[x86, SSE] change patterns for CMPP to float types to allow matching with SSE1 (PR28044)

This patch is intended to solve:
https://llvm.org/bugs/show_bug.cgi?id=28044

By changing the definition of X86ISD::CMPP to use float types, we allow it to be created 
and pass legalization for an SSE1-only target where v4i32 is not legal.

The motivational trail for this change includes:
https://llvm.org/bugs/show_bug.cgi?id=28001

and eventually makes this trigger:
http://reviews.llvm.org/D21190

Ie, after this step, we should be free to have Clang generate FP compare IR instead of x86
intrinsics for SSE C packed compare intrinsics. (We can auto-upgrade and remove the LLVM 
sse.cmp intrinsics as a follow-up step.) Once we're generating vector IR instead of x86
intrinsics, a big pile of generic optimizations can trigger.

Differential Revision: http://reviews.llvm.org/D21235


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@272511 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Sanjay Patel 2016-06-12 15:03:25 +00:00
parent b2cfb64e72
commit 9a476793c5
4 changed files with 54 additions and 71 deletions

View File

@ -15168,34 +15168,59 @@ static SDValue LowerVSETCC(SDValue Op, const X86Subtarget &Subtarget,
assert(EltVT == MVT::f32 || EltVT == MVT::f64); assert(EltVT == MVT::f32 || EltVT == MVT::f64);
#endif #endif
unsigned SSECC = translateX86FSETCC(SetCCOpcode, Op0, Op1); unsigned Opc;
unsigned Opc = X86ISD::CMPP;
if (Subtarget.hasAVX512() && VT.getVectorElementType() == MVT::i1) { if (Subtarget.hasAVX512() && VT.getVectorElementType() == MVT::i1) {
assert(VT.getVectorNumElements() <= 16); assert(VT.getVectorNumElements() <= 16);
Opc = X86ISD::CMPM; Opc = X86ISD::CMPM;
} else {
Opc = X86ISD::CMPP;
// The SSE/AVX packed FP comparison nodes are defined with a
// floating-point vector result that matches the operand type. This allows
// them to work with an SSE1 target (integer vector types are not legal).
VT = Op0.getSimpleValueType();
} }
// In the two special cases we can't handle, emit two comparisons.
// In the two cases not handled by SSE compare predicates (SETUEQ/SETONE),
// emit two comparisons and a logic op to tie them together.
// TODO: This can be avoided if Intel (and only Intel as of 2016) AVX is
// available.
SDValue Cmp;
unsigned SSECC = translateX86FSETCC(SetCCOpcode, Op0, Op1);
if (SSECC == 8) { if (SSECC == 8) {
// LLVM predicate is SETUEQ or SETONE.
unsigned CC0, CC1; unsigned CC0, CC1;
unsigned CombineOpc; unsigned CombineOpc;
if (SetCCOpcode == ISD::SETUEQ) { if (SetCCOpcode == ISD::SETUEQ) {
CC0 = 3; CC1 = 0; CombineOpc = ISD::OR; CC0 = 3; // UNORD
CC1 = 0; // EQ
CombineOpc = Opc == X86ISD::CMPP ? X86ISD::FOR : ISD::OR;
} else { } else {
assert(SetCCOpcode == ISD::SETONE); assert(SetCCOpcode == ISD::SETONE);
CC0 = 7; CC1 = 4; CombineOpc = ISD::AND; CC0 = 7; // ORD
CC1 = 4; // NEQ
CombineOpc = Opc == X86ISD::CMPP ? X86ISD::FAND : ISD::AND;
} }
SDValue Cmp0 = DAG.getNode(Opc, dl, VT, Op0, Op1, SDValue Cmp0 = DAG.getNode(Opc, dl, VT, Op0, Op1,
DAG.getConstant(CC0, dl, MVT::i8)); DAG.getConstant(CC0, dl, MVT::i8));
SDValue Cmp1 = DAG.getNode(Opc, dl, VT, Op0, Op1, SDValue Cmp1 = DAG.getNode(Opc, dl, VT, Op0, Op1,
DAG.getConstant(CC1, dl, MVT::i8)); DAG.getConstant(CC1, dl, MVT::i8));
return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1); Cmp = DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
} } else {
// Handle all other FP comparisons here. // Handle all other FP comparisons here.
return DAG.getNode(Opc, dl, VT, Op0, Op1, Cmp = DAG.getNode(Opc, dl, VT, Op0, Op1,
DAG.getConstant(SSECC, dl, MVT::i8)); DAG.getConstant(SSECC, dl, MVT::i8));
} }
// If this is SSE/AVX CMPP, bitcast the result back to integer to match the
// result type of SETCC. The bitcast is expected to be optimized away
// during combining/isel.
if (Opc == X86ISD::CMPP)
Cmp = DAG.getBitcast(Op.getSimpleValueType(), Cmp);
return Cmp;
}
MVT VTOp0 = Op0.getSimpleValueType(); MVT VTOp0 = Op0.getSimpleValueType();
assert(VTOp0 == Op1.getSimpleValueType() && assert(VTOp0 == Op1.getSimpleValueType() &&
"Expected operands with same type!"); "Expected operands with same type!");
@ -29647,6 +29672,11 @@ static SDValue combineSetCC(SDNode *N, SelectionDAG &DAG,
} }
} }
// For an SSE1-only target, lower to X86ISD::CMPP early to avoid scalarization
// via legalization because v4i32 is not a legal type.
if (Subtarget.hasSSE1() && !Subtarget.hasSSE2() && VT == MVT::v4i32)
return LowerVSETCC(SDValue(N, 0), Subtarget, DAG);
return SDValue(); return SDValue();
} }

