++DI)
|
||||
{
|
||||
O << "\t";
|
||||
DI->print(O);
|
||||
O << " to instruction:";
|
||||
O << DI->getSink()->getInstr();
|
||||
}
|
||||
}
|
||||
|
||||
//----------------------------------------------------------------------------
|
||||
// class DependenceGraph
|
||||
//----------------------------------------------------------------------------
|
||||
|
||||
DependenceGraph::~DependenceGraph()
|
||||
{
|
||||
// Free all DepGraphNode objects created for this graph
|
||||
for (map_iterator I = depNodeMap.begin(), E = depNodeMap.end(); I != E; ++I)
|
||||
delete I->second;
|
||||
}
|
||||
|
||||
void DependenceGraph::print(const Function& func, std::ostream &O) const
|
||||
{
|
||||
O << "DEPENDENCE GRAPH FOR FUNCTION " << func.getName() << ":\n";
|
||||
for (Function::const_iterator BB=func.begin(), FE=func.end(); BB != FE; ++BB)
|
||||
for (BasicBlock::const_iterator II=BB->begin(), IE=BB->end(); II !=IE; ++II)
|
||||
if (const DepGraphNode* dgNode = this->getNode(*II))
|
||||
dgNode->print(O);
|
||||
}
|
492
lib/Analysis/IPA/MemoryDepAnalysis.cpp
Normal file
492
lib/Analysis/IPA/MemoryDepAnalysis.cpp
Normal file
@ -0,0 +1,492 @@
|
||||
//===- MemoryDepAnalysis.cpp - Compute dep graph for memory ops --*-C++-*--===//
|
||||
//
|
||||
// This file implements a pass (MemoryDepAnalysis) that computes memory-based
|
||||
// data dependences between instructions for each function in a module.
|
||||
// Memory-based dependences occur due to load and store operations, but
|
||||
// also the side-effects of call instructions.
|
||||
//
|
||||
// The result of this pass is a DependenceGraph for each function
|
||||
// representing the memory-based data dependences between instructions.
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Analysis/MemoryDepAnalysis.h"
|
||||
#include "llvm/Analysis/IPModRef.h"
|
||||
#include "llvm/Analysis/DataStructure.h"
|
||||
#include "llvm/Analysis/DSGraph.h"
|
||||
#include "llvm/Module.h"
|
||||
#include "llvm/Function.h"
|
||||
#include "llvm/iMemory.h"
|
||||
#include "llvm/iOther.h"
|
||||
#include "llvm/Support/InstVisitor.h"
|
||||
#include "llvm/Support/CFG.h"
|
||||
#include "Support/TarjanSCCIterator.h"
|
||||
#include "Support/Statistic.h"
|
||||
#include "Support/NonCopyable.h"
|
||||
#include "Support/STLExtras.h"
|
||||
#include "Support/hash_map"
|
||||
#include "Support/hash_set"
|
||||
#include <iostream>
|
||||
|
||||
|
||||
///--------------------------------------------------------------------------
|
||||
/// struct ModRefTable:
|
||||
///
|
||||
/// A data structure that tracks ModRefInfo for instructions:
|
||||
/// -- modRefMap is a map of Instruction* -> ModRefInfo for the instr.
|
||||
/// -- definers is a vector of instructions that define any node
|
||||
/// -- users is a vector of instructions that reference any node
|
||||
/// -- numUsersBeforeDef is a vector indicating that the number of users
|
||||
/// seen before definers[i] is numUsersBeforeDef[i].
|
||||
///
|
||||
/// numUsersBeforeDef[] effectively tells us the exact interleaving of
|
||||
/// definers and users within the ModRefTable.
|
||||
/// This is only maintained when constructing the table for one SCC, and
|
||||
/// not copied over from one table to another since it is no longer useful.