View File

@ -35,7 +35,7 @@ def bc_mmx : PatFrag<(ops node:$in), (x86mmx (bitconvert node:$in))>;
// SSE specific DAG Nodes. // SSE specific DAG Nodes.
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
def SDTX86VFCMP : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<1, 2>, def SDTX86VFCMP : SDTypeProfile<1, 3, [SDTCisFP<0>, SDTCisSameAs<1, 2>,
SDTCisFP<1>, SDTCisVT<3, i8>, SDTCisFP<1>, SDTCisVT<3, i8>,
SDTCisVec<1>]>; SDTCisVec<1>]>;
def SDTX86CmpTestSae : SDTypeProfile<1, 3, [SDTCisVT<0, i32>, def SDTX86CmpTestSae : SDTypeProfile<1, 3, [SDTCisVT<0, i32>,

View File

@ -2498,36 +2498,36 @@ let Constraints = "$src1 = $dst" in {
} }
let Predicates = [HasAVX] in { let Predicates = [HasAVX] in {
def : Pat<(v4i32 (X86cmpp (v4f32 VR128:$src1), VR128:$src2, imm:$cc)), def : Pat<(v4f32 (X86cmpp (v4f32 VR128:$src1), VR128:$src2, imm:$cc)),
(VCMPPSrri (v4f32 VR128:$src1), (v4f32 VR128:$src2), imm:$cc)>; (VCMPPSrri (v4f32 VR128:$src1), (v4f32 VR128:$src2), imm:$cc)>;
def : Pat<(v4i32 (X86cmpp (v4f32 VR128:$src1), (loadv4f32 addr:$src2), imm:$cc)), def : Pat<(v4f32 (X86cmpp (v4f32 VR128:$src1), (loadv4f32 addr:$src2), imm:$cc)),
(VCMPPSrmi (v4f32 VR128:$src1), addr:$src2, imm:$cc)>; (VCMPPSrmi (v4f32 VR128:$src1), addr:$src2, imm:$cc)>;
def : Pat<(v2i64 (X86cmpp (v2f64 VR128:$src1), VR128:$src2, imm:$cc)), def : Pat<(v2f64 (X86cmpp (v2f64 VR128:$src1), VR128:$src2, imm:$cc)),
(VCMPPDrri VR128:$src1, VR128:$src2, imm:$cc)>; (VCMPPDrri VR128:$src1, VR128:$src2, imm:$cc)>;
def : Pat<(v2i64 (X86cmpp (v2f64 VR128:$src1), (loadv2f64 addr:$src2), imm:$cc)), def : Pat<(v2f64 (X86cmpp (v2f64 VR128:$src1), (loadv2f64 addr:$src2), imm:$cc)),
(VCMPPDrmi VR128:$src1, addr:$src2, imm:$cc)>; (VCMPPDrmi VR128:$src1, addr:$src2, imm:$cc)>;
def : Pat<(v8i32 (X86cmpp (v8f32 VR256:$src1), VR256:$src2, imm:$cc)), def : Pat<(v8f32 (X86cmpp (v8f32 VR256:$src1), VR256:$src2, imm:$cc)),
(VCMPPSYrri (v8f32 VR256:$src1), (v8f32 VR256:$src2), imm:$cc)>; (VCMPPSYrri (v8f32 VR256:$src1), (v8f32 VR256:$src2), imm:$cc)>;
def : Pat<(v8i32 (X86cmpp (v8f32 VR256:$src1), (loadv8f32 addr:$src2), imm:$cc)), def : Pat<(v8f32 (X86cmpp (v8f32 VR256:$src1), (loadv8f32 addr:$src2), imm:$cc)),
(VCMPPSYrmi (v8f32 VR256:$src1), addr:$src2, imm:$cc)>; (VCMPPSYrmi (v8f32 VR256:$src1), addr:$src2, imm:$cc)>;
def : Pat<(v4i64 (X86cmpp (v4f64 VR256:$src1), VR256:$src2, imm:$cc)), def : Pat<(v4f64 (X86cmpp (v4f64 VR256:$src1), VR256:$src2, imm:$cc)),
(VCMPPDYrri VR256:$src1, VR256:$src2, imm:$cc)>; (VCMPPDYrri VR256:$src1, VR256:$src2, imm:$cc)>;
def : Pat<(v4i64 (X86cmpp (v4f64 VR256:$src1), (loadv4f64 addr:$src2), imm:$cc)), def : Pat<(v4f64 (X86cmpp (v4f64 VR256:$src1), (loadv4f64 addr:$src2), imm:$cc)),
(VCMPPDYrmi VR256:$src1, addr:$src2, imm:$cc)>; (VCMPPDYrmi VR256:$src1, addr:$src2, imm:$cc)>;
} }
let Predicates = [UseSSE1] in { let Predicates = [UseSSE1] in {
def : Pat<(v4i32 (X86cmpp (v4f32 VR128:$src1), VR128:$src2, imm:$cc)), def : Pat<(v4f32 (X86cmpp (v4f32 VR128:$src1), VR128:$src2, imm:$cc)),
(CMPPSrri (v4f32 VR128:$src1), (v4f32 VR128:$src2), imm:$cc)>; (CMPPSrri (v4f32 VR128:$src1), (v4f32 VR128:$src2), imm:$cc)>;
def : Pat<(v4i32 (X86cmpp (v4f32 VR128:$src1), (memopv4f32 addr:$src2), imm:$cc)), def : Pat<(v4f32 (X86cmpp (v4f32 VR128:$src1), (memopv4f32 addr:$src2), imm:$cc)),
(CMPPSrmi (v4f32 VR128:$src1), addr:$src2, imm:$cc)>; (CMPPSrmi (v4f32 VR128:$src1), addr:$src2, imm:$cc)>;
} }
let Predicates = [UseSSE2] in { let Predicates = [UseSSE2] in {
def : Pat<(v2i64 (X86cmpp (v2f64 VR128:$src1), VR128:$src2, imm:$cc)), def : Pat<(v2f64 (X86cmpp (v2f64 VR128:$src1), VR128:$src2, imm:$cc)),
(CMPPDrri VR128:$src1, VR128:$src2, imm:$cc)>; (CMPPDrri VR128:$src1, VR128:$src2, imm:$cc)>;
def : Pat<(v2i64 (X86cmpp (v2f64 VR128:$src1), (memopv2f64 addr:$src2), imm:$cc)), def : Pat<(v2f64 (X86cmpp (v2f64 VR128:$src1), (memopv2f64 addr:$src2), imm:$cc)),
(CMPPDrmi VR128:$src1, addr:$src2, imm:$cc)>; (CMPPDrmi VR128:$src1, addr:$src2, imm:$cc)>;
} }