|
||||
///--------------------------------------------------------------------------
|
||||
|
||||
struct ModRefTable
|
||||
{
|
||||
typedef hash_map<Instruction*, ModRefInfo> ModRefMap;
|
||||
typedef ModRefMap::const_iterator const_map_iterator;
|
||||
typedef ModRefMap:: iterator map_iterator;
|
||||
typedef std::vector<Instruction*>::const_iterator const_ref_iterator;
|
||||
typedef std::vector<Instruction*>:: iterator ref_iterator;
|
||||
|
||||
ModRefMap modRefMap;
|
||||
std::vector<Instruction*> definers;
|
||||
std::vector<Instruction*> users;
|
||||
std::vector<unsigned> numUsersBeforeDef;
|
||||
|
||||
// Iterators to enumerate all the defining instructions
|
||||
const_ref_iterator defsBegin() const { return definers.begin(); }
|
||||
ref_iterator defsBegin() { return definers.begin(); }
|
||||
const_ref_iterator defsEnd() const { return definers.end(); }
|
||||
ref_iterator defsEnd() { return definers.end(); }
|
||||
|
||||
// Iterators to enumerate all the user instructions
|
||||
const_ref_iterator usersBegin() const { return users.begin(); }
|
||||
ref_iterator usersBegin() { return users.begin(); }
|
||||
const_ref_iterator usersEnd() const { return users.end(); }
|
||||
ref_iterator usersEnd() { return users.end(); }
|
||||
|
||||
// Iterator identifying the last user that was seen *before* a
|
||||
// specified def. In particular, all users in the half-closed range
|
||||
// [ usersBegin(), usersBeforeDef_End(defPtr) )
|
||||
// were seen *before* the specified def. All users in the half-closed range
|
||||
// [ usersBeforeDef_End(defPtr), usersEnd() )
|
||||
// were seen *after* the specified def.
|
||||
//
|
||||
ref_iterator usersBeforeDef_End(const_ref_iterator defPtr) {
|
||||
unsigned defIndex = (unsigned) (defPtr - defsBegin());
|
||||
assert(defIndex < numUsersBeforeDef.size());
|
||||
assert(usersBegin() + numUsersBeforeDef[defIndex] <= usersEnd());
|
||||
return usersBegin() + numUsersBeforeDef[defIndex];
|
||||
}
|
||||
const_ref_iterator usersBeforeDef_End(const_ref_iterator defPtr) const {
|
||||
return const_cast<ModRefTable*>(this)->usersBeforeDef_End(defPtr);
|
||||
}
|
||||
|
||||
//
|
||||
// Modifier methods
|
||||
//
|
||||
void AddDef(Instruction* D) {
|
||||
definers.push_back(D);
|
||||
numUsersBeforeDef.push_back(users.size());
|
||||
}
|
||||
void AddUse(Instruction* U) {
|
||||
users.push_back(U);
|
||||
}
|
||||
void Insert(const ModRefTable& fromTable) {
|
||||
modRefMap.insert(fromTable.modRefMap.begin(), fromTable.modRefMap.end());
|
||||
definers.insert(definers.end(),
|
||||
fromTable.definers.begin(), fromTable.definers.end());
|
||||
users.insert(users.end(),
|
||||
fromTable.users.begin(), fromTable.users.end());
|
||||
numUsersBeforeDef.clear(); /* fromTable.numUsersBeforeDef is ignored */
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
///--------------------------------------------------------------------------
|
||||
/// class ModRefInfoBuilder:
|
||||
///
|
||||
/// A simple InstVisitor<> class that retrieves the Mod/Ref info for
|
||||
/// Load/Store/Call instructions and inserts this information in
|
||||
/// a ModRefTable. It also records all instructions that Mod any node
|
||||
/// and all that use any node.
|
||||
///--------------------------------------------------------------------------
|
||||
|
||||
class ModRefInfoBuilder: public InstVisitor<ModRefInfoBuilder>,
|
||||
public NonCopyable
|
||||
{
|
||||
const DSGraph& funcGraph;
|
||||
const FunctionModRefInfo& funcModRef;
|
||||
ModRefTable& modRefTable;
|
||||
|
||||
ModRefInfoBuilder(); // do not implement
|
||||
|
||||
public:
|
||||
/*ctor*/ ModRefInfoBuilder(const DSGraph& _funcGraph,
|
||||
const FunctionModRefInfo& _funcModRef,
|
||||
ModRefTable& _modRefTable)
|
||||
: funcGraph(_funcGraph), funcModRef(_funcModRef), modRefTable(_modRefTable)
|
||||
{
|
||||
}
|
||||
|
||||
// At a call instruction, retrieve the ModRefInfo using IPModRef results.
|
||||
// Add the call to the defs list if it modifies any nodes and to the uses
|
||||
// list if it refs any nodes.
|
||||
//
|
||||
void visitCallInst (CallInst& callInst) {
|
||||
ModRefInfo safeModRef(funcGraph.getGraphSize());
|
||||
const ModRefInfo* callModRef = funcModRef.getModRefInfo(callInst);
|
||||
if (callModRef == NULL)
|
||||
{ // call to external/unknown function: mark all nodes as Mod and Ref
|
||||
safeModRef.getModSet().set();
|
||||
safeModRef.getRefSet().set();
|
||||
callModRef = &safeModRef;
|
||||
}
|
||||
|
||||
modRefTable.modRefMap.insert(std::make_pair(&callInst,
|
||||
ModRefInfo(*callModRef)));
|
||||
if (callModRef->getModSet().any())
|
||||
modRefTable.AddDef(&callInst);
|
||||
if (callModRef->getRefSet().any())
|
||||
modRefTable.AddUse(&callInst);
|
||||
}
|
||||
|
||||
// At a store instruction, add to the mod set the single node pointed to
|
||||
// by the pointer argument of the store. Interestingly, if there is no
|
||||
// such node, that would be a null pointer reference!
|
||||
void visitStoreInst (StoreInst& storeInst) {
|
||||
const DSNodeHandle& ptrNode =
|
||||
funcGraph.getNodeForValue(storeInst.getPointerOperand());
|
||||
if (const DSNode* target = ptrNode.getNode())
|
||||
{
|
||||
unsigned nodeId = funcModRef.getNodeId(target);
|
||||
ModRefInfo& minfo =
|
||||
modRefTable.modRefMap.insert(
|
||||
std::make_pair(&storeInst,
|
||||
ModRefInfo(funcGraph.getGraphSize()))).first->second;
|
||||
minfo.setNodeIsMod(nodeId);
|
||||
modRefTable.AddDef(&storeInst);
|
||||
}
|
||||
else
|
||||
std::cerr << "Warning: Uninitialized pointer reference!\n";
|
||||
}
|
||||
|
||||
// At a load instruction, add to the ref set the single node pointed to
|
||||
// by the pointer argument of the load. Interestingly, if there is no
|
||||
// such node, that would be a null pointer reference!
|
||||
void visitLoadInst (LoadInst& loadInst) {
|
||||
const DSNodeHandle& ptrNode =
|
||||
funcGraph.getNodeForValue(loadInst.getPointerOperand());
|
||||
if (const DSNode* target = ptrNode.getNode())
|
||||
{
|
||||
unsigned nodeId = funcModRef.getNodeId(target);
|
||||
ModRefInfo& minfo =
|
||||
modRefTable.modRefMap.insert(
|
||||
std::make_pair(&loadInst,
|
||||
ModRefInfo(funcGraph.getGraphSize()))).first->second;
|
||||
minfo.setNodeIsRef(nodeId);
|
||||
modRefTable.AddUse(&loadInst);
|
||||
}
|
||||
else
|
||||
std::cerr << "Warning: Uninitialized pointer reference!\n";
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
//----------------------------------------------------------------------------
|
||||
// class MemoryDepAnalysis: A dep. graph for load/store/call instructions
|
||||
//----------------------------------------------------------------------------
|
||||
|
||||
/// Basic dependence gathering algorithm, using TarjanSCCIterator on CFG:
|
||||
///
|
||||
/// for every SCC S in the CFG in PostOrder on the SCC DAG
|
||||
/// {
|
||||
/// for every basic block BB in S in *postorder*
|
||||
/// for every instruction I in BB in reverse
|
||||
/// Add (I, ModRef[I]) to ModRefCurrent
|
||||
/// if (Mod[I] != NULL)
|
||||
/// Add I to DefSetCurrent: { I \in S : Mod[I] != NULL }
|
||||
/// if (Ref[I] != NULL)
|
||||
/// Add I to UseSetCurrent: { I : Ref[I] != NULL }
|
||||
///
|
||||
/// for every def D in DefSetCurrent
|
||||
///
|
||||
/// // NOTE: D comes after itself iff S contains a loop
|
||||
/// if (HasLoop(S) && D & D)
|
||||
/// Add output-dep: D -> D2
|
||||
///
|
||||
/// for every def D2 *after* D in DefSetCurrent
|
||||
/// // NOTE: D2 comes before D in execution order
|
||||