View File

@ -53,55 +53,8 @@ entry:
define <4 x float> @PR28044(<4 x float> %a0, <4 x float> %a1) nounwind { define <4 x float> @PR28044(<4 x float> %a0, <4 x float> %a1) nounwind {
; CHECK-LABEL: PR28044: ; CHECK-LABEL: PR28044:
; CHECK: # BB#0: ; CHECK: # BB#0:
; CHECK: movaps %xmm1, %xmm2 ; CHECK-NEXT: cmpeqps %xmm1, %xmm0
; CHECK-NEXT: shufps {{.*#+}} xmm2 = xmm2[3,1,2,3] ; CHECK-NEXT: ret
; CHECK-NEXT: movaps %xmm0, %xmm3
; CHECK-NEXT: shufps {{.*#+}} xmm3 = xmm3[3,1,2,3]
; CHECK-NEXT: ucomiss %xmm2, %xmm3
; CHECK-NEXT: setnp %al
; CHECK-NEXT: sete %cl
; CHECK-NEXT: andb %al, %cl
; CHECK-NEXT: movzbl %cl, %eax
; CHECK-NEXT: shll $31, %eax
; CHECK-NEXT: sarl $31, %eax
; CHECK-NEXT: movl %eax,
; CHECK-NEXT: movaps %xmm1, %xmm2
; CHECK-NEXT: shufps {{.*#+}} xmm2 = xmm2[1,1,2,3]
; CHECK-NEXT: movaps %xmm0, %xmm3
; CHECK-NEXT: shufps {{.*#+}} xmm3 = xmm3[1,1,2,3]
; CHECK-NEXT: ucomiss %xmm2, %xmm3
; CHECK-NEXT: setnp %al
; CHECK-NEXT: sete %cl
; CHECK-NEXT: andb %al, %cl
; CHECK-NEXT: movzbl %cl, %eax
; CHECK-NEXT: shll $31, %eax
; CHECK-NEXT: sarl $31, %eax
; CHECK-NEXT: movl %eax,
; CHECK-NEXT: ucomiss %xmm1, %xmm0
; CHECK-NEXT: setnp %al
; CHECK-NEXT: sete %cl
; CHECK-NEXT: andb %al, %cl
; CHECK-NEXT: movzbl %cl, %eax
; CHECK-NEXT: shll $31, %eax
; CHECK-NEXT: sarl $31, %eax
; CHECK-NEXT: movl %eax,
; CHECK-NEXT: shufps {{.*#+}} xmm1 = xmm1[2,1,2,3]
; CHECK-NEXT: shufps {{.*#+}} xmm0 = xmm0[2,1,2,3]
; CHECK-NEXT: ucomiss %xmm1, %xmm0
; CHECK-NEXT: setnp %al
; CHECK-NEXT: sete %cl
; CHECK-NEXT: andb %al, %cl
; CHECK-NEXT: movzbl %cl, %eax
; CHECK-NEXT: shll $31, %eax
; CHECK-NEXT: sarl $31, %eax
; CHECK-NEXT: movl %eax,
; CHECK-NEXT: movss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; CHECK-NEXT: movss {{.*#+}} xmm1 = mem[0],zero,zero,zero
; CHECK-NEXT: unpcklps {{.*#+}} xmm1 = xmm1[0],xmm0[0],xmm1[1],xmm0[1]
; CHECK-NEXT: movss {{.*#+}} xmm0 = mem[0],zero,zero,zero
; CHECK-NEXT: movss {{.*#+}} xmm2 = mem[0],zero,zero,zero
; CHECK-NEXT: unpcklps {{.*#+}} xmm0 = xmm0[0],xmm2[0],xmm0[1],xmm2[1]
; CHECK-NEXT: unpcklps {{.*#+}} xmm0 = xmm0[0],xmm1[0],xmm0[1],xmm1[1]
; ;
%cmp = fcmp oeq <4 x float> %a0, %a1 %cmp = fcmp oeq <4 x float> %a0, %a1
%sext = sext <4 x i1> %cmp to <4 x i32> %sext = sext <4 x i1> %cmp to <4 x i32>