/// if (D & D2)
|
||||
/// Add output-dep: D2 -> D
|
||||
/// if (HasLoop(S))
|
||||
/// Add output-dep: D -> D2
|
||||
///
|
||||
/// for every use U in UseSetCurrent that was seen *before* D
|
||||
/// // NOTE: U comes after D in execution order
|
||||
/// if (U & D)
|
||||
/// if (U != D || HasLoop(S))
|
||||
/// Add true-dep: D -> U
|
||||
/// if (HasLoop(S))
|
||||
/// Add anti-dep: U -> D
|
||||
///
|
||||
/// for every use U in UseSetCurrent that was seen *after* D
|
||||
/// // NOTE: U comes before D in execution order
|
||||
/// if (U & D)
|
||||
/// if (U != D || HasLoop(S))
|
||||
/// Add anti-dep: U -> D
|
||||
/// if (HasLoop(S))
|
||||
/// Add true-dep: D -> U
|
||||
///
|
||||
/// for every def Dnext in DefSetAfter
|
||||
/// // NOTE: Dnext comes after D in execution order
|
||||
/// if (Dnext & D)
|
||||
/// Add output-dep: D -> Dnext
|
||||
///
|
||||
/// for every use Unext in UseSetAfter
|
||||
/// // NOTE: Unext comes after D in execution order
|
||||
/// if (Unext & D)
|
||||
/// Add true-dep: D -> Unext
|
||||
///
|
||||
/// for every use U in UseSetCurrent
|
||||
/// for every def Dnext in DefSetAfter
|
||||
/// // NOTE: Dnext comes after U in execution order
|
||||
/// if (Dnext & D)
|
||||
/// Add anti-dep: U -> Dnext
|
||||
///
|
||||
/// Add ModRefCurrent to ModRefAfter: { (I, ModRef[I] ) }
|
||||
/// Add DefSetCurrent to DefSetAfter: { I : Mod[I] != NULL }
|
||||
/// Add UseSetCurrent to UseSetAfter: { I : Ref[I] != NULL }
|
||||
/// }
|
||||
///
|
||||
///
|
||||
|
||||
void MemoryDepAnalysis::ProcessSCC(SCC<Function*>& S,
|
||||
ModRefTable& ModRefAfter)
|
||||
{
|
||||
ModRefTable ModRefCurrent;
|
||||
ModRefTable::ModRefMap& mapCurrent = ModRefCurrent.modRefMap;
|
||||
ModRefTable::ModRefMap& mapAfter = ModRefAfter.modRefMap;
|
||||
|
||||
bool hasLoop = S.HasLoop();
|
||||
|
||||
// Builder class fills out a ModRefTable one instruction at a time.
|
||||
// To use it, we just invoke it's visit function for each basic block:
|
||||
//
|
||||
// for each basic block BB in the SCC in *postorder*
|
||||
// for each instruction I in BB in *reverse*
|
||||
// ModRefInfoBuilder::visit(I)
|
||||
// : Add (I, ModRef[I]) to ModRefCurrent.modRefMap
|
||||
// : Add I to ModRefCurrent.definers if it defines any node
|
||||
// : Add I to ModRefCurrent.users if it uses any node
|
||||
//
|
||||
ModRefInfoBuilder builder(*funcGraph, *funcModRef, ModRefCurrent);
|
||||
for (SCC<Function*>::iterator BI=S.begin(), BE=S.end(); BI != BE; ++BI)
|
||||
// Note: BBs in the SCC<> created by TarjanSCCIterator are in postorder.
|
||||
for (BasicBlock::reverse_iterator II=(*BI)->rbegin(), IE=(*BI)->rend();
|
||||
II != IE; ++II)
|
||||
builder.visit(*II);
|
||||
|
||||
/// for every def D in DefSetCurrent
|
||||
///
|
||||
for (ModRefTable::ref_iterator II=ModRefCurrent.defsBegin(),
|
||||
IE=ModRefCurrent.defsEnd(); II != IE; ++II)
|
||||
{
|
||||
/// // NOTE: D comes after itself iff S contains a loop
|
||||
/// if (HasLoop(S))
|
||||
/// Add output-dep: D -> D2
|
||||
if (hasLoop)
|
||||
funcDepGraph->AddSimpleDependence(**II, **II, OutputDependence);
|
||||
|
||||
/// for every def D2 *after* D in DefSetCurrent
|
||||
/// // NOTE: D2 comes before D in execution order
|
||||
/// if (D2 & D)
|
||||
/// Add output-dep: D2 -> D
|
||||
/// if (HasLoop(S))
|
||||
/// Add output-dep: D -> D2
|
||||
for (ModRefTable::ref_iterator JI=II+1; JI != IE; ++JI)
|
||||
if (!Disjoint(mapCurrent.find(*II)->second.getModSet(),
|
||||
mapCurrent.find(*JI)->second.getModSet()))
|
||||
{
|
||||
funcDepGraph->AddSimpleDependence(**JI, **II, OutputDependence);
|
||||
if (hasLoop)
|
||||
funcDepGraph->AddSimpleDependence(**II, **JI, OutputDependence);
|
||||
}
|
||||
|
||||
/// for every use U in UseSetCurrent that was seen *before* D
|
||||
/// // NOTE: U comes after D in execution order
|
||||
/// if (U & D)
|
||||
/// if (U != D || HasLoop(S))
|
||||
/// Add true-dep: U -> D
|
||||
/// if (HasLoop(S))
|
||||
/// Add anti-dep: D -> U
|
||||
ModRefTable::ref_iterator JI=ModRefCurrent.usersBegin();
|
||||
ModRefTable::ref_iterator JE = ModRefCurrent.usersBeforeDef_End(II);
|
||||
for ( ; JI != JE; ++JI)
|
||||
if (!Disjoint(mapCurrent.find(*II)->second.getModSet(),
|
||||
mapCurrent.find(*JI)->second.getRefSet()))
|
||||
{
|
||||
if (*II != *JI || hasLoop)
|
||||
funcDepGraph->AddSimpleDependence(**II, **JI, TrueDependence);
|
||||
if (hasLoop)
|
||||
funcDepGraph->AddSimpleDependence(**JI, **II, AntiDependence);
|
||||
}
|
||||
|
||||
/// for every use U in UseSetCurrent that was seen *after* D
|
||||
/// // NOTE: U comes before D in execution order
|
||||
/// if (U & D)
|
||||
/// if (U != D || HasLoop(S))
|
||||
/// Add anti-dep: U -> D
|
||||
/// if (HasLoop(S))
|
||||
/// Add true-dep: D -> U
|
||||
for (/*continue JI*/ JE = ModRefCurrent.usersEnd(); JI != JE; ++JI)
|
||||
if (!Disjoint(mapCurrent.find(*II)->second.getModSet(),
|
||||
mapCurrent.find(*JI)->second.getRefSet()))
|
||||
{
|
||||
if (*II != *JI || hasLoop)
|
||||
funcDepGraph->AddSimpleDependence(**JI, **II, AntiDependence);
|
||||
if (hasLoop)
|
||||
funcDepGraph->AddSimpleDependence(**II, **JI, TrueDependence);
|
||||
}
|
||||
|
||||
/// for every def Dnext in DefSetPrev
|
||||
/// // NOTE: Dnext comes after D in execution order
|
||||
/// if (Dnext & D)
|
||||
/// Add output-dep: D -> Dnext
|
||||
for (ModRefTable::ref_iterator JI=ModRefAfter.defsBegin(),
|
||||
JE=ModRefAfter.defsEnd(); JI != JE; ++JI)
|
||||
if (!Disjoint(mapCurrent.find(*II)->second.getModSet(),
|
||||
mapAfter.find(*JI)->second.getModSet()))
|
||||
funcDepGraph->AddSimpleDependence(**II, **JI, OutputDependence);
|
||||
|
||||
/// for every use Unext in UseSetAfter
|
||||
/// // NOTE: Unext comes after D in execution order
|
||||
/// if (Unext & D)
|
||||
/// Add true-dep: D -> Unext
|
||||
for (ModRefTable::ref_iterator JI=ModRefAfter.usersBegin(),
|
||||
JE=ModRefAfter.usersEnd(); JI != JE; ++JI)
|
||||
if (!Disjoint(mapCurrent.find(*II)->second.getModSet(),
|
||||
mapAfter.find(*JI)->second.getRefSet()))
|
||||
funcDepGraph->AddSimpleDependence(**II, **JI, TrueDependence);
|
||||
}
|
||||
|
||||
///
|
||||
/// for every use U in UseSetCurrent
|
||||
/// for every def Dnext in DefSetAfter
|
||||
/// // NOTE: Dnext comes after U in execution order
|
||||
/// if (Dnext & D)
|
||||
/// Add anti-dep: U -> Dnext
|
||||
for (ModRefTable::ref_iterator II=ModRefCurrent.usersBegin(),
|
||||
IE=ModRefCurrent.usersEnd(); II != IE; ++II)
|
||||
for (ModRefTable::ref_iterator JI=ModRefAfter.defsBegin(),
|
||||
JE=ModRefAfter.defsEnd(); JI != JE; ++JI)
|
||||
if (!Disjoint(mapCurrent.find(*II)->second.getRefSet(),
|
||||
mapAfter.find(*JI)->second.getModSet()))
|
||||
funcDepGraph->AddSimpleDependence(**II, **JI, AntiDependence);
|
||||
|
||||
/// Add ModRefCurrent to ModRefAfter: { (I, ModRef[I] ) }
|
||||
/// Add DefSetCurrent to DefSetAfter: { I : Mod[I] != NULL }
|
||||
/// Add UseSetCurrent to UseSetAfter: { I : Ref[I] != NULL }
|
||||
ModRefAfter.Insert(ModRefCurrent);
|
||||
}
|
||||
|
||||
|
||||
/// Debugging support methods
|
||||
///
|
||||
void MemoryDepAnalysis::print(std::ostream &O) const
|
||||
{
|
||||
// TEMPORARY LOOP
|
||||
for (hash_map<Function*, DependenceGraph*>::const_iterator
|
||||
I = funcMap.begin(), E = funcMap.end(); I != E; ++I)
|
||||
{
|
||||
Function* func = I->first;
|
||||
DependenceGraph* depGraph = I->second;
|
||||
|
||||
O << "\n================================================================\n";
|
||||
O << "DEPENDENCE GRAPH FOR MEMORY OPERATIONS IN FUNCTION " << func->getName();
|
||||
O << "\n================================================================\n\n";
|
||||
depGraph->print(*func, O);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
///
|
||||
/// Run the pass on a function
|
||||
///
|
||||
bool MemoryDepAnalysis::runOnFunction(Function& func)
|
||||
{
|
||||
assert(! func.isExternal());
|
||||
|
||||
// Get the FunctionModRefInfo holding IPModRef results for this function.
|
||||
// Use the TD graph recorded within the FunctionModRefInfo object, which
|
||||
// may not be the same as the original TD graph computed by DS analysis.
|
||||
//
|
||||
funcModRef = &getAnalysis<IPModRef>().getFunctionModRefInfo(func);
|
||||
funcGraph = &funcModRef->getFuncGraph();
|
||||
|
||||
// TEMPORARY: ptr to depGraph (later just becomes "this").
|
||||
assert(funcMap.find(&func) == funcMap.end() && "Analyzing function twice?");
|
||||
funcDepGraph = funcMap[&func] = new DependenceGraph();
|
||||
|
||||
ModRefTable ModRefAfter;
|
||||
|
||||
SCC<Function*>* nextSCC;
|
||||
for (TarjanSCC_iterator<Function*> tarjSCCiter = tarj_begin(&func);
|
||||
(nextSCC = *tarjSCCiter) != NULL; ++tarjSCCiter)
|
||||
ProcessSCC(*nextSCC, ModRefAfter);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
//-------------------------------------------------------------------------
|
||||
// TEMPORARY FUNCTIONS TO MAKE THIS A MODULE PASS ---
|
||||
// These functions will go away once this class becomes a FunctionPass.
|
||||
//
|
||||
|
||||
// Driver function to compute dependence graphs for every function.
|
||||
// This is temporary and will go away once this is a FunctionPass.
|
||||
//
|
||||
bool MemoryDepAnalysis::run(Module& M)
|
||||
{
|
||||
for (Module::iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI)
|
||||
if (! FI->isExternal())
|
||||
runOnFunction(*FI); // automatically inserts each depGraph into funcMap
|
||||
return true;
|
||||
}
|
||||
|
||||
// Release all the dependence graphs in the map.
|
||||
void MemoryDepAnalysis::releaseMemory()
|
||||
{
|
||||
for (hash_map<Function*, DependenceGraph*>::const_iterator
|
||||
I = funcMap.begin(), E = funcMap.end(); I != E; ++I)
|
||||
delete I->second;
|
||||
funcMap.clear();
|
||||
|
||||
// Clear pointers because the pass constructor will not be invoked again.
|
||||
funcDepGraph = NULL;
|
||||
funcGraph = NULL;
|
||||
funcModRef = NULL;
|
||||
}
|
||||
|
||||
MemoryDepAnalysis::~MemoryDepAnalysis()
|
||||
{
|
||||
releaseMemory();
|
||||
}
|
||||
|
||||
//----END TEMPORARY FUNCTIONS----------------------------------------------
|
||||
|
||||
|
||||
void MemoryDepAnalysis::dump() const
|
||||
{
|
||||
this->print(std::cerr);
|
||||
}
|
||||
|
||||
static RegisterAnalysis<MemoryDepAnalysis>
|
||||
Z("memdep", "Memory Dependence Analysis");
|
||||
|
Loading…
Reference in New Issue
Block a user